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This book covers a wide range of topics in data science and artificial intelligence. It’s an attempt to provide self-
contained learning material for first-year students in data science related courses. Most, not all, of the material is
tought in the undergradute course on data science1 at Zwickau University of Applied Sciences2.
Starting teaching data science in 2019 the author3 faced the problem that there seems to be no text book covering
math, computer science, statistical data science, artificial intelligence and related topics in a well structured, accessible,
thorough way. Basic Python4 programming should be covered as well as state of the art deep reinforcement learning
for controlling autonomous robots. All this with hands-on experience for students, interesting real-world data sets,
and sufficiently rich theoretical background.
Classical paper books or PDF ebooks do not suit the needs for this project. Working with data requires lots of source
code, interactive visualizations, data listings, and easy to follow pointers to online resources. Jupyter Book5 is an
awesome software tool for publishing book-like interactive content. For the author writing this book is also a journey
of discovery to the possible future of publishing. Having authored two paper books the author knows the tight limits
of paper books and publishing companies. The greater his enthusiasm is for the freedom in writing and publishing
provided by Jupyter Book and its community, The Executable Books Project6.
The author expresses its gratitude towards all the more or less anonymous people developing the wonderful open
source tools used in this book and for writing the book. There are too many tools to list them here. The author also
thanks his students and colleagues at Zwickau University, especially Hendrik Weiß, who constantly find typos and
make suggestions for improving the book.
Jens Flemming7, Zwickau, February 2024

1 https://datascience.fh-zwickau.de
2 https://www.fh-zwickau.de
3 https://www.fh-zwickau.de/~jef19jdw
4 https://www.python.org
5 https://jupyterbook.org
6 https://executablebooks.org
7 https://www.fh-zwickau.de/~jef19jdw
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CHAPTER

ONE

MATPLOTLIB

The Python standard library contains no modules for visualizing functions (plotting) and other types of data. But there
is a de-facto standard: Matplotlib8, providing lots of plot types and additional visualization features. It integrates well
with and is the Swiss army knife of visualization tools.

• Matplotlib Basics (page 5)
• 3D Plots (page 36)
• Animations (page 41)
• Seaborn (page 46)
• Maps (page 50)

Related exercises:
• Matplotlib Basics (page 437)
• Advanced Matplotlib (page 439)

Related projects:
• Chemnitz Trees (page 473)
• Weather (page 443)

– Weather Animation (page 448)

1.1 Matplotlib Basics

Matplotlib provides two interfaces for plotting:
• MATLAB9 like state-based interface,
• object-oriented interface.

1.1.1 State-Based Plotting

The state-based interface is known as pyplot10.
Data to be plotted is passed to Matplotlib as NumPy arrays or other array-like types. Thus, we need the following
standard imports for plotting.

import numpy as np
import matplotlib.pyplot as plt

8 https://matplotlib.org/
9 https://en.wikipedia.org/wiki/MATLAB
10 https://matplotlib.org/stable/api/pyplot_summary.html
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We first need a place where all the plotting is done. Matplotlib calls this a figure. To create one call figure11.

plt.figure()

<Figure size 640x480 with 0 Axes>

<Figure size 640x480 with 0 Axes>

We see two lines of output. The first line is the object returned by plt.figure(), which is printed by Jupyter
because Jupyter always prints the result of the last line of code. The second line in the output is the drawing area,
which is replaced by a describing string, because it’s empty at the moment.
Simple line plots can be created with plot12.

x = np.linspace(0, 10)
y = x ** 2

plt.plot(x, y)

[<matplotlib.lines.Line2D at 0x7fa5c6789960>]

Jupyter automatically copies the drawing area created above by plt.figure() to the next code cell.
Note that plot only plots in the background. To see the plot on screen one has to call show13. This is automatically
done by Jupyter at the end of each code block containing calls to pyplot functions. But before this call Jupyter
prints the result of the last code line. If a code block ends with an explicit call to show, then jupyter does not produce
any automatic output.

11 https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.figure.html
12 https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
13 https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html

6 Chapter 1. Matplotlib
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plt.plot(x, y)
plt.show()

We should add axes labels and a title to the plot.

plt.plot(x, y)
plt.xlabel('x')
plt.ylabel('y')
plt.title('Our first plot')
plt.show()

1.1. Matplotlib Basics 7
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Above we mentioned that pyplot provides a state-based interface to Matplotlib. That is, we do not have to tell
pyplot to which plot we want to add a title. Instead every operation applies to the current plot. Having multiple
plots (see below) we have to take care about what pyplot’s current plot is when calling functions like xlabel14,
ylabel15 or title16. But for simple plotting tasks the state-based interface requires fewer lines of code than the
object-oriented interface.

Hint: Plotting in simple Python shell
In a simple Python shell the plot does not automatically show up after calling plt.plot. To see the plot we have
to call show.
The show function not only shows the plot, but also stops execution of the script (i.e., blocks the shell) until the plot
window is closed.

1.1.2 Object-Oriented Plotting

To use the object-oriented interface of Matplotlib one first creates an empty figure with pyplot and then starts to
fill it with objects.
To get a simple line plot we first have to create an Axes17 object, which encapsulates the coordinate system and all
its surroundings. Then we can add a Line2D18 object via Axes.plot19.

14 https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.xlabel.html
15 https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.ylabel.html
16 https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.title.html
17 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html
18 https://matplotlib.org/stable/api/_as_gen/matplotlib.lines.Line2D.html
19 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.plot.html

8 Chapter 1. Matplotlib

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.xlabel.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.ylabel.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.title.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.lines.Line2D.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.plot.html


Data Science and Artificial Intelligence for Undergraduates
Volume 2: Data Visualization, Supervised Learning

fig = plt.figure(facecolor='yellow')
ax = fig.add_axes((0.25, 0.25, 0.5, 0.5))

ax.plot(x, y)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_title('Simple plot')

plt.show()

Important: The four values passed as a tuple to Figure.add_axes20 describe the position of the left boundary,
the right boundary, the width and the height of the Axes object relative to the figure’s width and height. So we would
expect to see an Axes object filling half the width and height of the yellow area and positioned at one quarter of
width and also of height, that is, centered. To show the result of plotting operations Jupyter exports the figure to an
image file and then displays that image file. For exporting the figure size is adapted to the figures content. Thus, in a
Jupyter notebook we only see the Axes object without wide yellow boundary. Same code in a simple Python shell
produces different output!
Similar issue: The four values passed in the first argument to add_axes specify position and dimensions of the
drawing area. Ticks and labels lie outside this area. Consequently the tuple (0, 0, 1, 1) results in a drawing with
invisible ticks and labels outside the figure. In Jupyter notebooks this does not work, because Jupyter automatically
enlarges the figure to fit the whole Axes object including ticks and labels.

Note that the Axes.plot function returns a Line2D object which can be further processed if needed.
Often it’s more convenient to create the figure and the Axes object in one step:

fig, ax = plt.subplots()
ax.plot(x, y)

plt.show()

20 https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.add_axes

1.1. Matplotlib Basics 9
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Details on pyplot.subplots will be given below.

1.1.3 Multiple Plots

Multiple Plots in One Axes Object

Placing more than one line plot (or any other type of plot) in one Axes object is straight forward.

x = np.linspace(0, 10, 100)
y1 = x ** 2
y2 = 10 * x

fig, ax = plt.subplots()
ax.plot(x, y1, '-b')
ax.plot(x, y2, '-r')

plt.show()

10 Chapter 1. Matplotlib
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Multiple Axes Objects

Multiple Axes objects can be placed manually in a figure with Figure.add_axes. But there are methods in
Matplotlib which support exact alignment of the Axes objects.
To get a grid of equally sized Axes objects call Figure.add_subplot21.

m = 2 # rows
n = 3 # columns

fig = plt.figure(figsize=(12, 6))

ax = m * n * [None] # will hold Axes objects of subplots
for k in range(m * n):

ax[k] = fig.add_subplot(m, n, k+1)

plt.show()

21 https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.add_subplot

1.1. Matplotlib Basics 11
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The third argument to add_subplot specifies the position in the grid. Subplots are numbered starting with 1 in
the upper left corner, then continuing to the right and then to the next row.

Hint: The pyplot.subplots22 method creates a new figure and grid of Axes objects. It returns the Figure
object and a list of Axes objects.

More advanced grid layouts with subplots occupying more than one cell can be created with Figure.
add_gridspec23. This method returns a GridSpec24 object, which then can be used to specify the cells occu-
pied by a subplot via NumPy style indexing and slicing.

fig = plt.figure(figsize=(12, 12))

gs = fig.add_gridspec(3, 3)

ax_left = fig.add_subplot(gs[1:, 0])
ax_top = fig.add_subplot(gs[0, 1:])
ax_center = fig.add_subplot(gs[1:, 1:])

plt.show()

22 https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.subplots.html
23 https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.add_gridspec
24 https://matplotlib.org/stable/api/_as_gen/matplotlib.gridspec.GridSpec.html
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Indexing a GridSpec object returns a SubplotSpec25 object which can be passed to Axes.add_subplot.
Subplots can be nested with SubplotSpec.subgridspec26. This method return a GridSpecFromSub-
plotSpec27 object for which indexing returns SubplotSpec objects in the same way as for GridSpec objects.

fig = plt.figure(figsize=(12, 9))

gs = fig.add_gridspec(1, 3)
gs_left = gs[0, 0].subgridspec(2, 1)
gs_right = gs[0, 1:].subgridspec(3, 1)

ax_left_top = fig.add_subplot(gs_left[0, 0])
ax_left_bottom = fig.add_subplot(gs_left[1, 0])
ax_right_top = fig.add_subplot(gs_right[0, 0])
ax_right_middle = fig.add_subplot(gs_right[1, 0])
ax_right_bottom = fig.add_subplot(gs_right[2, 0])

plt.show()

25 https://matplotlib.org/stable/api/_as_gen/matplotlib.gridspec.SubplotSpec.html
26 https://matplotlib.org/stable/api/_as_gen/matplotlib.gridspec.SubplotSpec.html#matplotlib.gridspec.SubplotSpec.subgridspec
27 https://matplotlib.org/stable/api/_as_gen/matplotlib.gridspec.GridSpecFromSubplotSpec.html
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Note: The Figure.suptitle28 methods adds a title to the whole figure, not only to an Axes object (linke
Axes.title).

Multiple Figures

It’s also possible to generate multiple Figure objects. In a simple Python shell this opens one window per figure.
In a Jupyter notebook all figures are shown in the output cell.

fig1, ax1 = plt.subplots()

fig2, ax2 = plt.subplots()

plt.show()

28 https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.suptitle.html
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1.1.4 Axis Properties

Scaling and Limits

Axes objects provide several different methods for influencing axis scaling (linear, logarithmic) and axis limits
(smallest and greatest value). With Axes.axis29 scaling and limits for both axes can be set at once. The Axes
methods set_xlim30, set_ylim31, set_xscale32, set_yscale33 allow for finer control.
Note that by default Matplotlib automatically sets axis limits to fit the plotted data. This behavior can be deactivated
by calling set_xlim and set_ylim with parameter auto=False. Since False is the default value for auto,
each call to set_xlim or set_ylim without providing the auto parameter deactivates automatic limits, too.

fig, ax = plt.subplots()

ax.set_xscale('log')
ax.set_xlim(1, 1e5)

ax.set_ylim(23, 42)

plt.show()

Direction of coordinate axes can be changed by exchanging upper and lower limits of the axes.

fig, ax = plt.subplots()

ax.set_xlim(10, 0)
ax.set_ylim(5, 0)

(continues on next page)
29 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.axis.html
30 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_xlim.html
31 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_ylim.html
32 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_xscale.html
33 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_yscale.html
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(continued from previous page)

plt.show()

Tick Positions and Labels

To modify tick positions and labels Axes objects provide methods set_xticks34, set_yticks35,
set_xticklabels36, set_yticklabels37.

fig, ax = plt.subplots()

ax.set_xlim(0, 1)
ax.set_xticks([0, 0.25, 0.5, 0.75, 1])
ax.set_xticklabels(['0', '1/4', '1/2', '3/4', '1'])

ax.set_ylim(0, 1)
ax.set_yticks([0.1, 0.5, 0.9])
ax.set_yticklabels(['low', 'middle', 'high'])

plt.show()

34 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_xticks.html
35 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_yticks.html
36 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_xticklabels.html
37 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_yticklabels.html

1.1. Matplotlib Basics 17

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_xticks.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_yticks.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_xticklabels.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_yticklabels.html


Data Science and Artificial Intelligence for Undergraduates
Volume 2: Data Visualization, Supervised Learning

Matplotlib distinguishes minor and major ticks. Passing the parameter minor with value True or False (default)
switches between both variants. Passing an empty tick list removes all ticks from the axis.

fig, ax = plt.subplots()

ax.set_xlim(0, 3)
ax.set_xticks([0, 1, 2, 3])
ax.set_xticks([0.25, 0.5, 0.75, 1.25, 1.5, 1.75, 2.25, 2.5, 2.75], minor=True)
ax.set_xticklabels([], minor=True)

ax.set_ylim(0, 1)
ax.set_yticks([])

plt.show()
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More avanced control of tick and tick label properties is provided by Axes.tick_params38. There we can specify
tick size and color, font and color for labels, rotation of labels and much more.

Grid Lines

Grid lines enhance readability of plots. They can be added and modified with Axes.grid39. More detailed control
is provided by Axes.tick_params. Grid line positions always coincide with tick positions.

fig, ax = plt.subplots()

ax.grid(axis='y')

plt.show()

38 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.tick_params.html
39 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.grid.html
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Different Scales

Sometimes one wants to have two plots with different y axis limits in one figure. This can be achieved with Axes.
twiny40 (there is also a twinx41). Such figures then have two different y axes, one with ticks and labels at the left
boundary of the drawing area and one with ticks and labels at the right boundary. The twiny methods sets this all
up for us and returns a new Axes object overlaying the original one in a way which gives the desired result.

fig, ax1 = plt.subplots()
ax2 = ax1.twinx()

ax1.set_ylim(0, 1)
ax2.set_ylim(23, 42)

plt.show()

40 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.twiny.html
41 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.twinx.html
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Both Axes objects share their x axis. Thus, to modify x axis properties it doesn’t matter which of both Axes objects
is modified. To modify y axis properties, corresponding Axes object has to be modified. For plotting the plotting
methods of the Axes object with the correct y axis have to be called.

Polar Plots

Matplotlib also provides support for plotting in polar coordinates. To create a polar plot pass the parameter pro-
jection='polar' when creating an Axes object (not supported by all variants for creating Axes objects).
Note that the object returned is not really an instance of the Axes class, but of PolarAxes42, which is derived
from Axes and partly comes with different methods.

fig = plt.figure()
ax = fig.add_axes((0.1, 0.1, 0.8, 0.8), projection='polar')

plt.show()

42 https://matplotlib.org/stable/api/projections/polar.html#matplotlib.projections.polar.PolarAxes
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By default grid lines are turned on and tick labels are adapted to polar coordinates. But everything can be custimized
with similar methods as before.

1.1.5 Colors and Colorbars

1.1.6 Specifying Colors

Whenever a Matplotlib function takes a color as argument different formats are accepted. Some of them are:
• tuples with 3 floats between 0 and 1 for red, green, blue components
• tuples with 4 floats between 0 and 1 for red, green, blue components and opacity
• string '#rrggbb' where rr, gg, bb are integers from 0 to 255 in hexadecimal notation for red, green, blue
component

• string with only one character out of b (blue), g (green), r (red), c (cyan), m (magenta), y (yellow), k (black),
w (white)

• string with pre-defined color name like 'white' or 'red' (lists of available color names: with prefix
'tab:’43, without prefix44, with prefix 'xkcd:'45)

By default Matplotlib uses the 'tab:' prefixed colors and cycles through them if multiple lines are plotted.

fig, ax = plt.subplots(figsize=(8, 6))

x = np.array([0, 1])
y = np.array([1, 1])

(continues on next page)
43 https://matplotlib.org/stable/_images/sphx_glr_named_colors_002.png
44 https://matplotlib.org/stable/_images/sphx_glr_named_colors_003.png
45 https://i.stack.imgur.com/nCk6u.jpg
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(continued from previous page)

for n in range(1, 30):
ax.plot(x, y + n, '-', linewidth=5)

plt.show()

fig, ax = plt.subplots(figsize=(8, 6))

x = np.linspace(0, 1, 100)
y = np.ones(x.shape)

ax.plot(x, 0.25 * y, '-', linewidth=30, color='red')
ax.plot(x, 0.5 * y, '-', linewidth=30, color='#00ff00')
ax.plot(x, 0.75 * y, '-', linewidth=30, color=(0, 0, 1))
ax.plot(x, x, '-', linewidth=30, color=(0, 0, 0, 0.5))

plt.show()
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Converting Data to Colors

Some plot types allow color selection depending on the plotted data.

n = 2000 # number of samples

rng = np.random.default_rng(0)

x = rng.uniform(0, 1, n)
y = rng.uniform(0, 0.5, n)
z = (x - 0.5) ** 2 + y ** 2

fig, ax = plt.subplots(figsize=(8, 4))

ax.scatter(x, y, c=z, cmap='jet')

plt.show()
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The Axes.scatter46 method plots a list of points and colors them according to the values assigned to parameter
c. Conversion from data to colors requires two steps:

• convert data values to values in the interval [0, 1],
• map the interval [0, 1] to a list of colors.

Default behavior for the first step is to map the maximal data value to 1, the minimal value to 0, and all values in
between in a linear manner. This normalization process can be customized by creating a Ǹormalize47 object and
passing it as parameter norm to scatter and similar methods.
Mapping the interval [0, 1] to colors is done via colormaps. There are many pre-defined colormaps, which can be
passed as string to the cmap parameter (list of pre-defined color maps48). But custom colormaps can be created, too.

Colorbars

Colorbars visualize the connection between data values and colors. They can be created withpyplot.colorbar49
or Figure.colorbar50.

fig, ax = plt.subplots(figsize=(8, 4))

plt.scatter(x, y, c=z, cmap='jet')
plt.colorbar()

plt.show()

46 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.scatter.html
47 https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Normalize.html
48 https://matplotlib.org/stable/gallery/color/colormap_reference.html
49 https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.colorbar.html
50 https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.colorbar
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fig, ax = plt.subplots(figsize=(8, 4))

scatter_plot = ax.scatter(x, y, c=z, cmap='jet')
fig.colorbar(scatter_plot, ax=ax, orientation='vertical')

plt.show()
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1.1.7 Legends and Text

Legends

Simple legends can be generated automatically with Axes.legend51 in connection with the label argument to
plotting methods. Each labeled line of a multi-line plot is represented in the legend and the legend is placed optimally,
that is, covering as few data points as possible.

x = np.linspace(0, 1, 10)

fig, ax = plt.subplots()

ax.plot(x, x, '-b', label='f(x)=x')
ax.plot(x, 2 * x, '-or', label='f(x)=2 x')
ax.plot(x, 3 * x, ':g', label='f(x)=3 x')

ax.legend()

plt.show()

Alternatively, legend entries can be added manually.

x = np.linspace(-1, 1, 101)

fig, ax = plt.subplots()

line1 = ax.plot(x, np.abs(x), '-b')[0]
line2 = ax.plot(x, np.cos(x), '-r')[0]
line3 = ax.plot(x, 0.4 * np.exp(x), '-r')[0]

ax.legend((line1, line2), ('a non-smooth function', 'smooth functions'))

(continues on next page)

51 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.legend.html
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(continued from previous page)

plt.show()

The legend method takes handles as arguments to refer to lines and other graphical objects (called artists in Mat-
plotlib). In Matplotlib the objects themselve are used as handles. Because plot returns a list of all Line2D objects
created, we have to extract the first (and only) element of this list.

TeX in Matplotlib Text

Mathematical formula can be used inMatplotlib via TeX52 commands. Matplotlib comes with its own TeX interpreter
and supports many but not all TeX commands. TeX commands have to be enclosed in dollar signs. Because TeX
commands almost always contain backslashs and Python interprets backslashs as special characters in strings, we have
to use raw strings to pass TeX commands to Matplotlib.

fig, ax = plt.subplots()

ax.set_title(r'Title with $\frac{s \cdot o \cdot m \cdot e}{m+a+t+h}$')

plt.show()

52 https://en.wikipedia.org/wiki/TeX
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Full LaTeX53 typesetting is available, too, but requires an external LaTeX installation.

Annotations

To add text to a plot use Axes.text54 method.

fig, ax = plt.subplots()

x = np.linspace(-1, 1, 100)
y = 1 - x ** 2

ax.plot(x, y, '-b')
ax.plot(0, 1, 'ob')
ax.set_ylim(0, 1.5)

ax.text(0, 1.05, 'maximum', ha='center')

plt.show()

53 https://en.wikipedia.org/wiki/LaTeX
54 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.text.html
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More advanced annotation is provided by Axes.annotate55.

fig, ax = plt.subplots()

ax.plot(x, y, '-b')
ax.plot(0, 1, 'ob')
ax.set_ylim(0, 1.5)

ax.annotate('maximum', (0.02, 1.02), xytext=(0.5, 1.2), arrowprops={'arrowstyle':
↪'->'})

plt.show()

55 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.annotate.html

30 Chapter 1. Matplotlib

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.annotate.html


Data Science and Artificial Intelligence for Undergraduates
Volume 2: Data Visualization, Supervised Learning

1.1.8 Geometric Objects

Matplotlib can create many types of geometric objects. Workflow is as follows: Create an object by instanciation.
Then add it with Axes.add_artist56 to an Axes object.

import matplotlib.lines

fig, ax = plt.subplots()

my_line = matplotlib.lines.Line2D([0, 1], [1, 0], color='red', linewidth=5)
ax.add_artist(my_line)

plt.show()

56 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.add_artist.html
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Line2D objects are created and returned by Axes.plot. They offer all the features (markers, different styles,…)
known from function plotting.

import matplotlib.patches

fig, ax = plt.subplots()

my_rect = matplotlib.patches.Rectangle((0.1, 0.2), 0.6, 0.4, color='red')
ax.add_artist(my_rect)

plt.show()
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Have a look at this list of classes in matplotlib.patches57 or at this example58 to get an idea of what shapes
are provided next to rectangles.

