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Abstract

The book Reinforcment Learning: An Introduction by Sutton and
Barto [1] is the standard text book for introductory courses to rein-
forcement learning. Next to concrete algorithms and extensive exam-
ples the book contains several fundamental results related to Markov
decision processes (MDPs) and Bellman equations in Chapters 3 and 4.
Unfortunately some proofs are missing, some theorems lack precise for-
mulation, and for some results the line of arguments is quite garbled.

In this note we provide all missing proofs, give precise formulations
of theorems and untangle the line of arguments. Further, we avoid
using random variables and their expected values. Since we (like Sut-
ton/Barto) restrict our attention to finite MDPs all expected values
can be made explicit avoiding overloaded notation and murky conclu-
sions.

This article bridges the gap between introductory literature like
Sutton/Barto and research literature containing exact formulations
and proofs of relevant results, but being less accessible to beginners
due to higher generality and complexity.

1 Notation

We use same notation as Sutton/Barto in [1, Chapters 3 and 4]. For a finite
Markov decision process S denotes the finite set of states, A(s) denotes the
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finite set of action available in state s ∈ S, and R ⊆ R denotes the finite set
of rewards.

For discrete time steps t = 0, 1, 2, . . . the interaction between agent and
environment yields a trajectory

s0, a0, r1, s1, a1, r2, s2, a2, . . . , (1.1)

with initial state s0 and initial action a0 leading to reward r1 and state s1,
and so on.

The environment dynamics p map each tuple (s′, r, s, a) ∈ S ×R× S ×
A(s) to the probability that state s′ and reward r are observed if action a
is taken in state s. Consequently,

p(s′, r, s, a) ∈ [0, 1] for all s′ ∈ S, r ∈ R, s ∈ S, a ∈ A(s) (1.2)

and ∑
s′∈S

∑
r∈R

p(s′, r, s, a) = 1 for all s ∈ S, a ∈ A(s). (1.3)

A policy π maps each pair (a, s) to a probability that action a is taken
by the agent in state s. Thus,

π(a, s) ∈ [0, 1] for all a ∈ A(s), s ∈ S (1.4)

and ∑
a∈A(s)

π(a, s) = 1 for all s ∈ S. (1.5)

2 Return

Definition 1. A state s ∈ S is an end state if A(s) = ∅, that is, if there is
no action the agent can take in that state.

Definition 2. A reinforcement learning task is episodic if S contains an end
state. Else, the task is continuing.

If in an episodic task the agent reaches an end state, interaction with
the environment stops and the trajectory is finite. If there is no end state
(continuing task) or the end state is never reached by the agent, the tra-
jectory is an infinite sequence. Sometimes trajectories are called episodes,
where the latter puts some emphasis on the interactions and the former on
the interactions’ results.
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In [1, Section 3.3] reinforcement learning tasks are called episodic if
‘the agent–environment interaction [. . . ] break[s] naturally into identifiable
episodes’. From this somewhat imprecise definition it is not clear whether
tasks with end states are called episodic even if there exist policies never
reaching an end state. Such tasks with end states but possibly infinite tra-
jectories have to be handle with care.

For episodic tasks one usually is interested in the total reward collected
by the agent during one episode.

Definition 3. The return of an episode in an episodic reinforcement learn-
ing task is

T∑
t=1

rt, (2.1)

if the trajectory reaches an end state after T steps, and

∞∑
t=1

rt, (2.2)

if the trajectory is infinite and the sum converges.

Note that for infinite trajectories of episodic tasks return may be unde-
fined.

Definition 4. The return of a continuing reinforcement learning task is

∞∑
t=1

γt−1 rt (2.3)

with discounting parameter γ ∈ [0, 1).

The return of a continuing task always is a finite value, because the
reward set R is finite:∣∣∣∣∣

∞∑
t=1

γt−1 rt

∣∣∣∣∣ ≤
( ∞∑

t=1

γt−1

)
max
r∈R

|r| = 1

1− γ
max
r∈R

|r|. (2.4)

If the agent takes action a ∈ A(s) in the initial state s and the en-
vironment answers with reward r and new state s′, then the return g of
corresponding trajectory s, a, r, s′, . . . can be computed from the return g′

of the subtrajectory starting at s′:

g = r + γ g′ (2.5)

with γ = 1 for episodic tasks and γ < 1 for continuing tasks.
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3 Value functions

Definition 5. The state value function vπ for a policy π maps each state
s ∈ S to the return the agent will obtain on average if starting at state s
and following policy π.