1.1.9 Raster Images

Raster images can be represented in different ways:
• (m, n) dimensional NumPy array (each entry is interpreted as grey level or, more generally, as argument to a
colormap)

• (m, n, 3) dimensional NumPy array (the third dimension contains red, green, blue components for each pixel)
• (m, n, 4) dimensiona NumPy array (red, green, blue, opacity)

Plotting raster images is done with Axes.imshow59. To load an image from a file use matplotlib.image.
imread60 or pyplot.imread61.

img = plt.imread('tux.png')
print(img.shape)

fig, ax = plt.subplots()

ax.imshow(img)

plt.show()

(943, 800, 4)

57 https://matplotlib.org/stable/api/patches_api.html
58 https://matplotlib.org/examples/shapes_and_collections/artist_reference.html
59 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.imshow.html
60 https://matplotlib.org/stable/api/image_api.html#matplotlib.image.imread
61 https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.imread.html
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The imshow method has several parameters. With extent we can accurately place an image in an existing plot.

x = np.linspace(-1, 1, 100)
y = x ** 2

m = img.shape[0]
n = img.shape[1]

fig, ax = plt.subplots()

ax.imshow(img, extent=(-0.2, 0.2, 0, 0.4 / n * m))
ax.plot(x, y, '-b')

plt.show()
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Hint: For grayscale images provide cmap, vmin, vmax arguments to imshow in the same way as for scatter plots.

1.1.10 Complex Visualizations

Plot Types

Up to now we mainly used Axes.plot and Axes.scatter. But there are many more very useful plot types we
do not discuss in detail. Here are some of them:

• plot62 (line plots)
• scatter63 (point clouds)
• bar64 (bar plots)
• pie65 (pie charts)
• hist66 (histograms)
• contour67 (contour plots)

More plot types are listed in Axes’s documentation68.
To get an idea of what is possible with Matplotlib have a look at the gallery69.

Saving Plots and Postprocessing

Plots can be saved to image files with Figure.savefig70.

fig_svgfile = 'saved.svg'
fig_pngfile = 'saved.png'

x = np.linspace(0, 1, 100)
y = x ** 2

fig, ax = plt.subplots()

ax.plot(x, y, '-b')

plt.show()

fig.savefig(fig_svgfile)
fig.savefig(fig_pngfile, dpi=200)

62 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.plot.html
63 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.scatter.html
64 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.bar.html
65 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.pie.html
66 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.hist.html
67 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.contour.html
68 https://matplotlib.org/stable/api/axes_api.html#plotting
69 https://matplotlib.org/stable/gallery/index.html
70 https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.save_fig
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After saving a figure postprocessing with external tools is possible. For raster images use, for instance, GIMP71.
For vector graphics Inkscape72 is a good choice. Next to addition of advanced graphical effects postprocessing also
includes composing several plots to factsheets.

1.2 3D Plots

Matplotlib comes without native support for 3-dimensional plots. But there is an extension (‘toolkit’) for 3D plots:
Mplot3d73. This toolkit is part of the Matplotlib standard installation.

import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d as plt3d

1.2.1 Basics

For 3d plotting we need an Axes3D74 object. This can either be created explicitly by plt3d.axes3d.
Axes3D(fig) or implicitly by choosing projection='3d' in Figure.add_axes and similar functions.
Automatic creation is preferred in newer versions of Mplot3d.

fig = plt.figure()
ax = fig.add_axes((0.1, 0.1, 0.8, 0.8), projection='3d')
plt.show()

print('Type of ax: ' + str(type(ax)))

71 https://www.gimp.org
72 https://inkscape.org
73 https://matplotlib.org/stable/api/toolkits/mplot3d.html
74 https://matplotlib.org/stable/api/toolkits/mplot3d/axes3d.html
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Type of ax: <class 'mpl_toolkits.mplot3d.axes3d.Axes3D'>

Now ax is of type Axes3D instead of Axes.
Plotting is very similar to 2d plots. Here is a 3d line plot:

fig = plt.figure()
ax = fig.add_axes((0.1, 0.1, 0.8, 0.8), projection='3d')

t = np.linspace(0, 6 * np.pi, 200)
x = np.cos(t)
y = np.sin(t)
z = t

ax.plot(x, y, z, '-r')
plt.show()
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Mplot3d uses the Matplotlib API to draw its 3d plots. All arguments not processed by Mplot3d are passed on to
Matplotlib. Thus, many properties like line style and color can be set in exactly the same way as in Matplotlib.
Axes3D objects can be configured in the same way as Axes objects. Functions set_xlim, set_ylim,
set_zlim, set_title and axis labeling work as expected.
Several plot types are available. Some of them provide additional features in their 3d variant. For example, scat-
ter75 has a boolean argument depthshade, which by default is True and modifies the scatter points’ color to
give an appearance of depth. If color encodes an important feature, set depthshade=False.

fig = plt.figure()
ax = fig.add_axes((0.1, 0.1, 0.8, 0.8), projection='3d')

x = np.random.rand(100)
y = np.random.rand(100)
z = x * y

ax.scatter(x, y, z, c='blue')
plt.show()

75 https://matplotlib.org/stable/api/_as_gen/mpl_toolkits.mplot3d.axes3d.Axes3D.scatter.html
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1.2.2 Camera Configuration

Initial position of the view can be set with azim and elev arguments when creating the Axes3D object. Simply
pass them to Figure.add_axes or similar functions. The proj_type arguments switches between perspective
(default) and orthogonal projection.

x = np.random.rand(100)
y = np.random.rand(100)
z = x * y

fig = plt.figure(figsize=(12, 4))
ax_left = fig.add_subplot(1, 2, 1, projection='3d', elev=45, azim=-45)
ax_right = fig.add_subplot(1, 2, 2, projection='3d', elev=45, azim=-45, proj_type=

↪'ortho')

ax_left.scatter(x, y, z, c='blue')
ax_right.scatter(x, y, z, c='blue')

plt.show()
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When plotting in a simple Python shell, Mplot3d/Matplotlib create a figure window which allows for rotating the
plot by mouse. To get this feature in a Jupyter notebook add the IPython magic %matplotlib widget, which
requires installation of the ipympl Python module76.

%matplotlib widget

fig = plt.figure()
ax = fig.add_axes((0.1, 0.1, 0.8, 0.8), projection='3d')

x = np.random.rand(100)
y = np.random.rand(100)
z = x * y

ax.scatter(x, y, z, c='blue')
plt.show()

76 https://github.com/matplotlib/ipympl
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1.2.3 Limitations

Mplot3d is a very good choice for simple 3d plots. But more complex visualizations may contain rendering errors,
because Mplot3d builds upon Matplotlib’s 2d plotting facilities not allowing for correct overlap calculations.

%matplotlib widget

fig = plt.figure()
ax = fig.add_axes((0.1, 0.1, 0.8, 0.8), projection='3d')

X, Y = np.meshgrid(np.linspace(-1, 1, 10), np.linspace(-1, 1, 10))
Z1 = X + Y
Z2 = -X - Y

ax.plot_surface(X, Y, Z1)
ax.plot_surface(X, Y, Z2)

plt.show()

1.3 Animations

Matplotlib comes with different techniques for animated plots. Here we concentrate on FuncAnimation77 objects.

%matplotlib widget

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as anim

77 https://matplotlib.org/stable/api/_as_gen/matplotlib.animation.FuncAnimation.html
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An animation is a sequence of frames. A frame is an image (a Matplotlib plot). Typical frame rates range from 15
to 30 frames per second (fps).
Basic steps for creating an animation are:

1. Create figure and axes.
2. Create plot.
3. Write an update function which modifies the animated objects every time step.
4. Create a FuncAnimation object.

Matplotlib supports different update techniques:
• Take the plot of the previous frame and modify it to get the next frame.
• Redraw all objects in every frame.
• Redraw all objects in every frame, but use a background image that contains all unanimated objects. This is
called blitting.

For simple animations the first technique is a good choice. For more complex animations redrawing everything sim-
plifies code, but may slow down the animation. Blitting speeds up complex animations, but requires some additional
lines of code.

1.3.1 Animations without Blitting

For figures with only few animated objects updating only these objects is efficient and yields readable code.

duration = 1000 # length of animation in milliseconds
fps = 20 # frames per second
n_frames = int(fps * duration / 1000) # total number of frames

# figure and axes
fig, ax = plt.subplots()
ax.set_xlim(-1.5, 1.5)
ax.set_ylim(-1.5, 1.5)
ax.set_aspect('equal')

# circle (not animated)
t = np.linspace(0, 2 * np.pi, 60)
ax.plot(np.cos(t), np.sin(t), '-r.')

# line (animated)
line = ax.plot(0, 0, '-ob')[0]

# update function
def update_animation(frame):

angle = -2 * np.pi / n_frames * frame
line.set_data([0, np.cos(angle)], [0, np.sin(angle)])

# start animation
fa = anim.FuncAnimation(fig, update_animation, frames=n_frames, interval=1000/fps)

plt.show()
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<IPython.core.display.HTML object>

Hint: Getting Matplotlib animations to render correctly in Jupyter Lab is sometimes more difficult than expected.
Install the ipympl package and use the %matplotlib widgetmagic. If this doesn’t work try HTML/JS export
of the animation and render it’s output in Jupyter Lab:

from IPython.display import HTML

display(HTML(fa.to_jshtml()))

If there are many animated objects or if objects have to be created or removed during animation, then redrawing
everything is a good choice to keep code readable. For easy comparison we use the same animation as above, but
with complete redrawing.

duration = 1000 # length of animation in milliseconds
fps = 20 # frames per second
n_frames = int(fps * duration / 1000) # total number of frames

# figure and axes
fig, ax = plt.subplots()
ax.set_xlim(-1.5, 1.5)
ax.set_ylim(-1.5, 1.5)
ax.set_aspect('equal')

# update function
def update_animation(frame):

ax.clear()

(continues on next page)
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(continued from previous page)

t = np.linspace(0, 2 * np.pi, 60)
ax.plot(np.cos(t), np.sin(t), '-r.')

angle = -2 * np.pi / n_frames * frame
ax.plot([0, np.cos(angle)], [0, np.sin(angle)], '-ob')

# start animation
fa = anim.FuncAnimation(fig, update_animation, frames=n_frames, interval=1000/fps)

plt.show()

<IPython.core.display.HTML object>

1.3.2 Animations with Blitting

When blitting is enabled, Matplotlib starts each frame with a fixed background image and adds the animated objects.
To get the background image, Matplotlib calls the update function once (draws the first frame) and removes the
animated objects. To tell Matplotlib which objects are not part of the background the update function has to return
a list of all animated objects.
If Matplotlib shall not use the first frame to figure out the background image, an additional initialization function can
be provided, which has to return a list of objects drawn but not belonging to the background. Usually that is empty.
In both cases the update function for each frame has to return a list of all animated (that is, created or modified)
objects. Objects not in the list will disappear.

Important: Note that some Matplotlib backends do not support blitting and play the animation without blitting,
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resulting in a messed up animation. This is the case for animations in JupyterLab! To see correct results of the code
below, run it in a simple Python shell.

duration = 1000 # length of animation in milliseconds
fps = 20 # frames per second
n_frames = int(fps * duration / 1000) # total number of frames

# figure and axes
fig, ax = plt.subplots()
ax.set_xlim(-1.5, 1.5)
ax.set_ylim(-1.5, 1.5)
ax.set_aspect('equal')

# check blitting support
if not fig.canvas.supports_blit:

print('Blitting not supported by backend.')

# initialization function (draws circle)
def init_animation():

t = np.linspace(0, 2 * np.pi, 60)
ax.plot(np.cos(t), np.sin(t), '-r.')
return []

# update function (draws line)
def update_animation(frame):

angle = -2 * np.pi / n_frames * frame
line = ax.plot([0, np.cos(angle)], [0, np.sin(angle)], '-ob')[0]
return [line]

# start animation
fa = anim.FuncAnimation(fig, update_animation, init_func=init_animation,

frames=n_frames, interval=1000/fps, blit=True)

plt.show()

Blitting not supported by backend.
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<IPython.core.display.HTML object>

1.3.3 Saving animations

Matplotlib animations can be saved as animated GIFs or in different video formats.

Important: Blitting does not work for saved animations. If you intend to save an animation, don’t use blitting.

fa.save('anim.gif', writer='imagemagick')
fa.save('anim.mp4', writer='ffmpeg')

1.4 Seaborn

Seaborn is a Python library based on Matplotlib. It provides two useful features:
• different pre-defined styles for Matplotlib figures,
• lots of functions for visualizing complex datasets.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
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The reason for importing as sns is somewhat vague. sns are the initials of Samuel Norman Seaborn78, a fictional
television character. See also issue #229 in Seaborns Github repository79.

sns.set_style('darkgrid')
fig, ax = plt.subplots()
x = [1, 2]
y = [1, 2]
ax.plot(x, y)
plt.show()

Seaborn also supports different scalings for different usecases. Scaling is set with sns.set_context and one
of the string arguments paper, notebook, talk, poster, where notebook is the default. Different scalings
allow for almost identical code to create figures for different channels of publication.

sns.set_context('talk')
fig, ax = plt.subplots()
x = [1, 2]
y = [1, 2]
ax.plot(x, y)
plt.show()

78 https://en.wikipedia.org/wiki/Sam_Seaborn
79 https://github.com/mwaskom/seaborn/issues/229
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1.4.1 Plots for Exploring Data Sets

Seaborn comes with lots of functions which take a whole data set (Pandas data frame) and create complex visualiza-
tions of the dataset. To get an overview have a look at the official Seaborn tutorials80 and at the Seaborn gallery81.

sns.set_context('notebook')
rng = np.random.default_rng(0)

# parameters for point clouds
means = [[5, 0, 0], [-5, 2, 0], [0, -3, 5]] # mean vectors
covs = [[[1, 1, 0], [1, 1, 0], [0, 0, 1]],

[[10, 2, 0], [2, 10, 2], [0, 2, 10]],
[[0.1, 0, 0], [0, 3, 3], [0, 3, 7]]] # covariance matrices

names = ['cloud A', 'cloud B', 'cloud C'] # names
ns = [100, 1000, 100] # samples per cloud

# create data frame with named samples from each cloud
clouds = []
for (mean, cov, name, n) in zip(means, covs, names, ns):

x, y, z = rng.multivariate_normal(mean, cov, n).T
cloud_data = pd.DataFrame(np.asarray([x, y, z]).T, columns=['x', 'y', 'z'])
cloud_data['name'] = name
clouds.append(cloud_data)

data = pd.concat(clouds)

# show data frame structure
display(data)

# plot pairwise relations with Seaborn

(continues on next page)
80 https://seaborn.pydata.org/tutorial.html
81 https://seaborn.pydata.org/examples/index.html
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(continued from previous page)

sns.pairplot(data, hue='name', hue_order=['cloud B', 'cloud A', 'cloud C'])
plt.show()

x y z name
0 4.874270 -0.125730 -0.132105 cloud A
1 4.895100 -0.104900 -0.535669 cloud A
2 3.696000 -1.304000 0.947081 cloud A
3 6.265421 1.265421 -0.623274 cloud A
4 7.325031 2.325031 -0.218792 cloud A
.. ... ... ... ...
95 0.044085 -4.658415 6.014424 cloud C
96 0.133556 0.038378 9.619508 cloud C
97 0.401736 -4.324301 3.687626 cloud C
98 -0.202251 -1.378106 3.291303 cloud C
99 0.110040 -2.580220 4.072073 cloud C

[1200 rows x 4 columns]
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1.5 Maps

There exist several Python modules to plot maps withMatplotlib. Here we cover Cartopy82 andMplleaflet83. Cartopy
is good for schematic maps and supports different coordinate and mapping systems. Mplleaflet combines Matplotlib
drawings with interactive maps based on OpenStreetMap84 data.
In a separate chapter we’ll meet Folium85 allowing for more advanced interactive maps.

1.5.1 Cartopy Basics

import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cfeature

The letters crs are the abbreviation of coordinate reference system. Cartopys crs module handles all coordinate
transforms. In particular, it tells Matplotlib how to transform geographical coordinates to screen coordinates.
Creating a map requires only few steps:

• create a Matplotlib figure,
• create a GeoAxes86 object,
• add content to the map.

fig = plt.figure()
ax = fig.add_axes((0, 0, 1, 1), projection=ccrs.PlateCarree())

ax.coastlines()

plt.show()

ax is a Cartopy GeoAxes object, because the projection is a Cartopy projection. There are many different
projection types available, see Cartopy projection list87. Note that GeoAxes is derived from the usual Matplotlib

82 https://scitools.org.uk/cartopy/docs/latest/
83 https://github.com/jwass/mplleaflet
84 https://www.openstreetmap.org
85 https://python-visualization.github.io/folium/
86 https://scitools.org.uk/cartopy/docs/latest/reference/generated/cartopy.mpl.geoaxes.GeoAxes.html
87 https://scitools.org.uk/cartopy/docs/v0.15/crs/projections.html
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Axes and thus provides very similar functionality.
Most projection types take arguments for specifing map center and some parameters. To get a map of a smaller
geographic region use GeoAxes.set_extent88. Detail level of coastlines can be controlled with resolution
argument, which has to be 110m (default), 50m or 10m. Here is a map of Germany:

fig = plt.figure()
ax = fig.add_axes((0, 0, 1, 1), projection=ccrs.Orthographic(10.5, 51.25))
ax.set_extent([5.5, 15.5, 47, 55.5])

ax.coastlines(resolution='50m')

plt.show()

1.5.2 Adding more Content

Cartopy gets its data from Natural Earth89, which provides public domain map data. But other sources can be used,
too. Map data is downloaded by Cartopy as needed and then reused if needed again. To add Natural Earth content
to a map call GeoAxes.add_feature90.

88 https://scitools.org.uk/cartopy/docs/latest/reference/generated/cartopy.mpl.geoaxes.GeoAxes.html#cartopy.mpl.geoaxes.GeoAxes.set_
extent

89 https://www.naturalearthdata.com
90 https://scitools.org.uk/cartopy/docs/latest/reference/generated/cartopy.mpl.geoaxes.GeoAxes.html#cartopy.mpl.geoaxes.GeoAxes.add_

feature
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fig = plt.figure(figsize=(8,8))
ax = fig.add_axes((0, 0, 1, 1), projection=ccrs.Orthographic(10.5, 51.25))
ax.set_extent([5.5, 15.5, 47, 55.5])

ax.coastlines(resolution='50m')

ax.add_feature(
cfeature.NaturalEarthFeature(

name='land',
scale='50m',
category='physical'

),
facecolor='#e0e0e0'

)
ax.add_feature(

cfeature.NaturalEarthFeature(
name='admin_0_boundary_lines_land',
scale='50m',
category='cultural'

),
edgecolor='r',
facecolor='#e0e0e0'

)

plt.show()
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Available options for the name argument can be guessed from the download section of Natural Earth91. Look at
the filenames in the download links. Arguments other than name, resolution and category are passed on to
Matplotlib.

91 https://www.naturalearthdata.com/downloads
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1.5.3 Plotting onto the Map

All Matplotlib plotting functions are available for extending the map. Coordinates can be provided with respect to
arbitrary cartographic projections, if the correct transform is chosen. If latitude, longitude values are used, Plate-
Carree is the right choice. For all other projection types coordinates have to be provided in meters.

fig = plt.figure()
ax = fig.add_axes((0, 0, 1, 1), projection=ccrs.Orthographic(10.5, 51.25))
ax.set_extent([5.5, 15.5, 47, 55.5])

ax.coastlines(resolution='50m')

ax.plot(13.404, 52.518, 'ob', transform=ccrs.PlateCarree())
ax.text(13.404, 52.9, 'Berlin', ha='center', va='center', transform=ccrs.

↪PlateCarree())

ax.plot(-200000, 0, 'or', transform=ccrs.Orthographic(10.5, 51.25))
ax.text(-200000, 80000, '200km west\nof map center', ha='center', va='center',

transform=ccrs.Orthographic(10.5, 51.25))

plt.show()

Take care: On Cartopy maps plot does not connect two points by a straight line, but by the shortest path with
respect to the chosen coordinate system.

fig = plt.figure()
ax = fig.add_axes((0, 0, 1, 1), projection=ccrs.PlateCarree())

(continues on next page)
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(continued from previous page)

ax.coastlines()

lat1 = 40
lon1 = -90
lat2 = 30
lon2 = 70

ax.plot([lon1, lon2], [lat1, lat2], '-ob', transform=ccrs.PlateCarree())
ax.plot([lon1, lon2], [lat1, lat2], '-r', transform=ccrs.Geodetic())

ax.set_global()

plt.show()

When plottingMatplotlib adjusts axes limits to the plotted objects. With GeoAxes.set_global92 we reset limits
to show the whole map.

1.5.4 Interactive Maps with Mplleaflet

import matplotlib.pyplot as plt
import mplleaflet

The Python library Mplleaflet allows to show Matplotlib drawings on an interactive map based on OpenStreetMap93
or other map services. The result is a webpage, which can be embedded into an Jupyter notebook.
Use longitude and latitude values for plotting and then call mplleaflet.display to show the map inside the
Jupyter notebook. Alternatively, call mplleaflet.show to open the map in new window.

Hint: Mplleaflet seems to be unmaintained for several years, resulting in broken compatibility with Matplotlib
(Matplotlib changed some variable names). Thus, usage of Mplleaflet may require some tweaking of Matplotlib
variable names. See GitHub issue94 and this solution95.

92 https://scitools.org.uk/cartopy/docs/latest/reference/generated/cartopy.mpl.geoaxes.GeoAxes.html#cartopy.mpl.geoaxes.GeoAxes.set_
global

93 https://www.osm.org
94 https://github.com/jwass/mplleaflet/issues/80
95 https://github.com/plotly/plotly.py/issues/2913#issuecomment-730619757
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fig = plt.figure(figsize=(10,6))
ax = fig.add_axes((0, 0, 1, 1))

ax.plot([12, 13, 13, 12, 12], [51, 51, 50, 50, 51], '-ob')

# some Mplleaflet patching
ax.xaxis._gridOnMajor = ax.xaxis._major_tick_kw['gridOn']
ax.yaxis._gridOnMajor = ax.yaxis._major_tick_kw['gridOn']

mplleaflet.display(fig=fig)

/home/jef19jdw/anaconda3/envs/ds_book/lib/python3.10/site-packages/IPython/core/
↪display.py:431: UserWarning: Consider using IPython.display.IFrame instead
warnings.warn("Consider using IPython.display.IFrame instead")

<IPython.core.display.HTML object>
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TWO

PLOTLY

Plotly96 is a relatively new JavaScript based plotting library for Python and several other languages97. It’s free and
open source, but developed by Plotly Technology Inc providing commercial tools and services around Plotly. Plotly
started as an online-only service (rendering done on a server), but now may be used offline without any data transfer
to plotly.com98.
Here we only cover 3d plots to have a good alternative to Matplotlib’s limited 3d capabilities. But plotly allows for
2d plotting, too. A major advantage of Plotly is, that interactive Plotly plots can easily be integrated into websites.
The Plotly python package may be installed via conda from Plotly’s channel:

conda install -c plotly plotly

Plotly integrates well with NumPy and Pandas.

import numpy as np
import pandas as pd

2.1 Plotly Express

The Plotly express99 interface to Plotly provides commands for complex standard tasks:

import plotly.express as px

a = np.random.rand(100)
b = np.random.rand(100)
c = a * b
df = pd.DataFrame({'some_feature': a, 'another_feature': b, 'result': c})

fig = px.scatter_3d(df, x='some_feature', y='another_feature', z='result', color=
↪'result', size='result', width=800, height=600)

fig.show()

<IPython.core.display.HTML object>

96 https://plotly.com/python/
97 https://plotly.com/graphing-libraries/
98 http://plotly.com
99 https://plotly.com/python/plotly-express
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2.2 Graph Object Interface

For more advanced usage Plotly provides the graph object interface100. Here we first have to create a Figure101 object,
which then is filled with content step by step.

import plotly.graph_objects as go

fig = go.Figure()
fig.layout.width = 800
fig.layout.height = 600

x, y = np.meshgrid(np.linspace(0, 1, 30), np.linspace(0, 1, 30))
z = x * y

fig.add_trace(
go.Surface(x=x, y=y, z=z, colorscale='Jet')

)

u = x.reshape(-1)
v = y.reshape(-1)
w = z.reshape(-1) + 0.3 * (np.random.rand(z.size) - 0.5)

fig.add_trace(
go.Scatter3d(

x=u, y=v, z=w,
marker={'size': 2, 'color': 'rgba(255,0,0,0.5)'},
line={'width': 0, 'color': 'rgba(0,0,0,0)'},
hoverinfo = 'none'

)
)

fig.show()

<IPython.core.display.HTML object>

2.3 Exporting Figures

Plotly plots can easily be exported to HTML with Figure.write_html102:

fig.write_html('fig.html', include_plotlyjs='directory', auto_open=False)

The include_plotlyjs='directory' tells Plotly that the exported HTML file finds the Plotly JavaScript
Library in the HTML file’s directory (for offline use). To make this work download Plotly’s JS bundle103 from Plotly’s
GitHub repository.
Defautl behavior is that the exported file is opened automatically after export. To prevent this, use
auto_open=False.

100 https://plotly.com/python-api-reference/plotly.graph_objects.html
101 https://plotly.com/python-api-reference/generated/plotly.graph_objects.Figure.html
102 https://plotly.com/python-api-reference/generated/plotly.graph_objects.Figure.html#plotly.graph_objects.Figure.write_html
103 https://github.com/plotly/plotly.js/blob/master/dist/plotly.min.js
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THREE

FOLIUM

Folium104 is a Python package for generating interactive maps. It’s based on OpenStreetMap105 and the Leaflet106
JavaScript library.

import folium

Related projects:
• Public Transport (page 461)

– Interactive Map (page 468)

3.1 Basic Usage

Usage is straight-forward.

m = folium.Map(location=[50.7161, 12.4956], zoom_start=16)

folium.Marker(
[50.7161, 12.4956],
popup='<b>Zwickau University of Technology</b><br />Kornmark 1',
tooltip='Zwickau University of Technology',
icon=folium.Icon(color="red", icon="info-sign")

).add_to(m)

display(m)

<folium.folium.Map at 0x7f203ef4fa90>

For more features have a look at Folium’s Quickstart Guide107.
104 https://python-visualization.github.io/folium/
105 https://www.osm.org
106 https://leafletjs.com/
107 https://python-visualization.github.io/folium/quickstart.html
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3.2 Advanced Features

Of particular interest for data science purposes are:
• image overlays108 (position raster image on a map)
• marker clusters109 (place many markers on a map)
• fast marker clusters110 (position many markers on a map very efficiently)

Data on Folium maps is organized in layers. Layer visibility may be toggled by the user, if we add layer controls111:

import folium.plugins

m = folium.Map(location=[50.7161, 12.4956], zoom_start=17)

folium.plugins.MarkerCluster(
[[50.7161, 12.4956], [50.7161, 12.4966], [50.7171, 12.4956]],
name='some marker'

).add_to(m)

folium.plugins.MarkerCluster(
[[50.7151, 12.4946], [50.7161, 12.4946], [50.7151, 12.4956]],
name='more marker'

).add_to(m)

folium.LayerControl().add_to(m)

display(m)

<folium.folium.Map at 0x7f203ef4fe80>

3.3 Exporting a Map

To generate an HTML file containing the interactive Folium map, call save112. The save method is inherited by
Foliums Map from branca.elements.Element as we see from Map’s documentation113. Branca114 is used
by Folium for HTML and JavaScript generation.

m.save('folium.html')

The generated HTML file may be edited to add some more (HTML and JavaScript) content. Alternatively, we may
inject some HTML from Python source via ‘get_root’115:

m.get_root().html.add_child(folium.Element(
'''
<div style="position: absolute; z-index: 10000; top: 10px; left: 60px;␣

↪background: white; padding:5px 10px;">
<span style="font-size: 20pt; font-weight: bold; color: black;">Some Title</span>

↪<br/>
<span style="font-size: 10pt; color: blue;">some text</span>

(continues on next page)
108 https://python-visualization.github.io/folium/modules.html#folium.raster_layers.ImageOverlay
109 https://python-visualization.github.io/folium/plugins.html#folium.plugins.MarkerCluster
110 https://python-visualization.github.io/folium/plugins.html#folium.plugins.FastMarkerCluster
111 https://python-visualization.github.io/folium/modules.html#folium.map.LayerControl
112 https://python-visualization.github.io/branca/element.html
113 https://python-visualization.github.io/folium/modules.html#folium.folium.Map
114 https://github.com/python-visualization/branca
115 https://python-visualization.github.io/branca/element.html#branca.element.Element.get_root
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(continued from previous page)

</div>
'''
))

display(m)
m.save('folium.html')

<folium.folium.Map at 0x7f203ef4fe80>
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CHAPTER

FOUR

MACHINE LEARNING OVERVIEW

Machine learning is the core technique behind data science in general and todays artificial intelligence. Revisit for
details. There are three major types of machine learning:

• supervised learning,
• unsupervised learning,
• reinforcement learning.

Supervised learning is also known as learning by examples. The task is to predict properties of input data. For
instance, input data could be pet images and the computer shall decide whether there is a dog or a cat in the image.
Predicting values of a discrete variable is called classification. If we want to predict continuous variables, then it’s
a regression problem. To train a supervised learning method, we need lots of training examples, that is, input data
with corresponding outputs. The computer then gathers knowledge from the examples and tries to generalize that
knowledge to input data not contained in the training data set.
Unsupervised learning tries to find structures in large data sets without the need for examples. It’s mostly concerned
with clustering. Given a data set, find subsets (clusters) of data points with common properties. In some sense it’s
also about classification, but with classes not known in advance. A typical example is the identification of different
customer types in e-commerce. Unsupervised learning also covers techniques for anomaly detection and generative
learning (create new data with same properties like exisiting data).
Reinforcement learning is learning by trial and error. Thus, it’s very similar to a child’s learning process. Again, no
examples of how to do it right are required. The agent (the learning algorithm) can choose between several actions.
Depending on the outcome of it’s actions, the agent changes its behavior until the correct outcome is observed.
Examples are mobile robots finding their way through a building, but also artificial intelligences playing classical
board games (see Google’s AlphaGo Zero116 for a prominent example).
There exist less prominent subclasses of machine learning, like semi-supervised learning, mixing techniques from
supervised learning and unsupervised learning.
Today’s most advanced artificial intelligence products like ChatGPT117 or Stable Diffusion118 use a complex mix
of many different techniques. To understand such complex products we have to understand the basic methods and
algorithms first. Only then we may go on designing more complex systems.

116 https://en.wikipedia.org/wiki/AlphaGo_Zero
117 https://en.wikipedia.org/wiki/ChatGPT
118 https://en.wikipedia.org/wiki/Stable_Diffusion
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CHAPTER

FIVE

GENERAL CONSIDERATIONS

Before we consider concrete classes of supervised learning methods, we have a look at basic principles common to
(almost) all methods.

• Problem and Workflow (page 67)
• Introductory Example (k-NN) (page 71)
• Quality Measures (page 82)
• Scaling (page 96)
• Feature Reduction (page 97)
• Hyperparameter Tuning (page 104)

Related projects:
• Forged Banknotes (page 475)

– Detecting Forgery with k-NN (page 475)
– Quality Measures (page 477)
– Hyperparameter Optimization (page 479)

• QMNIST Feature Reduction (page 455)

5.1 Problem and Workflow

Here we introduce basic terminology used throughout the book and we present major problems arising when imple-
menting supervised learning methods.

5.1.1 Statement of the Problem

Abstract Formulation

Let 𝑓 ∶ 𝑋 → 𝑌 be a function between two sets 𝑋 and 𝑌 and assume we only know 𝑓 at finitely many elements of
𝑋. The aim is to find an approximation 𝑓approx of 𝑓 , which can be evaluated at arbitrary elements of 𝑋.
𝑋 is the set of inputs, 𝑌 is the set of outputs or labels. The finitely many elements 𝑥1, … , 𝑥𝑛 in𝑋 at which 𝑓 is known
are called training inputs. Corresponding labels 𝑦1 ∶= 𝑓(𝑥1), … , 𝑦𝑛 ∶= 𝑓(𝑥𝑛) are called training labels. The pairs
(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) are the training examples or training data. Ultimately, the function 𝑓approx will be represented
by a Python program or a Python function: it takes an input and yields some output.
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Fig. 5.1: Given the a mapping 𝑓 on finitely many points supervised learning aims at finding a mapping 𝑓approx on the
whole space.

Standard Situation

We only consider 𝑋 = ℝ𝑚, that is, 𝑚-dimensional vectors as inputs. Here, 𝑚 is a positive integer. The elements of
𝑋 are called feature vectors. Each feature vector contains values for 𝑚 features. In addition, we restrict our attention
to labels in finite or infinite subsets 𝑌 ⊆ ℝ.
If there are only finitely many labels, then the supervised learning problem of finding 𝑓approx is a classification problem.
With infinitely many labels it’s a regression problem.

Example: Classification of Handwritten Digits

Recognizing handwritten digits is a typical classification task. Given an image of a handwritten digit we have to decide
which digit it contains. Assuming gray scale images, where each pixel’s color is described by a real number, the set
of inputs has dimension 𝑚 = width × height. If the images are 28 by 28 pixels in size (like in QMNIST data set),
then each input has 784 features. The label set is 𝑌 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

Fig. 5.2: The sample 𝑥1 is a vector with 784 components, one component (or feature) per pixel.
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Example: Predicting House Prices

Given several properties of a house we would like to predict the price we have to pay for buying that house. The
properties we take into account yield the feature vectors. The output is the price, a real number. Thus, it’s a regression
problem. Observing house prices on the market yields training examples, which then can be used to predict prices
for houses not sold during our market observation.

Hypotheses, Parameters, Models

An approximate function 𝑓approx is sometimes called hypothesis in machine learning contexts. The set of all functions
taken into consideration is the hypotheses space.
Usually one does not consider general functions. Instead one restricts search to some family of functions, e.g. linear
functions, described by a number of parameters. If that family has 𝑝 parameters, then we have a 𝑝-dimensional
hypotheses space. Fitting the parameters of such parameterdependent hypotheses to training examples is much easier
than fitting a general hypothesis.
We have to distinguish between parameters of the hypothesis and parameters of the whole approach. The latter are
called hyperparameters. Dimension of the hypotheses space is a hyperparameter, for instance.
A parameterdependent hypothesis sometimes is called a model. If a fixed set of parameters has been chosen, then
it’s a trained model.

5.1.2 Principal Steps in Supervised Learning

The starting point for all supervised machine learning methods is a finite collection of correctly labeled inputs:

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)}.

Based on experience, technical limitations, and more involved considerations, which will be discussed later on, we
have to choose a model we want to fit to the examples. From this point on the process of supervised learning almost
always follows a fixed scheme:

1. Split the data into training, validation and test sets.
2. Train the model (fit the parameters to the training set).
3. Optimize hyperparameters based on validation set.
4. Evaluate the model on the test set.
5. Use the trained model.
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Training-Validation-Test Split

At first we split the set of examples into three disjoint sets: training set, validation set, test set. The training set usually
is the largest subset and will be used for training the model. The validation set is used for optimizing hyperparameters,
and the test set is used in the evaluation phase. Typical ratios are 60:20:20 or 40:30:30, but othersmight be appropriate
depending on the complexity of the model and of the underlying true function 𝑓 . Also the number of hyperparameters
should be taken into account when splitting the set of examples. We will come back to this issue when dealing which
concrete learning tasks.

Training

By training wemean determination of parameters in a parameterized hypothesis. This typically involvesmathematical
optimization methods. The result of training a model is a concrete hypothesis 𝑓approx, which can be used to predict
labels for unknow feature vectors.

Hyperparameter Optimization

The trained model might contain hyperparameters, the number of parameters, for instance. Choosing different hy-
perparameters could yield more accurate predictions. Thus, we should optimize prediction accuracy of the trained
model with respect to the hyperparameters.
For this purpose we evaluate the trained model on the validation set and compare the predictions to the true labels. It’s
important to use examples different from the training examples, since on the training set the model always yields very
good predictions (if our training was succesful). With a separate validation set, results are much more realistic. There
are many different error measures for expressing the difference between predictions and true labels on a validation
set. We will come back to this topic later on.
Choosing different sets of hyperparameters and training and evaluating corresponding models, we see what set of
hyperparameters yields the best predictions.

Evaluation

After choosing optimal hyperparameters we have to test the final model on an independent data set: the test set. Now
we see, whether the model also yields good predictions on feature vectors which did not take part in the training and
validation process.

5.1.3 Python Packages for Supervised Learning

There exist many different Python packages implementing standard methods of supervised machine learning. In this
book we focus on few packages only. The focus will be on understanding methods and algorithms. Packages we use:

• Scikit-Learn119 is a very well structured and easy to use package. It provides insight to all algorithms and their
working. Thus, it’s best choice for learning and understanding new methods. For several years Scikit-Learn
becomes more and more efficient. For instance, parallel computing is supported.

• Tensorflow120 is a library for exploiting computational power of GPUs (graphics processing units). Typically,
it’s used for fast matrix computations in neural network training.

• Keras121 provides a user friendly interface to Tensorflow (and other backends). It’s the standard tool for deep
learning with neural networks.

Other tools not covered here:
• PyTorch122 is an alternative to Keras, which provides a more object-oriented programming interface.

119 https://scikit-learn.org/stable/
120 https://www.tensorflow.org/
121 https://keras.io/
122 https://pytorch.org/
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5.1.4 Non-Numeric Data

All machine learning methods expect purely numeric data (because computers do so). Thus, we have to convert
everything to numbers.
We already discussed one-hot encoding for categorical data in Pandas, see . Scikit-Learn supports one-hot encoding,
too, with its OneHotEncoder123 class in the preprocessing module.
Ordinal categegories (weekdays, for instance) may also be convert to sequences of integers (0 to 6 or 1 to 7 for
weekdays). But beware of additional or incorrect structure we may add to data by conversion to numbers. Sometimes
it’s more difficult than one might expect (distance between weekdays 0 and 6 is the same as between 0 and 1, for
instance).
Later on we will have to discuss about conversion of text to numbers and other non-obvious conversion problems.

5.2 Introductory Example (k-NN)

To demonstrate basic principles of supervised learning and their realization with Scikit-Learn we introduce the sim-
plest supervised learning method here, the k-nearest neighbors method (k-NN).

5.2.1 Method

k-NN is a method without trainable parameters. Such non-parametric methods do not need a training phase (but
may require hyperparameter optimization). All computations are done in the prediction phase. Thus, in contrast to
almost all other machine learning methods, training is ver cheap and predictions are computationally expensive.
Given a feature vector 𝑥we look for the 𝑘 training samples closest to 𝑥 and make a prediction from those 𝑘 neighbors:

• For classification problems we use the class appearing most often among the neighbors as prediction 𝑦.
• For regression problems we use the mean of the labels of all neighbors as prediction 𝑦.

Here 𝑘 is a hyperparameter determining the size of the neighborhood predictions are based on. Different metrics for
calculating distances in the feature space may be used, but Euclidean distance is the standard choice. The metric can
be regarded as a hyperparameter, too.
The 𝑘-NN method per prediction requires as many distance computations in the feature space as there are samples
in the training data set. Thus, for very large data sets 𝑘-NN might be computationally infeasible.

5.2.2 Scaling

To ensure comparable influence of all features on the computed distances all features should have similar numerical
range. Else features with high numerical values would dominate the distance measure. This scaling problem arises
for almost all machine learning methods and will be discussed in detail in Scaling (page 96).
Example
Consider classification of used cars with features age (in years) and kilometers driven. Classes might be ‘low quality’
and ‘high quality’, but do not matter here. We look at three samples:

𝑥1 = (1, 100000), 𝑥2 = (11, 100000), 𝑥3 = (1, 99990).

To predict the quality of sample 𝑥1 with k-NN we have to compute distances to all other samples. For both 𝑥2 and
𝑥3 the distance is

√
102 + 02 = 10. That is, an age difference of 10 years (with equal kilometers) has the same

influence on predictions like a kilometer difference of 10 (with equal age). The age difference should be very relevant
for the car’s quality, but the tiny kilometer difference won’t.
123 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html

5.2. Introductory Example (k-NN) 71

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html


Data Science and Artificial Intelligence for Undergraduates
Volume 2: Data Visualization, Supervised Learning

Rescaling the kilometer feature by factor 1000, that is, expressing the feature as multiples of 1000 kilometers, the
samples look like

𝑥1 = (1, 100), 𝑥2 = (11, 100), 𝑥3 = (1, 99.99)
and distances of 𝑥1 to 𝑥2 and 𝑥3 are 10 and 0.01, respectively. Now the old car 𝑥2 is a lot further away from 𝑥1 than
the young car 𝑥3. Consequently, 𝑥3 is much more likely to influence k-NN predictions for 𝑥1 than 𝑥2.

Important: Prepare your data well!
The example above shows that correct data preprocessing is of utmost importance. Even simple steps like scaling
may alter results obtained from machine learning methods significantly.

5.2.3 Weights

Often 𝑘-NN includes some kind of weighting. A common approach is to weight the feature vectors by their distance
to the feature vector we want to predict the label for. Denote by 𝑑1, … , 𝑑𝑘 the distances of the 𝑘 nearest neighbors
and 𝑦1, … , 𝑦𝑘 are corresponding labels.
For regressions tasks the prediction then is

𝑦pred =

𝑘
∑
𝜅=1

1
𝑑𝜅

𝑦𝜅

𝑘
∑
𝜅=1

1
𝑑𝜅

.

Note that weights always have to add up to 1 for regression tasks.
For classification tasks distance-weighted k-NN predicts the class for which the sum of all weights in the neighborhood
is maximal:

𝑦pred = argmax
𝑐∈{1,…,𝐶}

∑
𝜅∈{1,…,𝑘}

𝑦𝜅=𝑐

1
𝑑𝜅

Here classes are denoted 1, … , 𝐶.
Whenever Scikit-Learns wants to have a data set, it expects a Numpy array of shape 𝑛 × 𝑚, where 𝑛 is the number
of samples in the data set and 𝑚 is the number of features. Corresponding labels (for training) have to be provided
in a one-dimensional array of length 𝑛.

5.2.4 k-NN with Scikit-Learn

All methods implemented in Scikit-Learn follow the same approach:
1. Create a suitable Scikit-Learn object, which provides the method and encapsulates parameters and hyperpa-

rameters as well as results.
2. Call the object’s fit method (that’s the training step).
3. Investigate results (parameters and so on, depending on the method).
4. Call the object’s predict method to predict labels for non-training data.

Scikit-Learn implements k-NN regression in KNeighborsRegressor124 and k-NN classification in KNeigh-
borsClassifier125. The fitmethod stores training data internally (remember, k-NN requires no training) and
predict then uses stored training data for calculating the distances and choosing a prediction.
The import name of Scikit-Learn is sklearn. The installation name is scikit-learn.
124 https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html
125 https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
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Regression Example

For demonstration we use a small one-feature synthetic data set.

import numpy as np
import matplotlib.pyplot as plt

import sklearn.neighbors as neighbors
import sklearn.model_selection as model_selection
import sklearn.metrics as metrics

rng = np.random.default_rng(42)

def truth(x):
return x + np.cos(2 * np.pi * x)

xmin = 0
xmax = 1
x = np.linspace(xmin, xmax, 1000)

n = 200 # number of data points to generate
noise_level = 0.3 # standard deviation of artificial noise

# simulate data
X = (xmax - xmin) * rng.random((n, 1)) + xmin
y = truth(X).reshape(-1) + noise_level * rng.standard_normal(n)

# plot truth and data
fig, ax = plt.subplots()
ax.plot(x, truth(x), '-b', label='(unknown) truth')
ax.plot(X.reshape(-1), y, 'or', markersize=3, label='available data')
ax.legend()
ax.set_xlabel('feature (model input)')
ax.set_ylabel('label (model output)')
plt.show()
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Weightless 𝑘-NN (weights='uniform') yields piecewise constant hypotheses, which can be seen by using small
n. This is not true if weighting by distance is used (weights='distance').
To evaluate the model’s prediction quality after training we have to split our data set into a training set and a test set.
Training and test samples should be chosen at random to avoid bias due to sorted or otherwise structured samples.
Scikit-Learn provides train_test_split126 in its model_selection module for this purpose. For the
moment we do not consider hyperparameter optimization. Thus, no validation set is needed.

# split data into train and test sets
X_train, X_test, y_train, y_test \

= model_selection.train_test_split(X, y, test_size=0.3, random_state=0)
print(y_train.size, y_test.size)

# regression
knn = neighbors.KNeighborsRegressor(10, weights='uniform')
knn.fit(X_train, y_train)

# get predictions in grid for plotting the hypothesis
y_knn = knn.predict(x.reshape(-1, 1))

# plot truth, data, hypothesis
fig, ax = plt.subplots()
ax.plot(x, truth(x), '-b', label='(unknown) truth')
ax.plot(X_train.reshape(-1), y_train, 'or', markersize=3, label='training data')
ax.plot(X_test.reshape(-1), y_test, 'xr', markersize=5, label='test data')
ax.plot(x, y_knn, '-g', label='trained model')
ax.legend()
ax.set_xlabel('feature (model input)')
ax.set_ylabel('label (model output)')
plt.show()

126 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
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In the evaluation phase we calculate some suitable metric on the test set. Here we use mean squared error (MSE)127.

print('test error:', metrics.mean_squared_error(y_test, knn.predict(X_test)))
print('train error:', metrics.mean_squared_error(y_train, knn.predict(X_train)))

test error: 0.10849356915074192
train error: 0.07957991672205268

Now we may use the trained model to get predictions for arbitrary inputs. Simply call the model’s predict128
method.