Definition 6. The action value function qπ for a policy π maps each pair
(s, a) of state s ∈ S and action a ∈ A(s) to the return the agent will obtain
on average if starting at state s, taking action a, and then following policy
π.

For continuing tasks each policy has well-defined state and action value
functions. For episodic tasks only policies allowing for finite trajectories only
always have well-defined value functions. If the policy of an episodic task
allows for infinite trajectories, there might be no value functions, because
return might be undefined.

Obviously,

vπ(s) =
∑

a∈A(s)

π(a, s) qπ(s, a) for all s ∈ S (3.1)

and, by equation (2.5),

qπ(s, a) =
∑
s′∈S

∑
r∈R

p(s′, r, s, a)
(
r + γ vπ(s

′)
)

for all s ∈ S, a ∈ A(s).

(3.2)
for the value functions of a policy π, where γ = 1 for episodic tasks and
γ < 1 for continuing tasks.

The explicit formula for state values has the structure

vπ(s) = expected reward after first action

+ γ × expected reward after second action

+ γ2 × expected reward after third action

+ . . . . (3.3)
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Making expected rewards explicit we see

vπ(s) =
∑

a∈A(s)
s′∈S
r∈R

π(a, s) p(s′, r, s, a) r

+ γ
∑

a∈A(s)
s′∈S
r∈R

∑
a′∈A(s′)
s′′∈S
r′∈R

π(a, s) p(s′, r, s, a)π(a′, s′) p(s′′, r′, s′, a′) r′

+ γ2
∑

a∈A(s)
s′∈S
r∈R

∑
a′∈A(s′)
s′′∈S
r′∈R

∑
a′′∈A(s′′)
s′′′∈S
r′′∈R

. . .

+ . . . . (3.4)

For γ < 1 this value is well-defined because expected rewards are bounded
by maxr∈R |r|, cf. equation (2.4). For γ = 1 (episodic tasks) the sum of ex-
pected rewards may converge or not. The standard situation for convergence
is that all possible trajectories starting at s have at most T steps for some
T ∈ N independent of the concrete trajectory. For all but finitely many
expected rewards we then have empty sums

∑
a∈A(send)

. . . = 0, because the
action set A(send) of an end state send is empty.

Analogously, for action values we have

qπ(s, a) =
∑
s′∈S
r∈R

p(s′, r, s, a) r

+ γ
∑
s′∈S
r∈R

∑
a′∈A(s′)
s′′∈S
r′∈R

p(s′, r, s, a)π(a′, s′) p(s′′, r′, s′, a′) r′

+ γ2
∑
s′∈S
r∈R

∑
a′∈A(s′)
s′′∈S
r′∈R

∑
a′′∈A(s′′)
s′′′∈S
r′′∈R

. . .

+ . . . . (3.5)

4 Optimal policies

Definition 7. Policy π1 is at least as good as policy π2 if

vπ1(s) ≥ vπ2(s) for all s ∈ S. (4.1)
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Definition 8. A policy π is an optimal policy if it is at least as good as
every other policy.

The following theorem lacks a proof in Sutton/Barto. There exist (at
least) two variants of the proof, one based on Banach’s fixed-point theorem,
the other using Zorn’s lemma. Here we follow the second variant because it
does not require introduction of metrics or vector space norms.

Theorem 9. There always is an optimal policy.

Proof. The set of all policies has no linear order, because we cannot com-
pare every policy to every other policy in terms of ‘at least as good as’, cf.
Definition 7. But we may find pairs of policies for which we can say that the
one policy is at least as good as the other. From such pairs we may form
increasing chains of policies (from bad to good). If we can show that every
such chain of policies has a maximal element (a best policy), then the Zorn
lemma yields existence of a maximal element w. r. t. the whole set of policies.
That is, Zorn’s lemma then guarantees existence of an optimal policy.