Classification Example

Here is a synthetic two-feature binary classification example.

n0 = 150 # training samples in class 0
n1 = 50 # training samples in class 1

# generate two point clouds (classes)
X0 = rng.multivariate_normal([-0.5, -0.5], [[0.3, 0], [0, 0.3]], size=n0)
X1 = rng.multivariate_normal([0.5, 0.5], [[0.3, 0], [0, 0.3]], size=n1)
X = np.concatenate((X0, X1))

# set labels

(continues on next page)
127 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
128 https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html#sklearn.neighbors.KNeighborsRegressor.

predict
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(continued from previous page)

y0 = np.zeros(n0, dtype=np.uint8)
y1 = np.ones(n1, dtype=np.uint8)
y = np.concatenate((y0, y1))

# set plotting region
x0_min = X[:, 0].min() - 0.2
x0_max = X[:, 0].max() + 0.2
x1_min = X[:, 1].min() - 0.2
x1_max = X[:, 1].max() + 0.2

# plot data set
fig, ax = plt.subplots(figsize=(6, 6))
ax.scatter(X[y == 0, 0], X[y == 0, 1], c='#ff0000', edgecolor='black')
ax.scatter(X[y == 1, 0], X[y == 1, 1], c='#00ff00', edgecolor='black')
ax.set_xlim(x0_min, x0_max)
ax.set_ylim(x1_min, x1_max)
ax.set_aspect('equal')
plt.show()

from matplotlib.colors import LinearSegmentedColormap

X_train, X_test, y_train, y_test \
= model_selection.train_test_split(X, y, test_size=0.3, random_state=0)

print(y_train.size, y_test.size)

knn = neighbors.KNeighborsClassifier(5, weights='uniform')
knn.fit(X_train, y_train)

(continues on next page)
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(continued from previous page)

fig, ax = plt.subplots(figsize=(6, 6))

# plot trained model (function values color-coded)
x0, x1 = np.meshgrid(np.linspace(x0_min, x0_max, 100), np.linspace(x1_min, x1_max,

↪ 100))
X_grid = np.concatenate((x0.reshape(-1, 1), x1.reshape(-1, 1)), axis=1)
y_grid = knn.predict(X_grid).reshape(100, 100)
cm = LinearSegmentedColormap.from_list('rg', ['#ff0000', '#00ff00'])
ax.contourf(x0, x1, y_grid, cmap=cm, levels=np.linspace(0, 1, 10))

# plot decision boundary
ax.contour(x0, x1, y_grid, levels=[0.5], linewidths=[2], colors=['#ffff00'])

# plot training and test data
ax.scatter(X_train[y_train == 0, 0], X_train[y_train == 0, 1], c='#ff0000',␣

↪edgecolor='black', zorder=1000)
ax.scatter(X_train[y_train == 1, 0], X_train[y_train == 1, 1], c='#00ff00',␣

↪edgecolor='black', zorder=1000)
ax.scatter(X_test[y_test == 0, 0], X_test[y_test == 0, 1], c='#ff0000', edgecolor=

↪'white', zorder=1000)
ax.scatter(X_test[y_test == 1, 0], X_test[y_test == 1, 1], c='#00ff00', edgecolor=

↪'white', zorder=1000)

ax.set_xlim(x0_min, x0_max)
ax.set_ylim(x1_min, x1_max)
ax.set_aspect('equal')

plt.show()

# evaluation
print('test accuracy:', metrics.accuracy_score(y_test, knn.predict(X_test)))
print('train accuracy:', metrics.accuracy_score(y_train, knn.predict(X_train)))
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test accuracy: 0.9166666666666666
train accuracy: 0.9214285714285714

Here we used accuracy129 as quality measure.

5.2.5 Further Aspects to Consider

Odd k for Binary Classification

In binary classification even 𝑘 may result in deadlocks, which typically are handled by random choice of one class.
Obviously, it’s a good idea to choose odd 𝑘.

Imbalanced Classes

Care has to be taken with imbalanced classes. If one class has much more samples than other classes, then that class
might dominate almost all neighborhoods and samples from smaller classes get outshined.
Imbalanced classes are a serious problem in machine learning if one wants to classify rare events or objects like
failures in production lines, for instance (inputs are sensor data, output is failture/no failture). It’s easy to get lots of
positive (no failure) samples. But there will be only few training samples from the failure class.
Possible solutions are dropping samples from the larger class or to introduce weights based on expected or actual
class sizes (in the production line example: multiply distances to ‘no failure’ samples by expected failure rate). Details
heavily depend on the concrete context.
129 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html

78 Chapter 5. General Considerations

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html


Data Science and Artificial Intelligence for Undergraduates
Volume 2: Data Visualization, Supervised Learning

Try

n0 = 300
n1 = 10

X0 = rng.multivariate_normal([-0.5, -0.5], [[0.3, 0], [0, 0.3]], size=n0)
X1 = rng.multivariate_normal([-0.5, -0.5], [[0.01, 0], [0, 0.01]], size=n1)

in the classification example above. The small region with green samples is surrounded and permeated by lots of red
samples. Thus, even in the green region neighborhoods contain more red than green samples.

Important: There is no standard solution! and Know your data!
Each machine learning task comes with its own set of difficulties. Even the application of simple methods like k-NN
requires a considerable amount of brain-work to get useful and reliable results. The most important step is to know
and understand your data.

The Curse of Dimensionality

If the hyperparameter 𝑘 is too large, then predictions will be stable (altering/removing individual neighbors won’t
change predictions) but inaccurate (very distant samples influence predictions). If 𝑘 is too small, then predictions are
very sensitive to modifications and noise in the training data.

Exponential Growth of k

It’s important to note that the choice of 𝑘 heavily depends on the dimension 𝑚 of the feature space. In higher
dimensions we have to look at much more neighbors to get sufficient information about the local behavior of the
approximated function. More precisely, 𝑘 should be proportional to 2𝑚 (this fact is of little use for choosing concrete
𝑘, but it’s a good starting point for developing some intuition on choosing good hyperparameters).
Imagine the vertices of a hypercube in 𝑚-dimensional space. For 𝑚 = 1 it’s an interval with two vertices (end
points). For 𝑚 = 2 it’s a square with four vertices. For 𝑚 = 3 it’s a usual cube with 8 vertices. For general 𝑚 a
hypercube has 2𝑚 vertices. If (in average) we want to have one neighbor on each ‘side’ of an input (more precisely:
one neighbor per orthant130), we have to set 𝑘 = 2𝑚. Such heavy influence of space dimension is sometimes called
the curse of dimensionality.

Fig. 5.3: Even if a point of interest only has neighbors at the vertices of a surrounding cube, number of neighbors
grows exponentially with dimension.

130 https://en.wikipedia.org/wiki/Orthant
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Distances in High Dimensions

The curse of dimensionality causes also another problem: in high dimensions almost all distances between points are
large and almost identical. The higher the space dimension the less dense the data set.
To understand the problem in more detail we consider 𝑛 feature vectors uniformly distributed in the 𝑚-dimensional
hypercube [0, 1]𝑚. Fix some feature vector (the one we want to predict the label for) and a hypersphere with radius
𝑅 centered at that feature vector. Denote the number of feature vectors inside the hypersphere by 𝑘. Then, due to
uniformly distributed data, 𝑘

𝑛 will be very close to the volume of a hypersphere divided by the hypercube’s volume.
The hypercube has volume one. Thus,

𝑘
𝑛 ≈ volume of hypersphere or 𝑘 ≈ 𝑛 ⋅ volume of hypersphere.

Have a look at the volume of the hypersphere (Wikipedia)131 with radius 𝑅:

dimension volume volume for 𝑅 = 0.1
1 2 𝑅 0.2
2 3.142 𝑅2 0.0342
3 4.189 𝑅3 0.004189
4 4.935 𝑅4 0.0004934
5 5.264 𝑅5 0.00005264

The volume of a hypersphere drastically decreases (compared to the cubes volume) if dimension grows. Thus, the
number of feature vectors inside the sphere decreases with growing dimension. Or the other way round: the higher
the dimension the farther away are neighboring points. Consequently, almost all points seem to be close to the surface
of the hypercube and the interior is more or less empty.
But remember: throughout the dimensionality discussion we assumed that points are uniformly (!) distributed in
space. The problem is the Euclidean distance which is not able to grasp this uniform distribution in high dimensions.
The following code illustrates the theoretical considerations numerically (Scikit-Learn’s pair-
wise_distances132 saves some work here):

from sklearn.metrics import pairwise_distances

dim = 2000 # dimension of data space
n = 1000 # number of samples

# generate samples uniformly distributed in unit (hyper)cube
X = rng.uniform(dim * (0,), dim * (1,), (n, dim))

# calculate pairwise distances between samples
dists = pairwise_distances(X).reshape(-1)

# plot histogram of pairwise distances
fig, ax = plt.subplots()
ax.hist(dists, 100, density=True)
plt.show()

131 https://en.wikipedia.org/wiki/Volume_of_an_n-ball
132 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html
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Try different values for dim: 2, 20, 200, 200.

Don’t Buy High-Dimensional Melons

From the above discussion we may deduce that high-dimensional melons only consist of green skin with only very
little red interior. We may compute this result directly. To simplify calculations we assume that a melon is a cube and
one tenth of the edge length 𝑙 is green skin. Then in 𝑚 dimensions the red interiors volume compared to the melon’s
total volume is

𝑉red
𝑉total

= (0.9 𝑙)𝑚

𝑙𝑚 = 0.9𝑚,

which goes to zero for 𝑚 → ∞.
For spheric melons similar computations yield exactly the same result 0.9𝑚.

Fig. 5.4: The best melon is a 1d melon. But 3d melons are okay, too.
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Practical Implications

Increasing the size of the training data set might help to overcome the curse of dimensionality. But we would have
to collect much more data than possible if dimension of feature space is high. Some concrete numbers: In a 30-
dimensional feature space (say a hypercube) we have 1 billion vertices. Thus, we would need 1 billion samples to
have at least one sample per vertex in average. In two dimensions equivalent data set size would be 4 samples (one
per vertex).
There is also some good news. Most data sets are not uniformly distributed. Instead samples concentrate around
lower-dimensional manifolds. Thus, we do not have to cover the entire space with samples. Feature/dimensionality
reduction is an important preprocessing step for k-NN, see Feature Reduction (page 97).

Important: Math matters!
Human imagination fails in high dimensions. Math still works.

5.3 Quality Measures

To evaluate and sometimes also to train a machine learning model we have to express approximation quality on given
set of samples numerically. Choosing a suitable quality measure heavily depends on the underlying task. A standard
measures for regression problems is the mean of the squared Euclidean distances between correct and predicted
output, in this context usually referred to as mean squared error. For classification tasks the correct classification rate
(sometimes denoted as accurcy) is a straight-foward quality measure.

5.3.1 Quality Measures for Regression Problems

For regression tasks all quality measures have the form

1
𝑛

𝑛
∑
𝑙=1

𝑙(𝑓approx(𝑥𝑙), 𝑦𝑙),

where (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) are the samples (inputs and correct labels) on which to compute 𝑓approx’s predition quality
and 𝑙 ∶ ℝ → ℝ is some (usually nonnegative) function. Quality measures of this form often are denoted as loss
functions.

Mean Squared Error

Mean squared error (MSE) is the Euclidean distance between the vectors of correct and predicted outputs:

1
𝑛

𝑛
∑
𝑙=1

(𝑓approx(𝑥𝑙) − 𝑦𝑙)
2.
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Use of this loss function is motivated by three major advantages:
• It is differentiable and, thus, accessible to efficient optimization algorithms.
• Solutions to corresponding minimization problems in many cases can be made explicit.
• One can prove mathematically that mean squared error is the (in some sense) optimal loss function if labels
follow a Gaussian distribution. Details will be addressed in statistics lectures (maximum aposteriory probability
estimation or MAP estimation for short).

A drawback is its sensitivity to outliers. Due to its quadratic nature, small deviations between predicted and correct
labels result in very small changes of the loss function only. In contrast, large deviations (outliers!) result in extremely
large values of the corresponding summand in the loss function.
Scikit-Learn provides mean_squared_error133 in its metrics module.

Mean Absolute Error

Sensitivity to outliers of mean squared error stems from its quadratic nature. So it’s reasonable to have a look on
non-quadratic loss functions. The simplest non-quadratic loss function is the mean absolute error (MAE):

1
𝑛

𝑛
∑
𝑙=1

∣𝑓approx(𝑥𝑙) − 𝑦𝑙∣.

133 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
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Its value is proportional to the deviation of predictions from correct labels and does not overemphasize large devi-
ations. A major drawback is its non-differentiability. Neither can we compute explicit solutions to corresponding
minimization problems, nor can we use simple gradient based optimization algorithms.
Scikit-Learn provides mean_absolute_error134 in its metrics module.

Huber Loss

Huber loss is a mixture of mean squared error and mean absolute error. It tries to combine the advantages of both.
At small arguments Huber loss is quadratic (and thus differentiable). At larger arguments Huber loss is linear (and
thus less sensitive to outliers). Huber loss is of the form

1
𝑛

𝑛
∑
𝑙=1

ℎ(𝑓approx(𝑥𝑙) − 𝑦𝑙)

with

ℎ(𝑧) = {𝑧2, if |𝑧| ≤ 𝜀,
2 𝜀 |𝑧| − 𝜀2, else.

The parameter 𝜀 > 0 determines the value at which quadratic growth is replaced by linear growth. Statistical consid-
erations suggest 𝜀 = 1.35. But other choice may be more appropriate in non-standard situations. Huber loss typically
includes scaling the data to make the choice of 𝜀 independent from the data’s range.
134 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html#sklearn.metrics.mean_absolute_error
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Scikit-Learn does not provide the Huber loss in its metrics module, but it implements some machine learning
methods using that loss implicitly.

5.3.2 Classification Outputs

The final output of classification methods should be class labels. But many algorithms do not yield a concrete label
but for each class a probability value that the input belongs the that class. Alternatively algorithms may use a scoring
scheme, where each class is assigned a score. High scores indicate high probability that the input belongs to that class.
In total we have three different output variants from classification algorithms: labels, probabilities, scores. Thus, we
have to think about conversion methods between them and we will meet quality measures suitable for one variant but
not for others. Thus, choice of quality measures also depends on the classification method’s output ‘format’.
Before we come to concrete quality measures we discuss conversion methods between the three output variants.

From Probabilities to Labels

Although classification problems deal with discrete targets most classification algorithms yield values in the continuous
range [0, 1]. Given an input the algorithm may provide as many values from [0, 1] as there are classes. Each such
value can be interpreted as the probability that the input belongs to the corresponding class. In some cases the values
do not add up to 1, thus it might not be a probability in the mathematical sense. In addition, if we do not specify the
underlying probabilistic framework, we should not speek about probabilities. Thus, a better alternative is probability-
like score.
For binary (that is, 2-class) classification problems there is usually only one output 𝑝 ∈ [0, 1]. This can be seen as
the probability for the input to belong to the one class. The probability for the other class then is 1 − 𝑝. To derive a
concrete class from 𝑝 we may use a threshold value 𝑡 ∈ (0, 1):

𝑝 ≤ 𝑡 ⇒ class A,
𝑝 > 𝑡 ⇒ class B.
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Next to the canonical choice 𝑡 = 0.5 other choice may be appropriate in some situations.
For multiclass problems the class with the highest probability-like score is chosen. If there are several classes with
high probaility, then the algorithm wasn’t able to make a clear decision. Knowledge about class probabilities can be
used to improve the algorithm or to inform the user about a less trustworthy result.

From Scores to Probabilities

If an algorithm outputs scores not lying in [0, 1] we may transform them to get probability-like scores. For bounded
scores, say in [𝑎, 𝑏], the simple linear transform

𝑧 ↦ 𝑧 − 𝑎
𝑏 − 𝑎

does a good job. But the unbounded case is not as simple as the bounded one.
If scores are arbitrary (unbounded) values in ℝ, the transform should be defined on the whole real axis, it should be
monotonically increasing, and it should map negative numbers to [0, 1

2 ) and positive numbers to ( 1
2 , 1]. The sigmoid

function

𝑧 ↦ 1
1 + e−𝑧 , 𝑧 ∈ ℝ,

shows all those properties.

Note that 0 and 1 do not belong to the range of the sigmoid function, but

lim
𝑧→−∞

1
1 + e−𝑧 = 0 and lim

𝑧→∞
1

1 + e−𝑧 = 1.

In case of binary classification with classes A and B we typically only have one output 𝑧 ∈ ℝ with high values
indicating that a sample belongs to class A and low values indicating that a sample belongs to class B. Predicted class
probabilities can be defined as

probability for class A ∶= 1
1 + e−𝑧

probability for class B ∶= 1 − 1
1 + e−𝑧 = e−𝑧

1 + e−𝑧 = 1
1 + e𝑧 .
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For multiclass classification with classes 1, … , 𝐶 and class scores 𝑧1, … , 𝑧𝐶 we may use the softmax function:

probability for class 𝑖 ∶= e𝑧𝑖

e𝑧1 + ⋯ + e𝑧𝐶
, 𝑖 = 1, … 𝐶.

These values lie in [0, 1] and sum up to 1.

<IPython.core.display.HTML object>

Note: It’s a nice little math exercise to prove that softmax-based probabilites for two classes with two scores solely
depend on the difference of the two scores, not on their absolute values.
As by-product one sees that for two classes computing probabilities from two independent scores (via softmax) is the
same as computing probabilities from one score (via sigmoid) if one identifies the one score with the difference of
the two scores.

We’ll meet sigmoid and softmax functions in slightly different contexts when discussing machine learning methods
like artificial neural networks and logistic regression.
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5.3.3 Quality Measures for Classification

There are many different measures for prediction quality of classification algorithms. Here we mention only the most
important ones. Given a data set each measure either compares predicted labels to correct labels or it’s based on class
probabilities. In all cases the outcome is a positive real number expressing some kind of prediction quality.

Correct Classification Rate (Accuracy)

Correct classification rate (or accuracy) counts the number of correct predictions and normalizes the result to [0, 1],
where 0 indicates no correct predictions and 1 indicates that all predictions are correct. Formula:

accuracy ∶= correct predictions
number of samples .

Care has to be taken in interpretation, because accuracy above 0 does not mean that the classifier does anything useful.
We have to compare the accuracy of the model under consideration to the accuracy of a purely random classifier.
A purely random classifier assigns labels by chance equally distributed over all classes. Thus, accuracies close to or
below 1

number of classes
are very bad.

Important: Always think twice! If we have spent hours in training a classifier on cat and dog images and evaluation
on independent data shows a correct classification rate of 55 per cent, is this a good result? No! Assiging labels ‘cat’
and ‘dog’ by chance we would get nearly the same result (50 per cent accuracy) with almost no computational effort.

There is another, more severe issue. Correct classification rate only yields reasonable results if the test set is balanced,
that is, if the number of samples per class does not depend on the class.
Example: Consider three classes A, B, C and a test set with 100 samples;

5 in A, 10 in B, 85 in C.

If a (very simple) classifier always chooses class C, then accuracy is 85 per cent, which sounds pretty good! If we
have a test set with

50 in A, 40 in B, 10 in C,
then accuracy drops to 10 per cent, although it’s still the same classifier. With a balanced test set, say

33 in A, 33 in B, 34 in C,

accuracy is 34 per cent, which is close to the accuracy of a purely random classifier. Thus we see that the classifier
does not do anything useful.
Scikit-Learn provides accuracy_score135 in its metrics module.

Balanced accuracy

For imbalanced test sets correct classification rate does not yield sensible results. But imbalanced test sets are much
more common than balanced ones. To obtain an accuracy-like quality measure for imbalanced test sets we measure
the accuracy on each class and then take the mean over all classes. Here accuracy on a class is the number of correctly
classified samples from a class devided by the class size. If we have 𝐶 classes, then

balanced accuracy ∶= 1
𝐶

𝐶
∑
𝑖=1

number of samples correctly labeled as class 𝑖
total number of samples in class 𝑖 .

135 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html

88 Chapter 5. General Considerations

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html


Data Science and Artificial Intelligence for Undergraduates
Volume 2: Data Visualization, Supervised Learning

Example: Consider the three classes problem with a classifier always predicting class C again. If 5 samples belong
to class A, 10 to B, 85 to C, then we have

5 in A, 10 in B, 85 in C ⇒ bal. acc. = 1
3 (0

5 + 0
10 + 85

85) = 1
3.

50 in A, 40 in B, 10 in C ⇒ bal. acc. = 1
3 ( 0

50 + 0
40 + 10

10) = 1
3.

33 in A, 33 in B, 34 in C ⇒ bal. acc. = 1
3 ( 0

33 + 0
33 + 34

34) = 1
3.

The example shows that balanced accuracy does not depend on possibly imbalanced class sizes in the test set. In all
cases we obtain results indicating that the classifier is not better than a purely random classifier. Note that with a
purely random classifier for each test set we would have

bal. acc. = 1
3 (1

3 + 1
3 + 1

3) = 1
3.

Scikit-Learn provides balanced_accuracy_score136 in its metrics module.

Confusion Matrix

Although confusion matrices are not a numeric quality measure they offer a good overview of classification results.
For classification with classes 1, … , 𝐶 the confusion matrix is a 𝐶 × 𝐶 matrix showing in row 𝑖 and column 𝑗 the
number of samples belonging to class 𝑖 and classified as 𝑗.
If all samples were classified correctly, then the confusion matrix is purely diagonal.
Scikit-Learn provides confusion_matrix137 in its metrics module.

Log Loss

Log loss (or logistic regression loss or cross-entropy loss) is a loss, not a score. That is, best prediction quality is
indicated by zero log loss and the higher the loss the lower the prediction quality (to get a score, use negative log loss).
Log loss requires predicted class probabilities, not class labels.
Given a test set with 𝑛 samples we denote the true labels by 𝑦1, … , 𝑦𝑛 and the predicted probabilities that sample 𝑙
belongs to class 𝑦𝑙 (its true class) by 𝑝1, … , 𝑝𝑛. Then

log loss ∶= − 1
𝑛

𝑛
∑
𝑙=1

log 𝑝𝑙 = − log⎛⎜⎜
⎝

(
𝑛

∏
𝑙=1

𝑝𝑙)
1
𝑛

⎞⎟⎟
⎠

.

The product ∏ 𝑝𝑙 is the predicted probability that each sample belongs to its true class. The 𝑛-th root ensures
independence from test set size (like the factor 1

𝑛 for sums over all samples). The negative logarithm transforms the
interval [0, 1] to [0, ∞] by mapping 0 to∞ and 1 to 0. In other words, the negative logarithm transforms a probability
(high is good) into a loss (low is good). Other functions for such tranform may be used, too, but negative logarithm
is the most widely used one.

Note: Always try to explain formulas in few words without mathematical symbols. The log loss formula could be
explained as follows: Log loss expresses (up to scaling) how convinced the model is that each sample belongs
to the class it really belongs to.
Then consider edge cases: Log loss is zero if the model assignes probability 1 to the correct classes for all samples.
Log loss tends to infinity if the model assignes only very small probabilities to the correct classes for all samples.