It remains to show that every chain of policies has a maximal element.
For finite chains obviously the last element is the maximal one. For infinite
chains we argue as follows: Each infinite chain is a bounded set of functions
over a finite set (all pairs of states and actions), because policies take values
in [0, 1]. Bounded subsets of finite-dimensional spaces always contain a
convergent sequence, say π1, π2, . . . (Bolzano-Weierstrass theorem). Let π
be the pointwise limit of the sequence, that is,

π(a, s) := lim
n→∞

πn(a, s) for all s ∈ S, a ∈ A(s). (4.2)

Now π is a policy, too (values in [0, 1], sum over actions is 1). The se-
quence of corresponding state value functions v1, v2, . . . converges, too, be-
cause bounded increasing sequences of functions over a finite set always
converge. Denote the pointwise limit by v. Taking equation (3.4) for vn and
πn and letting n → ∞ on both sides yields (3.4) for v and π (interchange
of limit and infinite summation is okay here because expected rewards for
π1, π2, . . . are uniformly bounded). Thus, v is the state value function for π.
By construction of v the policy π is at least as good as π1, π2, . . .. Because
upper bounds of subsequences also are upper bounds of the whole chain, π
is at least as good as all policies in the chain under consideration.

As a consequence of Definition 7 all optimal policies share one and the
same optimal state value function. From equation (3.2) we easily deduce
that they also share a common action value function.

6



5 Policy improvement

Definition 10. A policy πg is greedy w. r. t. an action value function qπ of
a policy π, if

πg(a, s) > 0 ⇒ qπ(s, a) = max
ã∈A(s)

qπ(s, ã) (5.1)

holds for all s ∈ S and all a ∈ A(s).

Greedy policies always choose an action with highest value given that all
further actions are chosen following π. Greedy policies may be deterministic
or not.

Theorem 11 (Policy improvement theorem). For γ < 1 each greedy policy
w. r. t. the action value function of some policy π is at least as good as π.
The same holds true for γ = 1 if for both the greedy policy and π there is
T ∈ N such that all possible trajectories reach an end state within at most
T time steps.

Proof. Let πg be some greedy policy w. r. t. qπ. Then

πg(a, s) > 0 ⇒ qπ(s, a) = max
ã∈A(s)

qπ(s, ã) for all s ∈ S (5.2)

and, thus,

vπ(s) =
∑

a∈A(s)

π(a, s) qπ(s, a)

≤

 ∑
a∈A(s)

π(a, s)

 max
ã∈A(s)

qπ(s, ã)

=

 ∑
a∈A(s)

πg(a, s)

 max
ã∈A(s)

qπ(s, ã)

=
∑

a∈A(s)

πg(a, s) qπ(s, a) (5.3)

for all s ∈ S.
We define shorthands p(0) := p(s′, r, s, a), p(1) := p(s′′, r′, s′, a′),. . . as

well as π
(0)
g := πg(a, s), π

(1)
g := πg(a

′, s′),. . . and alternatingly apply (5.3)
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and (3.2) N + 1 times to obtain

vπ(s) ≤
∑

a∈A(s)

π(0)
g qπ(s, a)

=
∑

a∈A(s)
s′∈S
r∈R

π(0)
g p(0)

(
r + γ vπ(s

′)
)

≤
∑

a∈A(s)
s′∈S
r∈R

π(0)
g p(0)

r + γ
∑

a′∈A(s′)

π(1)
g qπ(s

′, a′)


=

∑
a∈A(s)
s′∈S
r∈R

π(0)
g p(0) r + γ

∑
a∈A(s)
s′∈S
r∈R

∑
a′∈A(s′)

π(0)
g p(0) π(1)

g qπ(s
′, ag(s

′))

=
∑

a∈A(s)
s′∈S
r∈R

π(0)
g p(0) r + γ

∑
a∈A(s)
s′∈S
r∈R

∑
a′∈A(s′)
s′′∈S
r′∈R

π(0)
g p(0) π(1)

g p(1)
(
r′ + γ vπ(s

′′)
)

=
∑

a∈A(s)
s′∈S
r∈R

π(0)
g p(0) r + γ

∑
a∈A(s)
s′∈S
r∈R

∑
a′∈A(s′)
s′′∈S
r′∈R

π(0)
g p(0) π(1)

g p(1) r′

+ γ2
∑

a∈A(s)
s′∈S
r∈R

∑
a′∈A(s′)
s′′∈S
r′∈R

π(0)
g p(0) π(1)

g p(1) vπ(s
′′)

= . . .