136 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
137 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
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Often log loss is written as a more complex formula explicitly showing the dependence on the true labels 𝑦1, … , 𝑦𝑛.
With classes 1, 2, … , 𝐶 set

𝑦𝑙,𝑖 ∶= {1, if 𝑦𝑙 = 𝑖,
0, else

for 𝑙 = 1, … , 𝑛 and 𝑖 = 1, … , 𝐶

(one-hot encoding) and denote by 𝑝𝑙,𝑖 the predicted probability that sample 𝑙 belongs to class 𝑖. Then

log loss = − 1
𝑛

𝑛
∑
𝑙=1

𝐶
∑
𝑖=1

𝑦𝑙,𝑖 log 𝑝𝑙,𝑖,

where we set
0 log 0 ∶= 0.

For binary classification with class labels 0 and 1 and predicted probabilities 𝑝1,1, … , 𝑝𝑛,1 for samples to belong to
class 1, log loss reduces to

binary log loss = − 1
𝑛

𝑛
∑
𝑙=1

(𝑦𝑙 log 𝑝𝑙,1 + (1 − 𝑦𝑙) log(1 − 𝑝𝑙,1)).

Note: Nice little math exercise: Consider binary classification with class labels 0 and 1. Show that if predicted
probabilities 𝑝1,1, … , 𝑝𝑛,1 for class 1 result from a sigmoid transform of scores 𝑧1, … , 𝑧𝑛, then

binary log loss = 1
𝑛

𝑛
∑
𝑙=1

log{1 + e𝑧𝑙 , if 𝑦𝑙 = 0,
1 + e−𝑧𝑙 , if 𝑦𝑙 = 1.

Scikit-Learn provides log_loss138 in its metrics module.

Precision and Recall

Precision and recall are quality measures for binary classification problems. Almost always the two classes in a binary
classification problem are not on a par. Instead they are based on answering the question whether a sample shows
some prespecified property (‘positive’) or not (‘negative’). Usage of precision and recall relies on this interpretation
of binary classification.
Precision is the amount of correctly classified positives in the set of all samples classified as ‘positive’:

precision ∶= number of samples correctly classified 'positive'
total number of samples classified 'positive' .

In constrast, recall (or true positive rate (TPR) or sensitivity) counts the number of correctly classified positives in
the set of all positives:

recall ∶= number of samples correctly classified 'positive'
total number of positive samples .

Both, precision and recall yield numbers in [0, 1]; the higher the better the prediction quality. High precision tells us
that the classifier does not label to many negatives as ‘positive’. High recall tells us that the classifier is able to detect
sufficiently many positives.
Example: If a doctor (the classifier) shall diagnose some disease, high precision means that the doctor has only very
few wrong diagnoses (but may declare some ill clients as healthy). High recall means that the doctor identifies almost
all ill persons (but may declare some healthy persons as ill).
Whether precision or recall are sensible measures for prediction qualitiy heavily depends on the context of the clas-
sification problem.
Example: We want to detect some rare event, say some rare disease, and we have 100 samples, 1 positive, 99
negative. If our classifier classifies all samples as positive, then precision is 0.01 and recall is 1. An always-negative
138 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html
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classifier would have undefined precision and recall 0. If our classifier labels by chance (50 samples labeled ‘positive’,
50 ‘negative’), then precision and recall are 0.02 and 1 if the positive sample is labeled correctly. If it is labled as
‘negative’, then precision and recall both are 0.
Scikit-Learn provides precision_score139 and recall_score140 in its metrics module.

F1-score

F1-score (or F-score) combines precision and recall by taking their harmonic mean141:

F1-score = 2
1

precision + 1
recall

= 2 ⋅ precision ⋅ recall
precision + recall .

The F1-score is always in [0, 1]. If one of both, precision or recall, is close to 0, then the F1-score is close to 0. If
both are close to 1, then the F1-score is close to 1. Thus, high F1-score guarantees good prediction quality (most
‘positive’ labels are correct and only few positive samples are missed).
Scikit-Learn provides f1_score142 in its metrics module.

Area Under Receiver Operator Characteristic Curve (AUC)

AUC (area under curve) measures the area under a curve called reveiver operator characteristic (ROI) curve. This
qualitymeasure works for classification algorithms yielding a probability-like score with high values indicating positive
samples and low values indicating negative samples. AUC does not depend on the threshold for converting scores
to class labels. Instead, it expresses the probability that a randomly drawn positive sample gets a higher score
than a randomly drawn negative sample.
Related Scikit-Learn methods are

• roc_auc_score143

• roc_curve144

• RocCurveDisplay.from_predictions145

Definition of AUC

Given true labels 𝑦1, … , 𝑦𝑛 (‘positive’ or ‘negative’) and corresponding scores 𝑝1, … , 𝑝𝑛 ∈ [0, 1] consider for each
threshold 𝑡 ∈ (0, 1) the false positive rate

FPR(𝑡) ∶= number of negative samples with 𝑝𝑙 > 𝑡
total number of negative samples

and the true positive rate (precision)

TPR(𝑡) ∶= number of positive samples with 𝑝𝑙 > 𝑡
total number of positive samples .

Then the ROC ‘curve’ is the (finite) set of points

{(𝐹𝑃𝑅(𝑡), 𝑇 𝑃𝑅(𝑡)) ∶ 𝑡 ∈ (0, 1)}.

Often these points are connected by straight lines and the resulting curve is denoted as ROC curve. AUC is the area
under that curve.
139 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
140 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
141 https://en.wikipedia.org/wiki/Harmonic_mean
142 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
143 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
144 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html
145 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.RocCurveDisplay.html#sklearn.metrics.RocCurveDisplay.from_

predictions
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Example: Assume we have 𝑛 = 7 samples and a trained binary classification model yields probability-like scores as
follows:

true label predicted probability
negative 0.1
negative 0.5
negative 0.3
negative 0.85
positive 0.6
positive 0.25
positive 0.95

Then FPR and TPR look as follows:

FPR drops whenever 𝑡 hits the predicted probability of a negative sample. Thus, we may identify steps in FPR (or
areas between horizontal grid lines) with the negative samples. Analogously, we may identify steps in TPR with the
positive samples.
The ROC curve is:
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Now AUC is
AUC = 8 ⋅ 1

3 ⋅ 1
4 = 2

3.

Properties of the ROC curve

From the definition of the ROC curve we easily deduce following properties:
• If there are no samples with equal scores, then the ROC curve is composed of horizontal and vertical line
segments.

• It always connects (0, 0) with (1, 1) if scores are strictly between 0 and 1. If some scores are 0 or 1, then the
endpoints are at least close to (0, 0) and (1, 1).

• The ROC curve is monotonically increasing.

Properties of AUC

From the definition of AUC we easily deduce following properties:
• AUC is always in [0, 1].
• AUC is 1 if and only if the classification algorithm labels all samples correctly.
• AUC is 0 if and only if the classification algorithm labels all positive samples ‘negative’ and all negative samples
‘positive’.

• For a classification algorithm drawing scores at random equally distributed in [0, 1] AUC is approximately 0.5
(the ROC curve is close to the diagonal).
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Proof of AUC Interpretation

We stated above that AUC is the probability that a randomly chosen positive sample has higher score than a randomly
chosen negative sample. To see this we look at the grid implicitly defined by the ROC curve. This idea is taken
from The Probabilistic Interpretation of AUC146, where missleadingly grid points are counted instead of boxes (areas
between grid lines).
To avoid discussion of certain special cases we assume that all scores 𝑝1, … , 𝑝𝑛 are different and no score is 0 or 1.
To simplify notation further we assume that samples are sorted by predicted probability, that is,

𝑝1 < 𝑝2 < ⋯ < 𝑝𝑛.

Thus, samples 2, 5, 7 are positive and samples 1, 3, 4, 6 are negative in the example above.
Given a positive sample and a negative sample we identify the positive sample with corresponding step in TPR and
the negative sample with corresponding step in FPR. Thus, each positive-negative may identified with a box in the
grid:

For some fixed positive-negative pair we want to show that the probability-like score of the positive sample is higher
than the score of the negative sample if the box is below the curve and vice versa if the box is above the curve.
Assume the box is below the curve. Then we may go to the left and upwards until we are at a box which has two
sides on the ROC curve. While going to the left FPR decreases, that is, score of corresponding negative samples
increases. Going upwards TPR increases, that is, score of corresponding positive samples decreases. Thus, it remains
to show that for a box with left and upper side on the curve corresponding positive sample has higher score than
corresponding negative sample. But this can be seen from looking at a range of thresholds 𝑡 covering scores of both
samples. Increasing the threshold FPR drops before TPR drops (else lower and right side of the box would be on the
curve). Thus, score of the negative sample has to be smaller than for the positive sample.
For boxes above the curve we may use analog reasoning to see that score of corresponding negative sample is above
corresponding positive sample. The probability that a randomly chosen positive sample is scored higher than a ran-
146 http://madrury.github.io/jekyll/update/statistics/2017/06/21/auc-proof.html
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domly chosen negative sample thus is the number of boxes below the curve divided by the total number of boxes or,
equivalently (because all boxes have same area), the area under the curve divided by the total area, which is 1.

Choosing a Threshold

AUC does not depend on the threshold used for converting scores to labels. Thus, it cannot be used to find a good
threshold but for comparing different classification methods. Finding a good threshold heavily depends on the un-
derlying problem. We have to decide what is more important: high TPR or low FPR.
There exist several heuristic methods to derive a threshold form the ROC curve (not from AUC). One idea is to
choose a threshhold where the ROC curve has high curvature or where the graph’s slope is close to 1 (region A in
figure below). Then the loss/gain in TPR is nearly the same as the loss/gain in FPR when modifying the threshold
slightly. If, in contrast, we would choose a threshold where the curve is very steep (region B), then lowering the
threshold would significantly increase TPR without increasing FPR too much. If the curve is very flat (region C),
then larger thresholds would yield much smaller FPR while preserving TPR.

Another idea for choosing a threshold from the ROC curve is to choose the point (better: the corresponding theshold)
closest to (0, 1) (region A in figure). The point (0, 1) corresponds to perfect classification (all positive samples labeled
‘positive’, no negative samples labeled ‘positive’). Thus, getting as close as possible to this point is quite reasonable.

5.3. Quality Measures 95



Data Science and Artificial Intelligence for Undergraduates
Volume 2: Data Visualization, Supervised Learning

Binary Metrics for Multiclass Classification

Quality measures for binary classification (precision, recall, F1-score, AUC) can be extended to multiclass clas-
sification. For each class we look at the canonical binary problem (sample belongs to class or not) and calculate
corresponing prediction quality for each such binary problem. The results then are averaged somehow.
Simplest way is to take the mean of all binary quality measures. If classes are very different in size, some weighting
might be appropriate to lower influcence of performance on very small classes. This approach is known as (weighted)
macro averaging. To make this precise let 𝑛1, … , 𝑛𝐶 be the sizes of the the 𝐶 classes and denote by 𝑄1, … , 𝑄𝐶 the
binary metrics computed for corresponding C binary classification problems. Then

weighted macro average = 𝑛1
𝑛 𝑄1 + ⋯ + 𝑛𝐶

𝑛 𝑄𝐶 .

An alternative is micro averaging, which implements averaging over classes into the concrete structure of a binary
metric. For precision, recall and F1-score micro averaging simply yields (unbalanced) accuracy. For AUC it’s not
clear how to define micro averaging. Thus, for us it doesn’t add any value.

5.4 Scaling

Scaling of numeric data may influence results obtained from supervised learning methods. Often this influence is
not obvious. The method itself might be sensitive to scaling, but more often scaling issues arise from underlying
numerical algorithms (e.g., minimization procedures) for implementing a method.
We already met an example showing the importance of scaling in Introductory Example (k-NN) (page 71). More
will follow when discussing more machine learning techniques. Here we have a look at two standard approaches to
scaling: normalization and standardization.

5.4.1 Normalization

One common method for scaling data is to choose an interval, often [0, 1], and to linearly transform values to fit this
interval. If a feature’s values are in the interval [𝑎, 𝑏], then transformation to [0, 1] is done by

𝑥new = 𝑥old − 𝑎
𝑏 − 𝑎 .

Care has to be taken if data contains outliers: a very large value in the date would force values in the usual range to
be mapped very close to zero.
Scikit-Learn offers normalization as MinMaxScaler147 class in the preprocessing module. Min-
MaxScaler objects (like most of Scikit-Learn’s objects) offer the three methods fit, transform,
fit_transform. The latter is simple a convinience method which calls fit and then transform. The fit
method looks at the passed data and determines its range. The transform method applies the actual transforma-
tion. Thus, if multiple data sets shall be transformed, call fit only once and then apply the transform to all data
sets:

from sklear.preprocessing import MinMaxScaler

scaler = MinMaxScaler()
scaler.fit(X_train) # get range (no transform here)

X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)

Alternatively:

scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

147 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

96 Chapter 5. General Considerations

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html


Data Science and Artificial Intelligence for Undergraduates
Volume 2: Data Visualization, Supervised Learning

5.4.2 Standardization

More often than normalization the following approach is used for scaling data: First substract the mean, then divide
by standard deviation. The result are features whose values have mean 0 and standard deviation 1. That is, values are
centered at 0 and their mean deviation from 0 is 1.
Given values 𝑥1, … , 𝑥𝑛 the mean 𝜇 is

𝜇 = 1
𝑛

𝑛
∑
𝑙=1

𝑥𝑙

and standard deviation 𝜎 is

𝜎 =
√√
⎷

1
𝑛

𝑛
∑
𝑙=1

(𝑥𝑙 − 𝜇)2.

Corresponding transform reads
𝑥new = 𝑥old − 𝜇

𝜎 .

From the mathematical statistics view we are slighlt imprecise here. Our 𝜇 is not the mean of the data’s underlying
probability distribution, but an estimate for it, known as emperical mean in statistics. Same holds for 𝜎. But in
addition, our estimate 𝜎 in some sence is worse than the usual emperical standard deviation in statistics, because it’s
not unbiased (see statistics lecture).
Scikit-Learn offers StandardScaler148 in the preprocessing module for standardizing date. Usage is ex-
actly the same as described above for normalization.

5.4.3 Scaling of Interdependent Features

In many cases features may be scaled independently (age and kilometers driven for cars, for instance). But in other
cases information isn’t solely contained in isolated features but differences between features may carry information,
too. The most important example here are images. If we have a set of images and if we scale each pixel/feature
independently, we may destroy information contained in the images.

Fig. 5.5: Pixelwise normalization of images my destroy content. Pixels not covering the full color range will get
modified while pixels with values in the full range will remain untouched.

Thus, for images and similar data, we have to apply same scaling to all pixels/features to keep information encoded
as differences between features.

5.5 Feature Reduction

Feature reduction or dimensionality reduction aims at reducing the number of features in a data set without deteriora-
tion results of supervised learning methods. This saves resources (memory, CPU time), but also may help interpreting
the data. We distinguish two classes of methods for feature reduction:

• feature selection,
• feature transform.

148 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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A straight forward idea is feature selection or removal. One tries to identify relevant features and removes features of
little or no relevance. Relevance here means influnce on the accuracy of the trained model. If we remove a feature, but
the model trained on the reduced data set yields almost identical predictions as before, then the feature is considered
irrelevant.
Feature transform refers to more complex methods which map the whole feature space to a lower dimensional space.
Here, resulting new features lack easy interpretability because each contains information frommany different original
features.
Here we consider two methods for feature selection and one feature transforms method.

5.5.1 Manual Feature Removal

Exploratory data analysis gives a first impression of feature properties and relations between features. Observations
made during this phase of doing data science should be used to reduce the number of features.
One observation frequenly made in raw data sets are features, that contain (almost) the same value in each sample.
Such features can be removed without loss of information.
Another frequent observation are highly correlated features. Plotting one feature versus another we see whether there
is a functional dependence between them or whether they are uncorrelated. In the first case the plot shows a line, in
the second case we see a cloud of points.

Fig. 5.6: Left image shows linear dependence, but functional dependency may also nonlinear (quadratic, for instance).
On the right-hand side there’s no obvious functional dependence.

In case of functional dependence one of the two considered features can be removed, because its values can be deduced
from the remaining one. In other words, both features contain the same information, but in different representation.
There might also be features uncorrelated to the targets. If the plot of a feature against the targets shows a very
homogeneous distribution of points all over the plotting area, then the feature is likely to have no influence on the
targets. Thus, it can be removed. If in doubt, don’t remove the feature because eyes may trick you about equal
distribution of points.

5.5.2 Permutation Feature Importance

Given a trained model we ask for the importance of each feature. We could remove one feature, retrain the model and
compare prediction quality to the original model. Doing this for all features we see which features can be removed
without deteriorating results. The drawback of that approach is that we have to train as many models as we have
features.
A similar idea, which does not require additional training, is calculating permutation feature importance. Given a data
set we permutate the values of a fixed feature and look at corresponding predictions. The smaller the deviation from
the original predictions the less important is the feature. So deviation in predictions after permutating feature values
is a measure of feature importance.
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Scikit-Learn supports permutation feature importance via permutation_importance149 function in the in-
spection module. We have to pass the trained model and a data set. The object returned by the function has a
member importances containing a NumPy array with the feature importances. By default the function calculates
feature importances for several different permutations. Mean and standard deviation can be used to get a summary
for all permuations. Both are accessible via the importances_mean and importances_std members, re-
spectively.

5.5.3 Principal Component Analysis (PCA)

Principal component analysis is a powerful technique for deriving new features from existing ones (feature transfor-
mation). Original features may suffer from two problems:

• A feature might have low variance, that is, it contains few information. The extreme case is a feature with
variance 0. Then all values of the feature are identical.

• Features might be correlated, that is, they contain redundant information. The extreme case is a feature whoes
values are a fixed multiple of another feature’s values.

Principal component analysis tackles both problems:
• PCA creates features with high variance and removes low variance features.
• Features created by PCA are uncorrelated.

We now go into the details of this important technique.

Prerequisites

PCA only works for numerical features and all features should be centered. More sloppily we may say that PCA
assumes that the data set is a point cloud centered at the origin.
Let 𝑥1, … , 𝑥𝑛 be the feature vectors of the data set and assume we have 𝑚 features. Writing the feature vectors as
rows of a matrix we obtain a matrix 𝑋 of size 𝑛 × 𝑚. Denote the columns of 𝑋 by 𝜉1, … , 𝜉𝑚, that is, 𝜉1 contains
all values of the first feature, 𝜉2 all values of the second feature, and so on; in formulas:

𝜉1 = ⎡⎢
⎣

𝑥(1)
1
⋮

𝑥(1)
𝑛

⎤⎥
⎦

, … , 𝜉𝑚 = ⎡⎢
⎣

𝑥(𝑚)
1
⋮

𝑥(𝑚)
𝑛

⎤⎥
⎦

.

Let’s call 𝜉1, … , 𝜉𝑚 value vectors.

Linear Feature Transforms

Given numbers 𝑎(1), … , 𝑎(𝑚) the linear combination

𝑎(1) 𝜉1 + ⋯ + 𝑎(𝑚) 𝜉𝑚 = 𝑋 𝑎

of the value vectors 𝜉1, … , 𝜉𝑚 can be considered the value vector of a new feature. Taking more such linear combi-
nations we derive more and more features from the original ones.

Say we create �̃� new features with value vectors ̃𝜉1, … , ̃𝜉�̃�, then the corresponding matrix �̃� of size 𝑛 × �̃� may be
written as

�̃� = 𝑋 𝐴,
where each column of the transform matrix 𝐴 contains the coefficients of the linear combination yielding the cor-
responding new feature. The first column of 𝐴 contains the coefficients for ̃𝜉1, for instance. Dimensions of 𝐴 are
𝑚 × �̃�. This can be seen by carrying out usual matrix multiplication: the first column of 𝑋 𝐴 is 𝑋 times the first
column of 𝐴 and so on.
149 https://scikit-learn.org/stable/modules/generated/sklearn.inspection.permutation_importance.html
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If the transform matrix 𝐴 is invertible, we may write

�̃� 𝐴−1 = 𝑋.

That is, we may switch back and forth between both feature sets as we like. Obviously, invertibility of 𝐴 requires at
least 𝑚 = �̃�.
If the transform matrix 𝐴 is invertible, then both feature sets contain identical information, but in different repre-
sentation. There exist several approaches for contructing transform matrices. PCA is only one. Like PCA, most
approaches aim at removing features carrying only few information. Thus, 𝐴 will not be invertible.

Variance Maximization

By assumption the original value vectors 𝜉1, … , 𝜉𝑚 are centered (mean 0). One easily verifies, that derived value
vectors then are centered (mean 0), too.
The idea of PCA is to find coefficient vectors 𝑎 such that the corresponding new value vector 𝑋 𝑎 has maximum
variance with respect to all vectors 𝑎 of length 1. Considering other lengths, too, would add no value. Looking at
length 2, for instance, would yield a factor 4 in all variances (factor 2 for standard deviation), but the maximizing
vector 𝑎 would have the same direction as for length 1.
Since 𝑋 𝑎 is centered, its variance is simply the sum of the squares of its components (up to constant factor); in other
words: its squared length. Taking the square root does not change the maximizer. Thus, maximizing variance boils
down to solving

|𝑋 𝑎| → max
|𝑎|=1

.

Some deeper mathematics reveals that maximum variance is given by the largest eigenvalue of the matrix 𝑋T 𝑋 and
that the maximizer 𝑎∗ is a corresponding eigenvector. The square matrix 𝑋T 𝑋 is known as covariance matrix in
statistics.
The optimal coefficient vector 𝑎∗ yields a derived feature which contains a maximum of information compared to all
other derivable features. Such a feature is called a principal component of the original features.

Uncorrelated Features

Given the variance maximizing coefficient vector 𝑎∗ we would like to restrict our attention to only those derivable
features which are completely uncorrelated to the new feature described by 𝑎∗. In this reduced set of features we
then may look for maximum variance again. Repeating this process would yield a list of features with descending
variance (list of principal components) and all features in the list would be mutually uncorrelated.
The only question to answer is: How to restrict the set of features to avoid any correlation with already extracted
features? The answer is: We have to restrict all considerations to coefficient vectors yielding features orthogonal to all
previously found variance maximizing features. Two derived features are uncorrelated if corresponding value vectors
̃𝜉𝑖 and ̃𝜉𝑗 have zero covariance. Because both are centered, covariance is ̃𝜉T𝑖 ̃𝜉𝑗. Zero covariance thus is nothing else
than orthogonality.
Assume that step by step we have found 𝑘 variance maximizing coefficient vectors 𝑎∗

1, … , 𝑎∗
𝑘. Then we restrict

attention to vectors 𝑎 for which 𝑋 𝑎 is orthorgonal to all 𝑋 𝑎∗
1, … , 𝑋 𝑎∗

𝑘.
Starting with 𝑘 = 1 we go on until the space of derivable features (that is, the set of all linear combinations of original
value vectors) is exhausted. We end up with at most 𝑚 new features. If we obtain less features, then the original
feature set contained redundant information, which now got removed.