=
N∑

n=0

γn
∑

a∈A(s)
s′∈S
r∈R

· · ·
∑

a(n)∈A(s(n))

s(n+1)∈S
r(n)∈R

π(0)
g p(0) · · ·π(n)

g p(n) r(n)

+ γN+1
∑

a∈A(s)
s′∈S
r∈R

· · ·
∑

a(N)∈A(s(N))

s(N+1)∈S
r(N)∈R

π(0)
g p(0) · · ·π(N)

g p(N) vπ
(
s(N+1)

)

(5.4)

for arbitrary N ∈ N.
The first summand

∑N
n=0 γ

n . . . coincides with the first N+1 summands
in (3.4) for vπg . The second summand γN+1 . . . is zero for episodic tasks
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(γ = 1) with finite trajectories if N is chosen large enough. Corresponding
summands N + 2, N + 3,. . . in (3.4) are zero, too. This proves the theorem
for γ = 1.

For continuing tasks (γ < 1) we see that

vπ(s)−
N∑

n=0

γn
∑

a∈A(s)
s′∈S
r∈R

· · ·
∑

a(n)∈A(s(n))

s(n+1)∈S
r(n)∈R

π(0)
g p(0) · · ·π(n)

g p(n) r(n) (5.5)

is bounded by
γN+1max

s̃∈S
|vπ(s̃)|. (5.6)

For N → ∞ the expression in (5.5) converges to vπ(s) − vπg(s) and corre-
sponding bound in (5.6) converges to zero. Thus, vπ(s)− vπg(s) ≤ 0.

In Sutton/Barto the above theorem is formulated in Section 4.2 without
precisely stating the assumptions. The prove is provided in form of an ‘idea’
only, neglecting the nasty, but important details. The transition from finitely
to infinitely many steps there is not possible for episodic tasks allowing for
infinite trajectories as the following example shows.

Example 12. Consider a 1-by-3 gridworld with cells numbered 1, 2, 3 from
left to right, that is states are S = {1, 2, 3} and action sets are A(1) =
A(2) = {L,R} (go left or go right) and A(3) = ∅ (end state). If the agent
reaches state 3 in a step, reward is 1, else reward is 0. Going to the left in
state 1 (hitting the wall) results in state 1 again and zero reward.

This is clearly an episodic task, so we choose γ = 1, resulting in return
being either 1 or 0 for each trajectory. More precisely, all finite trajectories
will have return 1, all infinite trajectories will have return 0. An example of
a policy with infinite trajectories is to jump back and forth between cells 1
and 2, never going to cell 3.

An optimal policy clearly is ‘always go to the right’. Corresponding state
value function v∗ satisfies v∗(1) = 1 = v∗(2) and v∗(3) = 0. Corresponding
action values all equal 1, too.

Since all actions have equal value, all policies are greedy w. r. t. the op-
timal action value function. Thus, by the policy improvement theorem (ne-
glecting its assumptions) all policies have to be optimal. But state values
for jumping back and forth between cells 1 und 2 obviously all are zero, that
is, it’s not on optimal policy.

This example shows, that the policy improvement theorem may fail for
episodic task with (some) infinite trajectories.
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Corollary 13. Every optimal policy is greedy w. r. t. the optimal action
value function.

Proof. If π is an optimal policy that is not greedy w. r. t. the optimal action
value function q∗, then there are a state s̄ and an action ā ∈ A(s̄) such that

π(ā, s̄) > 0 and q∗(s̄, ā) < max
ã∈A(s̄)

q∗(s̄, ã) (5.7)

(cf. Definition 10).
Now let πg be some policy greedy w. r. t. q∗. Then

v∗(s̄) =
∑

a∈A(s̄)

π(a, s̄) q∗(s̄, a)

<
∑

a∈A(s̄)

π(a, s̄) max
ã∈A(s̄)

q∗(s̄, ã)

=

 ∑
a∈A(s̄)

π(a, s̄)

 max
ã∈A(s̄)

q∗(s̄, ã)

=

 ∑
a∈A(s̄)

πg(a, s̄)

 max
ã∈A(s̄)

q∗(s̄, ã)

=
∑

a∈A(s̄)

πg(a, s̄) q∗(s̄, a)

= vπg(s̄), (5.8)

which contradicts optimality of v∗.