100 Chapter 5. General Considerations



Data Science and Artificial Intelligence for Undergraduates
Volume 2: Data Visualization, Supervised Learning

Geometric Interpretation

Although we derived the PCA procedure from statistical considerations PCA has a nice geometric interpretation.
A value vector 𝜉 = 𝑋 𝑎 of a derived feature contains the inner products of all samples with the coefficient vector
𝑎. The coefficient vector 𝑎 ‘lives’ in the same space as the samples: ℝ𝑚. Thus, maximizing 𝑋 𝑎 can be regarded
as looking for a direction (1d subspace) such that the orthogonal projections of all samples onto that subspace have
maximum range.
To get the second principal component we project all samples onto the 𝑚 − 1 dimensional subspace orthogonal to
the first principal component and then look for the projection range maximizing direction inside this subspace.
Following this procedure until the space is exhausted we obtain a set of orthogonal unit vectors in the original feature
space. In other words, the 𝑎∗

1, 𝑎∗
2, … define a new coordinate system. The transformed samples ̃𝑥1, … , ̃𝑥𝑛 in �̃� =

𝑋 𝐴 simply are the original samples but expressed with respect to the new coordinate system.

Removing Low Variance Features

PCA yields a list of uncorrelated centered features and their variances. Thus, me may remove low variance features
from the list to reduce resource consumption when applying machine learning algorithms.
The remaining coefficient vectors in the list make up the transform matrix 𝐴 introduced above.

Relation to Singular Value Decomposition (SVD)

PCA looks for eigenvalues and eigenvectors of 𝑋T 𝑋. This matrix is square, symmetric, and positive semidefinite.
Thus, all eigenvalues are nonnegative real numbers.
Thematrix𝑋 itself lacks all those nice properties. Nonetheless, there is a transform very similar to PCAwhich applies
directly to𝑋, the singular value decomposition. SVD yields two orthonormal systems {𝑢1, … , 𝑢𝑛} and {𝑣1, … , 𝑣𝑚}
and a list of nonnegative real numbers 𝑠1, … , 𝑠𝑚 such that

𝑋 = 𝑈 𝑆 𝑉 T.

Here 𝑆 is the ‘diagonal’ matrix of size 𝑛 × 𝑚 with 𝑠1, … , 𝑠𝑚 on its diagonal, 𝑈 and 𝑉 are the matrices having
𝑢1, … , 𝑢𝑛 and 𝑣1, … , 𝑣𝑚 as columns, respectively.
We have the following relations to PCA:

• 𝑣𝜅 = 𝑎∗
𝜅 (normalized eigenvectors of 𝑋T 𝑋),

• 𝑢𝜅 = 𝑋 𝑎∗
𝜅

|𝑋 𝑎∗𝜅| (normalized principal components or eigenvectors of 𝑋 𝑋T),

• 𝑠𝜅 = |𝑋 𝑎∗
𝜅| (length of principal components or square roots of eigenvalues of 𝑋T 𝑋 and 𝑋 𝑋T).

Note that 𝑈 and 𝑉 are orthonormal matrices, implying 𝑈−1 = 𝑈T and 𝑉 −1 = 𝑉 T. Thus,

𝐴 = 𝑉 , �̃� = 𝑋 𝐴 = 𝑈 𝑆.

Some of the 𝑠1, … , 𝑠𝑚 may be zero, indicating that the number of features can be reduced without loss of information.
If some of the 𝑠1, … , 𝑠𝑚 are very small, then setting them to zero reduces the number of features while neglecting
only very few information (truncated singular value decomposition or TSVD).
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PCA with Scikit-Learn

Scikit-Learn implements a PCA150 class in its decomposition module. The constructor takes the number
n_components of principal components to keep (None for all). The fit method computes the principle com-
ponents and transform yields transformed data.
After fitting the PCA object offers principal components and corresponding variances as member variables com-
ponents_ and explained_variance_.
Scikit-Learn’s PCA automatically centers the input data and stores each component’s mean in thePCA object’smean_
member.
We start an illustrating example with all necessary imports and a function for plotting a point cloud.

import numpy as np
import matplotlib.pyplot as plt
import plotly.graph_objects as go
import sklearn.preprocessing as preprocessing
import sklearn.decomposition as decomposition

from numpy.random import default_rng
rng = default_rng(0)

def plot_data(X, xlabel, ylabel, zlabel):
''' Scatter plot of data with properly configured axes. '''

fig = go.Figure()
fig.layout.width = 800
fig.layout.height = 600

fig.add_trace(go.Scatter3d(
x=X[:, 0], y=X[:, 1], z=X[:, 2],
mode='markers',
marker={'color': '#0000ff', 'size': 1}

))

data_min = X.min()
data_max = X.max()
fig.update_scenes(

xaxis_title_text=xlabel,
yaxis_title_text=ylabel,
zaxis_title_text=zlabel,
xaxis_range=[data_min, data_max],
yaxis_range=[data_min, data_max],
zaxis_range=[data_min, data_max]

)
fig.update_layout(scene_aspectmode='cube', showlegend=False)

return fig

We use simulated data with 3 features. For simple simulation we generate data following a multivariate normal
distribution.

n = 500 # number of data points to generate

# generate data
X = rng.multivariate_normal([1, 2, 3], [[1, 0.2, 0.3], [0.2, 2, -0.1], [0.3, -0.1,

↪ 0.2]], n)

# plot data

(continues on next page)

150 https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
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(continued from previous page)

fig = plot_data(X, 'feature 1', 'feature 2', 'feature 3')
fig.show()

<IPython.core.display.HTML object>

Now we do a full PCA and plot the principal components. That is, we keep all principle components. In this case we
do not have to pass an argument to the PCA constructor. Note that we multiply the length of the principle components
by 3 for better visibility.

pca = decomposition.PCA()
pca.fit(X)

# plot
fig = plot_data(X, 'feature 1', 'feature 2', 'feature 3')

# plot principal components
vec = np.stack((pca.mean_, np.empty(3)), axis=1)
for i in range(0, 3):

vec[:, 1] = vec[:, 0] + 3 * np.sqrt(pca.explained_variance_[i]) * pca.
↪components_[i, :]

fig.add_trace(go.Scatter3d(
x=vec[0, :], y=vec[1, :], z=vec[2, :],
mode='lines',
line={'color': '#ff0000', 'width': 5}

))

fig.show()

<IPython.core.display.HTML object>

It remains to transform the data according to the principal components.

X_transformed = pca.transform(X)

# plot
fig = plot_data(X_transformed, 'PCA feature 1', 'PCA feature 2', 'PCA feature 3')

# plot principal components
vec = np.stack((np.zeros(3), np.empty(3)), axis=1)
for i in range(0, 3):

vec[:, 1] = 0
vec[i, 1] = 3 * np.sqrt(pca.explained_variance_[i])
fig.add_trace(go.Scatter3d(

x=vec[0, :], y=vec[1, :], z=vec[2, :],
mode='lines',
line={'color': '#ff0000', 'width': 5}

))

fig.show()

<IPython.core.display.HTML object>

If we want to reduce the number of features we may omit the last component (the one with smallest variance),
resulting in a two-dimensional data set. To make PCA.transform do this for us we have to restart PCA with
n_components=2.
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pca = decomposition.PCA(n_components=2)
pca.fit(X)

X_transformed = pca.transform(X)

# plot transformed data
fig, ax = plt.subplots(figsize=(6, 6))
ax.scatter(X_transformed[:, 0], X_transformed[:, 1], c='#0000ff', s=3)
ax.set_xlabel('PCA feature 1')
ax.set_ylabel('PCA feature 2')
ax.set_aspect('equal')

plt.show()

5.5.4 Nonlinear Feature Reduction Methods

PCA is a linear method, that is, we apply a linear transform to the data. There exist many nonlinear methods for
feature reduction. Such nonlinear methods are considered a separate branch of unsupervised machine learning and
will be considered later on.

5.6 Hyperparameter Tuning

Hyperparameters are parameters of a model which are not fit to the data. Instead, they are choosen in advance, mainly
to control model complexity. An example is the number of neighbors considered in k-NNmethod. But preprocessing
steps may depend on parameters, too. Remember the number of components to keep in PCA, for instance. This is
a hyperparameter of the overall model, too. In this broader sense a model is an algorithm which takes raw data and
yields predictions.
Choice of hyperparameters is difficult and heavily builds upon experience of the data scientist. From the compu-
tational point of view it’s very difficult to find optimal hyperparameters. Corresponding optimization problems are
non-differentiable and, thus, not accessible to standard optimization procedures.
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We will consider techniques for automatically choosing hyperparameters below. But getting some experience in
manually choosing hyperparameters is an indispensable skill of data scientists.

5.6.1 Pipelines

Scikit-Learn allows to combine several processing steps into one estimator object. Thus, applying a chain of trans-
formations and fitting procedures to several data sets becomes very simple. This functionality is provided by the
Pipeline class151 of the sklearn.pipeline module.

Hint: Pipelines aren’t needed for hyperparameter optimization. But they simplify code by encapsulating all pro-
cessing steps and their parameters in one Python object. Thus, hyperparameter optimization algorithms do not have
to cope with several and different objects defining the overall model to be optimized.

Consider standardization followed by PCA and k-NN regression for the following example with synthetic data. We
have three features and want to predict some quantity depending an these feature.
First the imports and creation of synthetic data.

import numpy as np
from numpy.random import default_rng
rng = default_rng(0)

import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d as plt3d

import sklearn.preprocessing as preprocessing
import sklearn.decomposition as decomposition
import sklearn.neighbors as neighbors
import sklearn.pipeline as pipeline

n = 1000 # number of data points to generate

# generate data
X = rng.multivariate_normal([1, 2, 3], [[1, 0.2, 0.3], [0.2, 2, -0.1], [0.3, -0.1,

↪ 0.2]], n)
y = (0.89 * X[:, 0] + 0.78 * X[:, 1] + 0.84 * X[:, 2] - 5.34) ** 2 + 0.5 * rng.

↪normal(size=n)

# plot data (color encodes y)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(X[:, 0], X[:, 1], X[:, 2], s=3, c=y, cmap='jet')
ax.set_xlabel('feature 1')
ax.set_ylabel('feature 2')
ax.set_zlabel('feature 3')
plt.show()

151 https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
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Now we create a pipeline containing all processing steps. The Pipeline constructor takes a list of tuples. Each
tuple consists of a string and a Scikit-Learn object. The string will be used to refer to parts of the pipeline later on.
The Scikit-Learn objects have to provide fit and transform methods, where the whole pipeline provides the
same methods as the last object in the pipeline. Thus, if the last object provides a predictmethod, then the whole
pipeline can be used for prediction.

steps = [('standardize', preprocessing.StandardScaler()),
('pca', decomposition.PCA(n_components=2)),
('knn', neighbors.KNeighborsRegressor(n_neighbors=5))]

pipe = pipeline.Pipeline(steps)

pipe.fit(X, y)
pipe.predict([[0, 0, 3]])

array([6.71318598])

Calling fit of the pipeline object calls fit and transform for the first object in the pipeling, then for the
second, and so on. Parameters of the processing steps can be set when creating the objects or afterwards by calling
Pipeline.set_params(). This method takes keyword arguments of the form step__param, where step
is a step’s name and param is the name of the parameter of the corresponding object.

pipe.set_params(knn__n_neighbors=10)
pipe.fit(X, y)
pipe.predict([[0, 0, 3]])

array([6.96541741])

All objects contained in a pipeline are accessible through the Pipeline.steps object. It’s a list of tuples, each
containing a step’s name and the corresponding object. This way all parameters of all processing steps are available.

pipe.steps[1][1].components_[0, :] # largest principal component
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array([-0.70940987, -0.02120454, -0.70447712])

5.6.2 Grid Search

The simplest but often also the only applicable form of hyperparameter optimization is grid search: for each hyper-
parameter we specify finitely many values and train a model for each combination of these values. Then the best
model is chosen. To judge about a model’s quality we need a scoring function, for regression problems usually the
mean squared error on a validation set.
It’s important to split the data into three sets: one for training the models, one for validating (that is, scoring) the
models, and one for testing the final model’s prediction quality on data not involved in the training and model selection
process.
Splitting into training and validation data has not to be fixed. After having a closer look at grid search we will discuss
advanced techniques for selecting training and validation data.
We start grid search with data splitting: 50% for training, 30% for validation, 20% for testing.

import sklearn.model_selection as model_selection

X_train_val, X_test, y_train_val, y_test \
= model_selection.train_test_split(X, y, test_size=2/10, random_state=0)

X_train, X_val, y_train, y_val \
= model_selection.train_test_split(X_train_val, y_train_val, test_size=3/8,␣

↪random_state=0)

print(y_train.size, y_val.size, y_test.size)

500 300 200

Now steps are as follows:
• specify grid for each hyperparameter,
• generate all combinations of parameter values with ParameterGrid152 from Scikit-Learn’s
model_selection module,

• loop over all combinations and find best model.

import sklearn.metrics as metrics

param_grid = {'pca__n_components': [1, 2, 3],
'knn__n_neighbors': range(1, 11)}

best_err = None
best_params = None

for params in model_selection.ParameterGrid(param_grid):

pipe.set_params(**params)
pipe.fit(X_train, y_train)

y_val_pred = pipe.predict(X_val)
err = metrics.mean_squared_error(y_val_pred, y_val)

if (best_err == None) or (err < best_err):
best_err = err

(continues on next page)

152 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ParameterGrid.html
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(continued from previous page)

best_params = params

print(best_params)

{'knn__n_neighbors': 4, 'pca__n_components': 2}

Now we may fit the final model. Because we do not have to adjust hyperparameters anymore, we may use both
training and validation data for fitting.
Metrics and plots demonstrate the performance of the model.

pipe.set_params(**best_params)
pipe.fit(X_train_val, y_train_val)

y_test_pred = pipe.predict(X_test)
mse = metrics.mean_squared_error(y_test_pred, y_test)

print('root of MSE: ', np.sqrt(mse))
print('standard deviation of true targets: ', np.std(y_test))

fig, (ax_left, ax_right) = plt.subplots(1, 2, figsize=(10, 5))

s = y_test.argsort() # sort for getting a continuous line
ax_left.plot(y_test[s], '-or', markersize=2, label='true targets')
ax_left.plot(y_test_pred[s], '-ob', markersize=2, label='predicted targets')
ax_left.set_xlabel('index')
ax_left.set_ylabel('targets')
ax_left.legend()

ax_right.plot(y_test, y_test_pred, 'ob', markersize=2)
min_value = np.minimum(y_test.min(), y_test_pred.min())
max_value = np.maximum(y_test.max(), y_test_pred.max())
ax_right.plot([min_value, max_value], [min_value, max_value], '-r')
ax_right.set_aspect('equal')
ax_right.set_xlabel('true targets')
ax_right.set_ylabel('predicted targets')

plt.show()

root of MSE: 1.4555318931691366
standard deviation of true targets: 4.641821625794403
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5.6.3 Cross Validation

Especially for small data sets different splits into training and validation sets may yield different results in hyperpa-
rameter optimization. To avoid influence of the splitting process, we may use many different splits and calculate their
mean score. Cross validation implements this idea.
Data available for training and validation is split into 𝜈 more or less equally sized subsets. Then 𝜈 different training
validation splits are considered: one of the 𝜈 subsets is used for validation and the other 𝜈 − 1 comprise the test set.
For each such split we train the model and calculate the score on the validation set. Finally, we calculate the mean of
all 𝜈 scores. This way all available data is used for training as well as for validation.
Scikit-Learn implements grid search with cross validation in the GridSearchCV class153. The constructor takes
a Scikit-Learn object (a pipeline, for instance) and a parameter grid as arguments. GridSearchCV objects then
provide a fit method for doing the grid search and a predict method for getting predictions from the optimal
model. The constructur accepts several other important arguments:

• scoring: How to calculate the score for each model? The higher the score, the better the model. We
may pass a predefined string, 'neg_mean_squared_error', for instance. See list of predefined scoring
parameters154.

• n_jobs: How many processors to use? If Scikit-Learn shall use all available processors, pass -1.
• cv: How many subsets to use?. Typical choice are 2, … , 10.

param_grid = {'pca__n_components': [1, 2, 3],
'knn__n_neighbors': range(1, 11)}

gs = model_selection.GridSearchCV(pipe, param_grid, scoring='neg_mean_squared_
↪error', cv=5, n_jobs=-1)

gs.fit(X_train_val, y_train_val)

y_test_pred = gs.predict(X_test)
mse = metrics.mean_squared_error(y_test_pred, y_test)

print(gs.best_params_)
print()
print('root of MSE: ', np.sqrt(mse))
print('standard deviation of true targets: ', np.std(y_test))

153 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
154 https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter
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{'knn__n_neighbors': 3, 'pca__n_components': 2}

root of MSE: 1.4311176903230793
standard deviation of true targets: 4.641821625794403

If there are only very few samples for training and validation choosing as many subsets as samples are available can be
useful. Then the validation set consists of only one sample. This approach is known as leave one out (LOO)
cross validation.

5.6.4 Randomized Search

If training of a model takes much time, then searching the whole parameter space for optimal hyperparameters via
grid search is not feasible. In such cases choosing hyperparameters randomly may yield good results in less time.
Scikit-Learn provides random search functionality with RandomizedSearchCV155.

5.6.5 Bias versus Variance

There are two main sources for bad model performance:
• The model is too simple to properly represent the data.
• The model is overfitted to the training data.

In the first case we say that the model is too biased. That is, it contains assumptions about the data the data does not
satisfy. Approximating nonlinear data by a linear function is a typical example.
The second situation stems from too complex models. The model itself imposes only very few assumptions on the
data and gathers all its information from the training data. Here we say that the model has high variance. High
variance results in low generalization power. That is, the model performance is bad on data not included in the
training procedure.
To find good models we have to look for a compromise between bias and variance of a model. This is what we do
when tuning hyperparameters. To reduce variance, obtaining more training data is a choice, too. But often getting
more data is impossible or at least expensive.
Scikit-Learn has the learning_curve156 function to plot the dependence between size of training data set and
prediction errors. The function trains and scores a model for different amounts of training data. For scoring cross
validation is used.

pipe.set_params(pca__n_components=3, knn__n_neighbors=3)

train_sizes, train_scores, val_scores \
= model_selection.learning_curve(pipe, X, y, train_sizes=np.linspace(0.1, 1,␣

↪20), cv=10,
scoring='neg_mean_squared_error')

fig, ax = plt.subplots()
ax.plot(train_sizes, np.mean(train_scores, axis=1), '-ob', markersize=3, label=

↪'training scores')
ax.plot(train_sizes, np.mean(val_scores, axis=1), '-or', markersize=3, label=

↪'validation scores')
ax.legend()
ax.set_xlabel('size of training set')
ax.set_ylabel('score')
plt.show()

155 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
156 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html
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We see that 600 training samples suffice to train the model. Using more samples increases performance only slightly.
Thus, it is very unlikely that collecting even more data would improve our model.
Similarly to the learning curve we may plot training and validation error depending on a hyperparameter. Usually,
on the one end of the parameter scale the model is too simple (thus, high training and validation error), on the other
end the model is too complex and overfits the training data (thus, low training error, high validation error). From the
so called validation plot we may find a good hyperparameter between both extreme cases.
Scikit-Learn provides the validation_curve157 function for this purpose. Usage is very similar to learn-
ing_curve.

pipe.set_params(pca__n_components=3, knn__n_neighbors=3)

param_range = range(1, 21)
train_scores, val_scores \

= model_selection.validation_curve(pipe, X, y, param_name='knn__n_neighbors',
param_range=param_range, cv=10,
scoring='neg_mean_squared_error')

fig, ax = plt.subplots()
ax.plot(param_range, np.mean(train_scores, axis=1), '-ob', markersize=3, label=

↪'training scores')
ax.plot(param_range, np.mean(val_scores, axis=1), '-or', markersize=3, label=

↪'validation scores')
ax.legend()
ax.set_xlabel('neighbors')
ax.set_ylabel('score')
plt.show()

157 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.validation_curve.html
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Obviously, number of neighbors should be 2 to get a relatively good score (score close to 0 means that the mean
squared error is close to 0). More neighbors reduce model complexity. Thus, the model isn’t able to fit training (and
validation) data. With only one neighbor the model tends to overfit training data.
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CHAPTER

SIX

LINEAR REGRESSION

Linear regression denotes a class of relatively simple yet powerful regression methods. In this chapter we study the
basics as well as advanced techniques and special cases.

• Approach (page 113)
• Regularization (page 129)
• Worked Example: House Prices I (page 142)
• Worked Example: House Prices II (page 175)
• Outliers (page 184)

Related projects:
• House Prices GUI (page 483)

6.1 Approach

Linear regression is a classical method in mathematics for constructing functions which are somehow close to a given
set of points. In Data Science linear regression does a pretty good job, thought it’s relatively simple.

6.1.1 Linear Regression with Linear Functions

The Principle

We first consider the simplest regression model. The parameter dependent hypothesis is of the form

𝑓approx(𝑥) = 𝑎0 + 𝑎1 𝑥(1) + 𝑎2 𝑥(2) + ⋯ + 𝑎𝑚 𝑥(𝑚) = 𝑎0 +
𝑚

∑
𝑘=1

𝑎𝑘 𝑥(𝑘),

where 𝑥 = (𝑥(1), … , 𝑥(𝑚)) is a feature vector and 𝑎0, 𝑎1, … , 𝑎𝑚 are the parameters of the hypothesis 𝑓approx.
Given 𝑛 training samples (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) we want to choose 𝑎0, 𝑎1, … , 𝑎𝑚 such that

𝑓approx(𝑥𝑙) ≈ 𝑦𝑙 for 𝑙 = 1, … , 𝑛.

To achive this we solve the minimization problem

1
𝑛

𝑛
∑
𝑙=1

(𝑓approx(𝑥𝑙) − 𝑦𝑙)
2 → min

𝑎0,…,𝑎𝑚
.

The function 𝑔 defined by
𝑔(𝑢, 𝑣) = 1

𝑛
𝑛

∑
𝑙=1

(𝑢𝑙 − 𝑣𝑙)
2
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is a so called loss function expressing the distance between two vectors 𝑢 = (𝑢1, … , 𝑢𝑛) and 𝑣 = (𝑣1, … , 𝑣𝑛). There
are several other loss functions in machine learning like mean absolute error and Huber loss, see Quality Measures
(page 82). For the moment we content ourselves with the simplest one, the mean squared error.
Note that we cannot expect 𝑓approx(𝑥𝑙) = 𝑦𝑙, because our model, that is, our assumption of a linear function, is likely
to be too simplistic. In addition, observations 𝑦𝑙 in regression problems often are corrupted by noise.

Solving the Minimization Problem Analytically

The minimization problem

ℎ(𝑎0, … , 𝑎𝑚) ∶= 1
𝑛

𝑛
∑
𝑙=1

(𝑓approx(𝑥𝑙) − 𝑦𝑙)
2 = 1

𝑛
𝑛

∑
𝑙=1

(𝑎0 +
𝑚

∑
𝑘=1

𝑎𝑘 𝑥(𝑘)
𝑙 − 𝑦𝑙)

2

→ min
𝑎1,…,𝑎𝑚

is known to have only global minima (no other stationary points), which can be found via differential calculus. We
simply have to find 𝑎0, … , 𝑎𝑚 where the gradient of ℎ is the zero vector. To keep formulas as simple as possible we
introduce an additional artificial zeroth feature 𝑥(0)

𝑙 ∶= 1 for 𝑙 = 1, … , 𝑛. This allows to write

ℎ(𝑎0, … , 𝑎𝑚) = 1
𝑛

𝑛
∑
𝑙=1

(
𝑚

∑
𝑘=0

𝑎𝑘 𝑥(𝑘)
𝑙 − 𝑦𝑙)

2

.

Taking the derivative with respect to 𝑎𝑖 for 𝑖 = 0, 1, … , 𝑚 we obtain

𝜕
𝜕𝑎𝑖

ℎ(𝑎1, … , 𝑎𝑚) = 1
𝑛

𝑛
∑
𝑙=1

2 (
𝑚

∑
𝑘=0

𝑎𝑘 𝑥(𝑘)
𝑙 − 𝑦𝑙) 𝑥(𝑖)

𝑙

= 2
𝑛

𝑛
∑
𝑙=1

𝑚
∑
𝑘=0

𝑎𝑘 𝑥(𝑘)
𝑙 𝑥(𝑖)

𝑙 − 2
𝑛

𝑛
∑
𝑙=1

𝑦𝑙 𝑥(𝑖)
𝑙

= 2
𝑛

𝑚
∑
𝑘=0

𝑎𝑘
𝑛

∑
𝑙=1

𝑥(𝑘)
𝑙 𝑥(𝑖)

𝑙 − 2
𝑛

𝑛
∑
𝑙=1

𝑦𝑙 𝑥(𝑖)
𝑙 .

Thus, the gradient is zero if and only if
𝑚

∑
𝑘=0

𝑎𝑘
𝑛

∑
𝑙=1

𝑥(𝑘)
𝑙 𝑥(𝑖)

𝑙 =
𝑛

∑
𝑙=1

𝑦𝑙 𝑥(𝑖)
𝑙 for 𝑖 = 0, 1, … , 𝑚.

This is a system of linear equations for the unknowns 𝑎0, 𝑎1, … , 𝑎𝑚. Sometimes these equations are called normal
equations of the minimization problem. Taking the feature vectors 𝑥1, … , 𝑥𝑛 as rows of a matrix 𝐵 ∈ ℝ𝑚×𝑛

(including the artificial zeroth feature 1), that is,

𝐵 ∶= ⎡⎢
⎣

1 𝑥(1)
1 ⋯ 𝑥(𝑚)

1
⋮ ⋮ ⋮
1 𝑥(1)

𝑛 ⋯ 𝑥(𝑚)
𝑛

⎤⎥
⎦

we see that the gradient of ℎ is zero if and only if

𝐵T 𝐵 𝑎 = 𝐵T 𝑦.

Here 𝑎 and 𝑦 are the vectors of the unknowns and of the labels, respectively. Note that the system matrix 𝐵T 𝐵 is a
square matrix of size 𝑚 + 1 with 𝑚 being the number of features in our data.
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Example: Used Cars Prices

We look at a data set containing information about used cars offered at the online platform CarDekho158. The data
set contains age, selling price, kilimeters driven and several other parameters of about 4000 cars.
The dataset has been obtained via Kaggle159 and is licenced under Database Contents License (DbCL) v1.0160,
including Open Database License (ODbL) v1.0161.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

cars = pd.read_csv('cars.csv')

cars

name year selling_price km_driven \
0 Maruti 800 AC 2007 60000 70000
1 Maruti Wagon R LXI Minor 2007 135000 50000
2 Hyundai Verna 1.6 SX 2012 600000 100000
3 Datsun RediGO T Option 2017 250000 46000
4 Honda Amaze VX i-DTEC 2014 450000 141000
... ... ... ... ...
4335 Hyundai i20 Magna 1.4 CRDi (Diesel) 2014 409999 80000
4336 Hyundai i20 Magna 1.4 CRDi 2014 409999 80000
4337 Maruti 800 AC BSIII 2009 110000 83000
4338 Hyundai Creta 1.6 CRDi SX Option 2016 865000 90000
4339 Renault KWID RXT 2016 225000 40000

fuel seller_type transmission owner
0 Petrol Individual Manual First Owner
1 Petrol Individual Manual First Owner
2 Diesel Individual Manual First Owner
3 Petrol Individual Manual First Owner
4 Diesel Individual Manual Second Owner
... ... ... ... ...
4335 Diesel Individual Manual Second Owner
4336 Diesel Individual Manual Second Owner
4337 Petrol Individual Manual Second Owner
4338 Diesel Individual Manual First Owner
4339 Petrol Individual Manual First Owner

[4340 rows x 8 columns]

We concentrate on one car model. Let’s take the most frequent one.

grouped_by_name = cars.groupby('name')
name = grouped_by_name.size().idxmax()
cars_subset = grouped_by_name.get_group(name)

cars_subset

name year selling_price km_driven fuel \
117 Maruti Swift Dzire VDI 2014 434000 79350 Diesel
327 Maruti Swift Dzire VDI 2018 800000 25000 Diesel
338 Maruti Swift Dzire VDI 2015 490000 60000 Diesel

(continues on next page)
158 https://www.cardekho.com
159 https://www.kaggle.com
160 http://opendatacommons.org/licenses/dbcl/1.0
161 https://opendatacommons.org/licenses/odbl/summary
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(continued from previous page)

365 Maruti Swift Dzire VDI 2014 400000 90000 Diesel
409 Maruti Swift Dzire VDI 2012 215000 80000 Diesel
... ... ... ... ... ...
4189 Maruti Swift Dzire VDI 2013 425000 61083 Diesel
4245 Maruti Swift Dzire VDI 2014 480000 101000 Diesel
4265 Maruti Swift Dzire VDI 2014 480000 101000 Diesel
4289 Maruti Swift Dzire VDI 2019 680000 40000 Diesel
4314 Maruti Swift Dzire VDI 2015 470000 170000 Diesel

seller_type transmission owner
117 Individual Manual Second Owner
327 Individual Manual First Owner
338 Individual Manual Second Owner
365 Individual Manual First Owner
409 Individual Manual Third Owner
... ... ... ...
4189 Dealer Manual First Owner
4245 Dealer Manual First Owner
4265 Dealer Manual First Owner
4289 Individual Manual First Owner
4314 Individual Manual First Owner

[69 rows x 8 columns]

Before we start any computation we should have a look at the data.

fig, ax = plt.subplots()

ax.scatter(cars_subset['km_driven'].to_numpy(), cars_subset['selling_price'].to_
↪numpy(), s=10, c='b')

ax.set_xlabel('km')
ax.set_ylabel('price')

plt.show()
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This does not look like a linear dependence between price and kilometers driven. There seems to be no systematic
dependence between both quantities at all. But intuition suggests that there should be one. Thus, we should take into
account other features. Isn’t it possible that the dependence between price and kilometers driven depends on the age
of the car?
Let’s visualize different ages.

fig, ax = plt.subplots()

ax.scatter(cars_subset['km_driven'].to_numpy(), cars_subset['selling_price'].to_
↪numpy(),

s=10, c=2020 - cars_subset['year'].to_numpy(), cmap='jet')
ax.set_xlabel('km')
ax.set_ylabel('price')

plt.show()
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The blue region shows some linear structure and the reddish region, too. Thus, age should be taken into account for
predicting prices. Now let’s do two regressions: one for young cars and one for old ones.

from matplotlib import colors

def simple_linear_regression(X, y):
B = np.ones((X.size, 2))
B[:, 1] = X
return np.linalg.solve(np.matmul(B.T, B), np.matmul(B.T, y))

year = 2014 # where to split the data set into young and old

mask_young = cars_subset['year'] > year
X_young = cars_subset.loc[mask_young, 'km_driven'].to_numpy()
y_young = cars_subset.loc[mask_young, 'selling_price'].to_numpy()

mask_old = cars_subset['year'] <= year
X_old = cars_subset.loc[mask_old, 'km_driven'].to_numpy()
y_old = cars_subset.loc[mask_old, 'selling_price'].to_numpy()

a_young = simple_linear_regression(X_young, y_young)
a_old = simple_linear_regression(X_old, y_old)

print(a_young)
print(a_old)

fig, ax = plt.subplots()

ax.scatter(cars_subset['km_driven'].to_numpy(), cars_subset['selling_price'].to_
↪numpy(),

s=10, c=(mask_young.to_numpy()), cmap=colors.ListedColormap(['r', 'b
↪']))

(continues on next page)
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(continued from previous page)

xmin = 0
xmax = 260000
ax.plot([xmin, xmax], [a_young[0] + a_young[1] * xmin, a_young[0] + a_young[1] *␣

↪xmax], '-b', label='young')
ax.plot([xmin, xmax], [a_old[0] + a_old[1] * xmin, a_old[0] + a_old[1] * xmax], '-

↪r', label='old')

ax.set_xlabel('km')
ax.set_ylabel('price')
ax.legend()
plt.show()

[ 6.74201542e+05 -1.68902485e+00]
[3.64966780e+05 1.81825528e-01]

Given the kilometers driven, the simple formula

𝑦 = 674202 − 1.69 𝑥

yields a prediction for the price we could get for a young car, where 𝑥 are the kilometers and y is the price. For old
cars we have the model

𝑦 = 364967 + 0.18 𝑥

Note that this holds only for the selected car model. In addition, we only considered very simple hypotheses with
only two parameters.
Instead of doing two one-dimensional regressions for young and old cars, we could do a two-dimensional regression
including both features, km driven and age.
At first we look at the data.
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import plotly.graph_objects as go

xcoords = cars_subset['km_driven'].to_numpy()
ycoords = 2020 - cars_subset['year'].to_numpy()
zcoords = cars_subset['selling_price'].to_numpy()

fig = go.Figure()
fig.layout.width = 800
fig.layout.height = 600

fig.add_trace(go.Scatter3d(
x=xcoords, y=ycoords, z=zcoords,
mode='markers',
marker={'color': '#0000ff', 'size': 2}

))
fig.update_scenes(

xaxis_title_text='km',
yaxis_title_text='age',
zaxis_title_text='price',

)

fig.show()

<IPython.core.display.HTML object>

Then we do the regression.

X = np.stack((cars_subset['km_driven'].to_numpy(),
2020 - cars_subset['year'].to_numpy()), axis=1)

y = cars_subset['selling_price'].to_numpy()

B = np.ones((X.shape[0], 3))
B[:, 1:] = X
a = np.linalg.solve(np.matmul(B.T, B), np.matmul(B.T, y))

print(a)

fig = go.Figure()
fig.layout.width = 800
fig.layout.height = 600

fig.add_trace(go.Scatter3d(
x=X[:, 0], y=X[:, 1], z=y,
mode='markers',
marker={'color': '#0000ff', 'size': 2}

))

xmin = 0
xmax = 250000
ymin = 0
ymax = 10
xcoords, ycoords = np.meshgrid([xmin, xmax], [ymin, ymax])
zcoords = a[0] + a[1] * xcoords + a[2] * ycoords
fig.add_trace(

go.Surface(x=xcoords, y=ycoords, z=zcoords, showscale=False,
colorscale=[[0, 'rgba(255, 0, 0, 0.8)'], [1, 'rgba(255, 0, 0, 0.8)

↪']])
)

fig.update_scenes(

(continues on next page)
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(continued from previous page)

xaxis_title_text='km',
yaxis_title_text='age',
zaxis_title_text='price',

)

fig.show()

[ 7.69448384e+05 -2.07046783e-01 -5.47861786e+04]

<IPython.core.display.HTML object>

Now our model for the price 𝑦 depending on kilometers 𝑥1 and age 𝑥2 is

𝑦 = 769448 − 0.21 𝑥1 − 54786 𝑥2.

Limitations

Linear regression with linear functions yields inaccurate results if the data set does not show a linear structure. Also
outliers may distort results. Thus, linear regression has to be used with care and preceeding visual analysis is manda-
tory.
Have a look at Ascombe’s quartet162 for very different data sets all yielding the same result if linear regression with
linear functions is used.

Linear Regression with Seaborn

Seaborn offers pairplot for getting a first overview of mutual dependence of all variables. See Plotting pairwise
data relation ships163 in the Seaborn documentation for more details.

import seaborn as sns

sns.pairplot(cars_subset)
plt.show()

162 https://en.wikipedia.org/wiki/Anscombe%27s_quartet
163 https://seaborn.pydata.org/tutorial/axis_grids.html#plotting-pairwise-data-relationships
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Seaborn also provides linear regression directly. See Estimating regression fits164 for more details.

sns.regplot(x='year', y='selling_price', data=cars_subset)

<Axes: xlabel='year', ylabel='selling_price'>

164 https://seaborn.pydata.org/tutorial/regression.html
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Linear Regression with Scikit-Learn

Linear regression is implemented by almost all machine learning libraries. Scikit-Learn is a good choice due to its
simple API. It offers a module linear_model.
We reimplement linear regression with two features for the above example of used car prices.
The workflow is as follows:

• create a LinearRegression object,
• fit the object to the data (that is, do the regression),
• extract the coefficients from the object or use the object for prediction.

# X, y from above

import sklearn.linear_model as lm

regression = lm.LinearRegression()

regression.fit(X, y)

print(regression.intercept_) # a[0]
print(regression.coef_) # a[1], a[2]

769448.3841336307
[-2.07046783e-01 -5.47861786e+04]

From Scikit-Learn we obtain identical coefficients as above. To evaluate the regression function call predict.
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age = 3.5
km = 40000

price = regression.predict([[km, age]])

print(price)

[569414.88787459]

For comparison with more complex models below we calculate (root) mean squared error on the training set.

import sklearn.metrics as metrics

metrics.mean_squared_error(y, regression.predict(X), squared=False)

89976.37031916517

6.1.2 Linear Regression with Nonlinear Functions

Idea

We consider more general parameter dependent hypotheses of the form

𝑓approx(𝑥) = 𝑎1 𝜑1(𝑥(1), … , 𝑥(𝑚)) + ⋯ + 𝑎𝜇 𝜑𝜇(𝑥(1), … , 𝑥(𝑚)) =
𝜇

∑
𝜅=1

𝑎𝜅 𝜑𝜅(𝑥(1), … , 𝑥(𝑚)),

where 𝑥 = (𝑥(1), … , 𝑥(𝑚)) is a feature vector, 𝑎1, … , 𝑎𝜇 are the parameters of the hypothesis 𝑓approx, and 𝜑1, … , 𝜑𝜇
are prescribed real-valued functions on ℝ𝑚.
Note that 𝑓approx depends linearly on the parameters 𝑎1, … , 𝑎𝜇. Thus linear regression. In contrast, in nonlinear
regression we would consider hypotheses containing the searched for parameters in a nonlinear fashion. This would
be the most general case, which is rarely needed in practise.

Example: Fitting a Parabola

Consider data with only one feature, that is, 𝑚 = 1. We would like to fit a parabola to such a data set.
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In mathematical notation our hypotesis shall have the form

𝑓approx(𝑥) = 𝑎1 𝑥2 + 𝑎2 𝑥 + 𝑎3,

where we replaced 𝑥(1) by 𝑥 since we only have one feature. Thus, fitting a parabola is a special case of our general
linear regression approach with

𝜇 = 3, 𝜑1(𝑥) = 𝑥2, 𝜑2(𝑥) = 𝑥, 𝜑3(𝑥) = 1.

Example: Fitting Piecewise Linear Functions

Again consider data with only one feature. In addition, assume that the feature takes values in [0, 1]. Then it might
be a good idea to divide [0, 1] into 𝜇 − 1 equaly spaced subintervals for some fixed 𝜇. On each subinterval we could
do a linear regression, but require that resulting lines are connected at the interval boundaries.
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In our linear regression framework we could choose 𝜑1, … , 𝜑𝜇 to be hat functions of width 2
𝜇−1 centered at the

interval boundaries 𝜅−1
𝜇−1 for 𝜅 = 1 … , 𝜇:

𝜑𝜅(𝑥) =
⎧{
⎨{⎩

(𝜇 − 1) 𝑥 − 𝜅 + 2, if 𝑥 ∈ [ 𝜅−2
𝜇−1 , 𝜅−1

𝜇−1 ],
−(𝜇 − 1) 𝑥 + 𝜅, if 𝑥 ∈ [ 𝜅−1

𝜇−1 , 𝜅
𝜇−1 ],

0, else.
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The parameters 𝑎1, … , 𝑎𝜇 describe the high of the hats or the function values of 𝑓approx at the interval boundaries.

Example: RBF Regression

Using several copies of a hat function and placing them at fixed grid points is a special case of RBF regression. Here
RBF is the abbreviation of radial basis function. An RBF is a function that depends only on the length |𝑥| of a feature
vector 𝑥 and not on the individual features. Thus, it is symmetric for one-dimensional feature vectors, cone shaped
for two-dimensional feature vectors, and so on. RBFs typically have their maximum at 0 (the center) and then decay
when distance from the center increases.
Next to hat functions

𝜑(𝑥) = {1 − 1
𝑐 |𝑥|, if |𝑥| ≤ 𝑐,

0, else,

where 𝑐 > 0 controls the width of the hat (𝑐 = 1
𝜇−1 in the previous example), Gaussian RBFs

𝜑(𝑥) = e−𝑐 |𝑥|2

are widely used. Again, 𝑐 > 0 controls the width of the bell shaped curve.

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

Given fixed grid points 𝑢1, … , 𝑢𝜇 in the feature space we choose

𝜑1(𝑥) = 𝜑(𝑥 − 𝑢1), … , 𝜑𝜇(𝑥) = 𝜑(𝑥 − 𝑢𝜇).
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Relation to Linear Regression with Linear Functions

Linear regression with nonlinear functions can be reduced to linear regression with linear functions studied above.
We simply have to transform all feature vectors by applying the functions 𝜑1, … , 𝜑𝜇.
Given feature vectors 𝑥1, … , 𝑥𝑛 with 𝑚 features each we define new feature vectors ̃𝑥1, … , ̃𝑥𝑛 with 𝜇 features by

̃𝑥(𝜅)
1 ∶= 𝜑𝜅(𝑥1), … , ̃𝑥(𝜅)

𝑛 ∶= 𝜑𝜅(𝑥𝑛) for 𝜅 = 1, … , 𝜇.

Now our hypothesis reads

𝑓approx( ̃𝑥) =
𝜇

∑
𝜅=1

𝑎𝜅 ̃𝑥(𝜅)

with ̃𝑥 from ℝ𝜇.

Implementation with Scikit-Learn

Scikit-Learn provides a module for preprocessing data. This module contains a PolynomialFeatures165 class
for creating transformer objects. The transformer object then provides a method fit_transform166 doing the
actual transformation.
Care has to be taken at the following point: Scikit-Learn’s polynomial feature transform adds a feature which is always
one. This feature corresponds to 𝑥0. But the linear regression model adds this feature again. Thus, we end up with
too many parameters. From the mathematical point of view this isn’t a problem. But there might be confusion when
evaluating the coefficients for some reason. Either set include_bias to False when creating the transformer
object or set fit_intercept to False when creating the LinearRegression object.
Again we reuse the used car price example with two-dimensional feature space. Now we want to fit a second-order
function to the data.

# X, y from above

from sklearn.preprocessing import PolynomialFeatures

transformer = PolynomialFeatures(degree=2)
transformed_X = transformer.fit_transform(X)

print('shape of original data: ', X.shape)
print('shape of transformed data:', transformed_X.shape)

shape of original data: (69, 2)
shape of transformed data: (69, 6)

Starting with two features 𝑥(1) and 𝑥(2), we now have six features:

̃𝑥(1) = 1, ̃𝑥(2) = 𝑥(1), ̃𝑥(3) = 𝑥(2), ̃𝑥(4) = (𝑥(1))2, ̃𝑥(5) = 𝑥(1) 𝑥(2), ̃𝑥(6) = (𝑥(2))2.

From here on regression works as usual.

regression = lm.LinearRegression(fit_intercept=False)
regression.fit(transformed_X, y)

# predict price
age = 3.5
km = 40000
price = regression.predict(transformer.fit_transform([[km, age]]))

(continues on next page)
165 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
166 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html#sklearn.preprocessing.

PolynomialFeatures.fit_transform
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print(price)

fig = go.Figure()
fig.layout.width = 800
fig.layout.height = 600

fig.add_trace(go.Scatter3d(
x=X[:, 0], y=X[:, 1], z=y,
mode='markers',
marker={'color': '#0000ff', 'size': 2}

))

xmin = 0
xmax = 250000
ymin = 0
ymax = 10
grid_size = 20

xcoords, ycoords = np.meshgrid(np.linspace(xmin, xmax, grid_size), np.
↪linspace(ymin, ymax, grid_size))

xyfeatures = np.stack((xcoords.reshape(-1), ycoords.reshape(-1)), axis=1)
zcoords = regression.predict(transformer.fit_transform(xyfeatures)).reshape(grid_

↪size, grid_size)

fig.add_trace(
go.Surface(x=xcoords, y=ycoords, z=zcoords, showscale=False,

colorscale=[[0, 'rgba(255, 0, 0, 0.8)'], [1, 'rgba(255, 0, 0, 0.8)
↪']])

)

fig.update_scenes(
xaxis_title_text='km',
yaxis_title_text='age',
zaxis_title_text='price',

)

fig.show()

metrics.mean_squared_error(y, regression.predict(transformed_X), squared=False)

[569498.41773257]

<IPython.core.display.HTML object>

88734.00776114204

6.2 Regularization

Whenever we try to fit a model to a finite data set we have to find a compromise between two competing aims:
• Fit the data as good as possible.
• Generalize information from data to regions in feature space without data (fit the truth).

One problem is that data usually contains noise and thus does not contain arbitrarily precise information about the
underlying truth. On the other hand, in most applications there is not the one underlying truth. If some relevant
features are not contained in the data set, then even a complete data set does not allow to recover underlying truth.
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An example for the second issue is prediction of prices, say house prices. The price depends on many features, which
cannot be recorded completely. Thus, corresponding data set might contain a feature vector twice, but with different
target values (prices). Which is the better one, that is, which one contains more truth?
Fitting data as good as possible is quite easy. The hard part is to avoid overfitting. By overfitting we mean neglecting
the second aim. That is, our hypothesis fits the data very well, but does not represent essential properties of the
underlying truth.