The assertion of the corollary is formulated in Chapter 3 of Sutton/Barto
although the policy improvement theorem only appears in Chapter 4. In
Sutton/Barto the corollary seems to be derived from the optimal Bellman
equations (7.1), where Sutton/Barto seem to use the non-obvious fact that
each solution to the optimal Bellman equations is an optimal value function.
But the optimal Bellman equations aren’t sufficient (only necessary) for a
value function to be optimal. To get sufficiency, too, one needs the corollary
or some other non-trivial idea. It’s unclear how Sutton/Barto arrived at
the corollary without the policy improvement theorem. See below for more
detailled discussion of the solutions to the optimal Bellman equations.
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6 Computing value functions

Given a policy π, from the relations (3.1) and (3.2) between state values and
action values we immediately obtain equations

vπ(s) =
∑

a∈A(s)

π(a, s)
∑
s′∈S

∑
r∈R

p(s′, r, s, a)
(
r + γ vπ(s

′)
)

(6.1)

for all s ∈ S and

qπ(s, a) =
∑
s′∈S

∑
r∈R

p(s′, r, s, a)

r + γ
∑

a′∈A(s′)

π(a′, s′) qπ(s
′, a′)

 (6.2)

for all s ∈ S and all a ∈ A(s). These are the Bellman equations for state
values and action values, respectively.

The Bellman equations for state values and action values both are sys-
tems of linear equations allowing to compute the value functions for all
arguments without any need for exploration (if we know the environment
dynamics p). In case of state values there are as many equations as there
are states. In case of action values there are as many equations as there are
state–action pairs.

Theorem 14. For γ < 1 the only solutions to the Bellman equations (6.1)
and (6.2) for a policy π are the value functions vπ and qπ.

Proof. Above derivation of the Bellman equations shows that the value func-
tions are solution. Thus, we only have to show uniqueness of solutions.
Uniqueness for state values automatically implies uniqueness for action val-
ues due to (3.1) and (3.2).

Assume there are two solutions v1 and v2 to the Bellman equations for

11



state values. Then for each s ∈ S we have

∣∣v1(s)− v2(s)
∣∣ =

∣∣∣∣∣∣
∑

a∈A(s)

π(a, s)
∑
s′∈S

∑
r∈R

p(s′, r, s, a)
(
r + γ v1(s

′)
)

−
∑

a∈A(s)

π(a, s)
∑
s′∈S

∑
r∈R

p(s′, r, s, a)
(
r + γ v2(s

′)
)∣∣∣∣∣∣

= γ

∣∣∣∣∣∣
∑

a∈A(s)

π(a, s)
∑
s′∈S

∑
r∈R

p(s′, r, s, a)
(
v1(s

′)− v2(s
′)
)∣∣∣∣∣∣

≤ γ
∑

a∈A(s)

π(a, s)
∑
s′∈S

∑
r∈R

p(s′, r, s, a)
∣∣v1(s′)− v2(s

′)
∣∣

≤ γ
∑

a∈A(s)

π(a, s)
∑
s′∈S

∑
r∈R

p(s′, r, s, a) max
s′′∈S

∣∣v1(s′′)− v2(s
′′)
∣∣

= γ
∑

a∈A(s)

π(a, s) max
s′′∈S

∣∣v1(s′′)− v2(s
′′)
∣∣

= γ max
s′′∈S

∣∣v1(s′′)− v2(s
′′)
∣∣. (6.3)

Now taking the maximum over all s we see

max
s∈S

∣∣v1(s)− v2(s)
∣∣ ≤ γmax

s∈S

∣∣v1(s)− v2(s)
∣∣. (6.4)

But for γ ∈ [0, 1) this is only possible if v1(s) = v2(s) for all s. Thus, there
cannot be two different solutions to the Bellman equations.

For γ = 1 a policy’s value functions are solutions to the Bellman equa-
tions, if the value functions exist. But there might be other solutions, too.

The Bellman equations combined with the policy improvement theorem
give rise to the policy iteration algorithm, cf. [1, Section 4.3].

7 Computing optimal value functions

Theorem 15. Every policy π that is greedy w. r. t. to its own action value
function qπ satisfies the optimal Bellman equations

vπ(s) = max
a∈A(s)

∑
s′∈S

∑
r∈R

p(s′, r, s, a)
(
r + γ vπ(s

′)
)

(7.1)
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for all s ∈ S and

qπ(s, a) =
∑
s′∈S

∑
r∈R

p(s′, r, s, a)

(
r + γ max

a′∈A(s′)
qπ(s

′, a′)

)
(7.2)

for all s ∈ S and all a ∈ A(s).

Proof. Since the policy is greedy w. r. t. to its own action value function, by
(3.1) we have

vπ(s) =
∑
a∈A

π(a, s) qπ(s, a) = max
a∈A

qπ(s, a) for all s ∈ S.

This equality together with (3.2) yields both the optimal Bellman equations
for state values and the optimal Bellman equations for action values.

Sutton/Barto derive the optimal Bellman equations in Section 3.6 from

v∗(s) = max
a∈A(s)

qπ(s, a) (7.3)

with some optimal policy π. But this is a consequenc of Corollary 13, whose
availability in this section of Sutton/Barto is dubious, cf. discussion below
Corollary 13.

Optimal Bellman equations are systems of nonlinear equations. At the
moment we only know that they have at least one solution (the optimal
value functions, by Corollary 13). But it’s unclear whether there could exist
more solutions.

Theorem 16. For γ < 1 the optimal value functions are the only solutions
to the optimal Bellman equations (7.1) and (7.2).

Proof. For proving uniqueness of solutions we need the inequality∣∣∣max
x

f(x)−max
x

g(x)
∣∣∣ ≤ max

x

∣∣f(x)− g(x)
∣∣ (7.4)

for arbitrary functions f and g taking arguments x from a finite set. To see
that this inequality is true, assume maxx f(x) ≥ maxx g(x) (else, switch the
roles of f and g) and let x̄ be a maximizer of f(x). Then∣∣∣max

x
f(x)−max

x
g(x)

∣∣∣ = f(x̄)−max
x

g(x)

≤ f(x̄)− g(x̄)

≤ max
x

∣∣f(x)− g(x)
∣∣.
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Now assume there are two solutions v1 and v2 to the optimal Bellman
equations for state values. Then for each s ∈ S we have

∣∣v1(s)− v2(s)
∣∣ = ∣∣∣∣∣ max

a∈A(s)

∑
s′∈S

∑
r∈R

p(s′, r, s, a)
(
r + γ v1(s

′)
)

− max
a∈A(s)

∑
s′∈S

∑
r∈R

p(s′, r, s, a)
(
r + γ v2(s

′)
)∣∣∣∣∣

= γ max
a∈A(s)

∣∣∣∣∣∑
s′∈S

∑
r∈R

p(s′, r, s, a)
(
v1(s

′)− v2(s
′)
)∣∣∣∣∣

≤ γ max
a∈A(s)

∑
s′∈S

∑
r∈R

p(s′, r, s, a)
∣∣v1(s′)− v2(s

′)
∣∣

≤ γ max
a∈A(s)

∑
s′∈S

∑
r∈R

p(s′, r, s, a) max
s′′∈S

∣∣v1(s′′)− v2(s
′′)
∣∣

= γ max
a∈A(s)

max
s′′∈S

∣∣v1(s′′)− v2(s
′′)
∣∣

= γ max
s′′∈S

∣∣v1(s′′)− v2(s
′′)
∣∣.

Now taking the maximum over all s we see

max
s∈S

∣∣v1(s)− v2(s)
∣∣ ≤ γmax

s∈S

∣∣v1(s)− v2(s)
∣∣.

But for γ ∈ [0, 1) this is only possible if v1(s) = v2(s) for all s. Thus, there
cannot be two different solutions to the optimal Bellman equations.

Corollary 17. A policy is optimal if and only if it is greedy w. r. t. its own
action value function.

Proof. That every optimal policy is greedy w. r. t. to its value function is
stated by Corollary 13.

The other way round, if some policy is greedy w. r. t. to its own value
function, then its value functions satisfy the optimal Bellman equations.
But the optimal Bellman equations only have one solution, the optimal
value functions. Thus, the policy has to be optimal.

This corollary formulates an important stopping criterion for policy it-
eration algorithms. Sutton/Barto do not clearly state this important result.
Some hints in this direction are given in Chapters 3 and 4. The clearest
statement is in Section 4.6, but without proof. The reader of Sutton/Barto
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does not see that this result is non-trivial since it is based on both the pol-
icy improvement theorem (via Corollary 13) and the uniqueness theorem for
solutions of the optimal Bellman equations.
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