6.2.1 Example

Let’s have a look at an illustrating example. We consider data with only one feature, so we can plot everything and
visualize the problem.
First some standard imports and initialization of the random number generator.

import numpy as np
import matplotlib.pyplot as plt

import sklearn.linear_model as lm
from sklearn.preprocessing import PolynomialFeatures

from numpy.random import default_rng
rng = default_rng(0)

To investigate overfitting we choose an underlying truth and simulate data based on this truth. This way we have
access to the in practice unknown truth and can compare predictions to the truth.

# function to reconstruct from data ('underlying truth')
def truth(x):

return x + np.cos(2 * np.pi * x)

# range and grid for plotting
xmin = 0
xmax = 1
x = np.linspace(xmin, xmax, 100)

# plot truth
fig, ax = plt.subplots()
ax.plot(x, truth(x), '-b', label='truth')
ax.legend()
ax.set_xlabel('feature')
ax.set_ylabel('target')
plt.show()
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To simulate data we generate uniformly distributed arguments, calculate corresponding true function values, and add
some noise. Noise almost always follows a normal distribution.

n = 100 # number of data points to generate
noise_level = 0.3 # standard deviation of artificial noise

# simulate data
X = (xmax - xmin) * rng.random((n, 1)) + xmin
y = truth(X).reshape(-1) + noise_level * rng.standard_normal(n)

# plot truth and data
fig, ax = plt.subplots()
ax.plot(x, truth(x), '-b', label='truth')
ax.plot(X.reshape(-1), y, 'or', markersize=3, label='data')
ax.set_xlabel('feature')
ax.set_ylabel('target')
ax.legend()
plt.show()
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We use polynomial regression for obtaining a model explaining our data. Different degrees of the polynomial will
yield very different results (try 1, 2, 5, 10, 15, 20, 25).

degree = 20 # degree for polynomial regression

# regression
regression = lm.LinearRegression()
transform = PolynomialFeatures(degree=degree).fit_transform
regression.fit(transform(X), y)

# get hypothesis for plotting
y_reg = regression.predict(transform(x.reshape(-1, 1)))

# plot truth, data, hypothesis
fig, ax = plt.subplots()
ax.plot(x, truth(x), '-b', label='truth')
ax.plot(X.reshape(-1), y, 'or', markersize=3, label='data')
ax.plot(x, y_reg, '-g', label='model')
ax.set_xlabel('feature')
ax.set_ylabel('target')
ax.legend()
plt.show()
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Obviously, there is an optimal degree, say 4 or 5 or 6. The degree in polynomial regression is a hyperparameter.
For lower degrees our model is not versatile enough to grasp the truth’s structure. For higher degrees we observe
overfitting: the model adapts very well to the data points, but tends to oscillate to reach as many data points as
possible. These oscillations are an artifact and not a characteristic of the underlying truth.
Before we discuss how to avoid overfitting, we have to think about a different issue: How to detect overfitting? In our
illustrating example we know the underlying truth and can compare the hypothesis to the truth. But in practice we
do not know the truth!

6.2.2 Detecting overfitting

We split our data set into two subsets: one for fitting the model (training set) and one for detecting overfitting (vali-
dation set). If our model is close to the (unknown) truth, then the error on both subsets should be almost identical.
In case of overfitting the error on the training set will be much smaller than on the validation set.
Here, the error is the mean squared error:

1
𝑛

𝑛
∑
𝑘=1

(𝑓approx(𝑥𝑘) − 𝑦𝑘)2,

where (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) are the samples from the considered subset.
Let’s test this with the above example. First we split the data set.

from sklearn.model_selection import train_test_split

X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.5)

print(X_train.shape, X_val.shape)

# plot truth, training data, validation data

(continues on next page)
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(continued from previous page)

fig, ax = plt.subplots()
ax.plot(x, truth(x), '-b', label='truth')
ax.plot(X_train.reshape(-1), y_train, 'or', markersize=3, label='training data')
ax.plot(X_val.reshape(-1), y_val, 'oy', markersize=3, label='validation data')
ax.set_xlabel('feature')
ax.set_ylabel('target')
ax.legend()
plt.show()

(50, 1) (50, 1)

Now we fit models for different degrees and plot corresponding errors on the training set and on the validation set.

from sklearn import metrics

max_degree = 25

regression = lm.LinearRegression()

train_errors = np.zeros(max_degree)
val_errors = np.zeros(max_degree)

degrees = range(1, max_degree + 1)

for degree in degrees:

# regression
transform = PolynomialFeatures(degree=degree).fit_transform
regression.fit(transform(X_train), y_train)

# predictions on subsets

(continues on next page)
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y_train_pred = regression.predict(transform(X_train))
y_val_pred = regression.predict(transform(X_val))

# errors
train_errors[degree - 1] = metrics.mean_squared_error(y_train_pred, y_train)
val_errors[degree - 1] = metrics.mean_squared_error(y_val_pred, y_val)

# plot errors
fig, ax = plt.subplots()
ax.semilogy(degrees, train_errors, '-or', label='errors on training set')
ax.semilogy(degrees, val_errors, '-oy', label='errors on validation set')
ax.set_xlabel('degree')
ax.set_ylabel('mean squared error')
ax.legend()
plt.show()

# print errors
print(' training validation')
print(np.stack((train_errors, val_errors), axis=1))

training validation
[[0.55327756 0.65483872]
[0.08634214 0.119108 ]
[0.08442359 0.11991263]
[0.06694953 0.09463578]
[0.06584899 0.09539557]
[0.06440824 0.09831239]
[0.06030987 0.09869475]
[0.05459956 0.10948717]
[0.05416856 0.11645479]
[0.05416567 0.11578297]

(continues on next page)
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[0.04427975 0.14101537]
[0.04413737 0.13811564]
[0.04411521 0.1431831 ]
[0.04407453 0.14827712]
[0.03944999 0.46436207]
[0.03846396 0.66928752]
[0.03839572 0.51795306]
[0.0378066 1.25822297]
[0.03778724 1.5208766 ]
[0.03778158 1.66348658]
[0.03777532 1.28780466]
[0.03667487 0.44913459]
[0.03650158 0.61691911]
[0.03667436 0.85090129]
[0.03632425 0.61247783]]

The higher the degree, the smaller the error on the training set, but the higher the error on the validation set. Starting
at degree about 15 the difference between both errors grows significantly. This shows that the small error on the
training set is not a result of a well approximated truth, but stems from overfitting.
Here we also see that the error on the validation set is slightly larger than on the training set, because the hypothesis
has been fitted to the training data.

6.2.3 Avoiding Overfitting

Overfitting almost always correlates with very large parameters after fitting the model. Thus, penalizing parameter
values should be a good idea.
Let’s have a look at the parameters in our illustrative example for both cases good fit and overfitting.

max_degree = 25

regression = lm.LinearRegression()

max_coeffs = np.zeros(max_degree)

degrees = range(1, max_degree + 1)

for degree in degrees:

# regression
transform = PolynomialFeatures(degree=degree).fit_transform
regression.fit(transform(X_train), y_train)

# maximum coefficient
max_coeffs[degree - 1] = np.max(np.abs(regression.coef_))

# plot errors
fig, ax = plt.subplots()
ax.semilogy(degrees, max_coeffs, '-om',)
ax.set_xlabel('degree')
ax.set_ylabel('maximum coefficient')
plt.show()
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In linear regression and most other method one minimizes a loss function expressing the distance between the hy-
pothesis 𝑓approx and the targets in the training data:

1
𝑛

𝑛
∑
𝑙=1

(𝑓approx(𝑥𝑙) − 𝑦𝑙)
2 → min

𝑎1,…,𝑎𝜇
,

where 𝑎1, … , 𝑎𝜇 are the parameters of the model. If we add the squares of the parameters to this function, then we
not only force the hypothesis to be close to the data, but we also ensure that the parameters cannot become too large.
As we mentioned above, large parameters correlate with overfitting. Modifying a minimization problem in this way
is known as regularization.
To control the trade-off between data fitting and regularization, we introduce a regularization parameter 𝛼 ≥ 0:

1
𝑛

𝑛
∑
𝑙=1

(𝑓approx(𝑥𝑙) − 𝑦𝑙)
2 + 𝛼 1

𝜇
𝜇

∑
𝜅=1

𝑎2
𝜅 → min

𝑎1,…,𝑎𝜇
.

The regularization parameter 𝛼 is an additional hyperparameter of the model.
There are several other penalty terms, which will be discussed below. Adding squares of the model parameters is the
simplest version from the view of computational efficiency. Linear regression regularized this way is also known as
Ridge regression.
Scikit-Learn implements Ridge regression in the linear_model module: Ridge167.

degree = 20 # degree for polynomial regression
alpha = 1e-5 # regularization parameter

# regression
regression = lm.Ridge(alpha=alpha)
transform = PolynomialFeatures(degree=degree).fit_transform
regression.fit(transform(X), y)

(continues on next page)
167 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
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# get hypothesis for plotting
y_reg = regression.predict(transform(x.reshape(-1, 1)))

# plot truth, data, hypothesis
fig, ax = plt.subplots()
ax.plot(x, truth(x), '-b', label='truth')
ax.plot(X.reshape(-1), y, 'or', markersize=3, label='data')
ax.plot(x, y_reg, '-g', label='model')
ax.legend()
plt.show()

In our exmaple we know the underlying truth. Thus, we may compare predictions from the regularized model to the
truth for different regularization parameters.

degree = 20 # degree for polynomial regression
alphas = [2 ** (-k) for k in range(5, 40)] # regularization parameters

errors = np.zeros(len(alphas))

for idx, alpha in enumerate(alphas):

# regression
regression = lm.Ridge(alpha=alpha)
transform = PolynomialFeatures(degree=degree).fit_transform
regression.fit(transform(X_train), y_train)

# get mean squared error for equispaced grid (same as for plotting)
y_reg = regression.predict(transform(x.reshape(-1, 1)))
y_true = truth(x)
errors[idx] = metrics.mean_squared_error(y_reg, y_true)

# plot errors
(continues on next page)
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fig, ax = plt.subplots()
ax.semilogx(alphas, errors, '-m')
ax.set_xlabel('$\\alpha$')
ax.set_ylabel('error')
plt.show()

For 𝛼 close to zero overfitting leads to large errors. For large 𝛼 model parameters are close to zero, which leads to
very bad data fitting and, thus, to large errors, too (overregularization). Between both ends there is a local minimum,
yielding the optimal 𝛼.
In practice we do not know the truth. But analogously to detecting overfitting we may find values for 𝛼, where
overfitting vanishes. We simply have to start with very small 𝛼 leading to overfitting. Then we increase 𝛼 until
training and validation data yield similar mean squared errors when compared to the hypothesis.

degree = 20 # degree for polynomial regression
alphas = [2 ** (-k) for k in range(5, 40)] # regularization parameters

train_errors = np.zeros(len(alphas))
val_errors = np.zeros(len(alphas))

for idx, alpha in enumerate(alphas):

# regression
regression = lm.Ridge(alpha=alpha)
transform = PolynomialFeatures(degree=degree).fit_transform
regression.fit(transform(X_train), y_train)

# predictions on subsets
y_train_pred = regression.predict(transform(X_train))
y_val_pred = regression.predict(transform(X_val))

(continues on next page)
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# errors
train_errors[idx] = metrics.mean_squared_error(y_train_pred, y_train)
val_errors[idx] = metrics.mean_squared_error(y_val_pred, y_val)

# plot errors
fig, (ax_left, ax_right) = plt.subplots(1, 2, figsize=(12, 4))
ax_left.semilogx(alphas, train_errors, '-r', label='errors on training set')
ax_left.semilogx(alphas, val_errors, '-y', label='errors on validation set')
ax_left.set_xlabel('$\\alpha$')
ax_left.set_ylabel('mean squared error')
ax_left.legend()
ax_right.semilogx(alphas, val_errors / train_errors, '-m')
ax_right.set_xlabel('$\\alpha$')
ax_right.set_ylabel('ratio of mean squared errors')
plt.show()

# print errors
print(' training validation')
print(np.stack((train_errors, val_errors), axis=1))

training validation
[[0.07326089 0.10832048]
[0.07075901 0.10408418]
[0.06954605 0.10167556]
[0.06871829 0.10026634]
[0.06773215 0.09926158]
[0.06630425 0.09848887]
[0.06443948 0.09830744]
[0.06251508 0.09948163]
[0.06100575 0.10238347]
[0.06000687 0.10645098]
[0.05927804 0.1108613 ]
[0.05859948 0.11495806]
[0.05785644 0.11780122]
[0.0569407 0.11823884]
[0.05579468 0.11589774]
[0.05456294 0.11190603]
[0.05352215 0.10822899]
[0.05277435 0.10602967]
[0.05218768 0.10528655]
[0.05163829 0.10579957]
[0.05114153 0.10762232]
[0.0507495 0.11063545]
[0.05043095 0.11450807]
[0.05011846 0.11923569]

(continues on next page)
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[0.04980821 0.12506099]
[0.0495608 0.13166127]
[0.04941321 0.1379058 ]
[0.0493391 0.14279624]
[0.04929224 0.14614947]
[0.04923822 0.14819351]
[0.04915017 0.14892117]
[0.04899594 0.1478916 ]
[0.04873589 0.14449768]
[0.04834478 0.13855119]
[0.04785498 0.13111712]]

Note that this way only values for 𝛼 leading to overfitting can be detected. But overregularization does not lead to
large differences in the errors. Thus overregularization is indistinguishable from good fitting if only errors on training
and validation sets are compared.

6.2.4 Example: Scaling is Important

Consider regularized linear regression (Ridge regression) with two features. This example is just for illustration; never
use regularization if your model has only three parameters! Values of feature 1 are between 0 and 1, values of feature
2 are between 1900 and 2100. With

𝑓approx(𝑥) = 𝑎0 + 𝑎1 𝑥(1) + 𝑎2 𝑥(2)

we have to solve
1
𝑛

𝑛
∑
𝑙=1

(𝑓approx(𝑥𝑙) − 𝑦𝑙)
2 + 𝛼 1

3 (𝑎2
0 + 𝑎2

1 + 𝑎2
2) → min

𝑎0,𝑎1,𝑎2
,

where (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) are the training samples and 𝛼 is the regularization parameter.
If the target variable 𝑦 is small, say between -1 and 1, then 𝑎1 is likely to take a value between -1 and 1, too. But
𝑎2 will be much smaller than 1, say between − 1

2000 and 1
2000 . Thus, 𝑎2 has almost no influence on the penalty

term for regularization. The result is, that feature 1 is suppressed by regularization (𝑎1 much smaller than without
regularization) and feature 2 is left untouched (𝑎2 of same magnitude as without regularization).
Such imbalance should be avoided. Of course, one feature might be more relevant for explaining the data than other
features. But here the imbalance stems from penalizing all features with the same factor 𝛼 regardless of their range
of values.

6.2.5 Other Regularization Methods

Next to adding squares of the model parameters there are several other choices for the penalty. Here we only consider
two of them.

• LASSO (Least Absolute Shrinkage and Selection Operator):

𝛼 1
𝜇

𝜇
∑
𝜅=1

|𝑎𝜅|.

• Elastic Net:

𝛼 1
𝜇 (𝛽

𝜇
∑
𝜅=1

|𝑎𝜅| + (1 − 𝛽)
𝜇

∑
𝜅=1

𝑎2
𝜅) ,

where 𝛽 ∈ [0, 1] is a further hyperparameter, also known as mixing parameter. Solving minimization problems with
LASSO penalty is numerically more challenging, but leads to hypotheses with only very few non-zero parameters
(this is not obvious, but can rigorously be proven). Elastic Net penalties are a mixture of the standard penalty and the
LASSO penalty, yielding numerically more tractable minimization problems, but still enforcing many parameters to
be zero.
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Regularized linear regression with LASSO and Elastic Net penalties is available in Scikit-Learn’s linear_model
module: Lasso168, ElasticNet169.

6.3 Worked Example: House Prices I

To test techniques for supervised learning discussed so far we train a model for predicting house prices in Germany.
Inputs are properties of a house and of the plot of land it has been built on. Output is the selling price.
Training data exists in form of advertisements on specialized websites for finding a buyer for a house. In principle
we could scrape data from such a website, but usually its not allowed by the website operator and we would have to
write lots of code. Erdogan Seref170 (unreachable in 2023) already did this job at www.immobilienscout24.de171 and
published the data set at www.kaggle.com172 (unreachable in 2023) under a Attribution-NonCommercial-ShareAlike
4.0 International License173.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import sklearn.linear_model as linear_model
import sklearn.metrics as metrics
import sklearn.model_selection as model_selection
import sklearn.preprocessing as preprocessing
import sklearn.pipeline as pipeline

data_path = 'german_housing.csv'

6.3.1 The Data Set

At first we load the data set and try to get an overview of features and data quality.

data = pd.read_csv(data_path)

If a data frame has many columns Pandas by default does not show all columns. But we want to see all. Thus, we
have to adjust the number of columns shown by setting corresponding option174 to None (that is, unlimited).

pd.set_option('display.max_columns', None)
data.head(10)

Unnamed: 0 Price Type Living_space Lot \
0 0 498000.0 Multiple dwelling 106.00 229.0
1 1 495000.0 Mid-terrace house 140.93 517.0
2 2 749000.0 Farmhouse 162.89 82.0
3 3 259000.0 Farmhouse 140.00 814.0
4 4 469000.0 Multiple dwelling 115.00 244.0
5 5 1400000.0 Mid-terrace house 310.00 860.0
6 6 3500000.0 Duplex 502.00 5300.0
7 7 630000.0 Duplex 263.00 406.0
8 8 364000.0 Duplex 227.00 973.0

(continues on next page)
168 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
169 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html
170 https://www.kaggle.com/scriptsultan
171 https://www.immobilienscout24.de
172 https://www.kaggle.com/scriptsultan/german-house-prices
173 https://creativecommons.org/licenses/by-nc-sa/4.0
174 https://pandas.pydata.org/pandas-docs/stable/user_guide/options.html#frequently-used-options
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9 9 1900000.0 Duplex 787.00 933.0

Usable_area Free_of_Relation Rooms Bedrooms Bathrooms Floors \
0 NaN 01.10.2020 5.5 3.0 1.0 2.0
1 20.00 01.01.2021 6.0 3.0 2.0 NaN
2 37.62 01.07.2020 5.0 3.0 2.0 4.0
3 NaN nach Vereinbarung 4.0 NaN 2.0 2.0
4 NaN sofort 4.5 2.0 1.0 NaN
5 100.00 sofort 8.0 NaN NaN 3.0
6 163.16 nach Absprache 13.0 NaN 4.0 NaN
7 118.00 01.04.2020 10.0 NaN NaN 3.0
8 83.00 nach Absprache 10.0 4.0 4.0 2.0
9 NaN NaN 30.0 NaN NaN 3.0

Year_built Furnishing_quality Year_renovated Condition \
0 2005.0 normal NaN modernized
1 1994.0 basic NaN modernized
2 2013.0 NaN NaN dilapidated
3 1900.0 basic 2000.0 fixer-upper
4 1968.0 refined 2019.0 refurbished
5 1969.0 basic NaN maintained
6 2004.0 basic NaN dilapidated
7 1989.0 basic NaN modernized
8 1809.0 normal 2015.0 modernized
9 1920.0 basic NaN modernized

Heating Energy_source Energy_certificate \
0 central heating Gas available
1 stove heating NaN not required by law
2 stove heating Fernwärme, Bioenergie available
3 central heating Strom available
4 central heating Öl available
5 NaN Öl available
6 stove heating Erdwärme, Holzpellets available
7 stove heating Gas available
8 central heating Strom available
9 stove heating Gas, Fernwärme-Dampf available

Energy_certificate_type Energy_consumption Energy_efficiency_class \
0 demand certificate NaN D
1 NaN NaN NaN
2 demand certificate NaN B
3 demand certificate NaN G
4 demand certificate NaN F
5 consumption certificate NaN NaN
6 consumption certificate 35.9 A
7 demand certificate NaN E
8 consumption certificate 183.1 F
9 demand certificate NaN D

State City Place Garages \
0 Baden-Württemberg Bodenseekreis Bermatingen 2.0
1 Baden-Württemberg Konstanz (Kreis) Engen 7.0
2 Baden-Württemberg Esslingen (Kreis) Ostfildern 1.0
3 Baden-Württemberg Waldshut (Kreis) Bonndorf im Schwarzwald 1.0
4 Baden-Württemberg Esslingen (Kreis) Leinfelden-Echterdingen 1.0
5 Baden-Württemberg Stuttgart Süd 2.0
6 Baden-Württemberg Göppingen (Kreis) Wangen 7.0
7 Baden-Württemberg Freiburg im Breisgau Munzingen 2.0
8 Baden-Württemberg Enzkreis Neuenbürg 8.0
9 Baden-Württemberg Mannheim Rheinau 12.0

(continues on next page)
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Garagetype
0 Parking lot
1 Parking lot
2 Garage
3 Garage
4 Garage
5 Garage
6 Parking lot
7 Garage
8 Parking lot
9 Parking lot

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10552 entries, 0 to 10551
Data columns (total 26 columns):
# Column Non-Null Count Dtype

--- ------ -------------- -----
0 Unnamed: 0 10552 non-null int64
1 Price 10552 non-null float64
2 Type 10150 non-null object
3 Living_space 10552 non-null float64
4 Lot 10552 non-null float64
5 Usable_area 5568 non-null float64
6 Free_of_Relation 6983 non-null object
7 Rooms 10552 non-null float64
8 Bedrooms 6878 non-null float64
9 Bathrooms 8751 non-null float64
10 Floors 7888 non-null float64
11 Year_built 9858 non-null float64
12 Furnishing_quality 7826 non-null object
13 Year_renovated 5349 non-null float64
14 Condition 10229 non-null object
15 Heating 9968 non-null object
16 Energy_source 9325 non-null object
17 Energy_certificate 9797 non-null object
18 Energy_certificate_type 7026 non-null object
19 Energy_consumption 2433 non-null float64
20 Energy_efficiency_class 5733 non-null object
21 State 10551 non-null object
22 City 10551 non-null object
23 Place 10262 non-null object
24 Garages 8592 non-null float64
25 Garagetype 8592 non-null object

dtypes: float64(12), int64(1), object(13)
memory usage: 2.1+ MB

We should drop irrelevant columns and adjust data types.
• Unnamed: 0: Seems to be an integer index. We don’t need it, so drop it.
• Price: This is our target variable.
• Type: An important column, because house prices are likely to depend on the type of house. We should
convert this to categorical type.

• Living_space and Lot: Important features, keep them.
• Usable_area: Likely to have influence on the selling price, but available only for half the samples. If we
want to use this for regression, we would have to drop half the training samples. Alternatively we could impute
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values, but it’s very hard to guess usable area from other features. We should drop the column.
• Free_of_Relation: Not related to the selling price. Drop it.
• Rooms, Bedrooms, Bathrooms: Should have influence on prices, but not available for all samples. For
the moment we keep all three columns. Later we should have a look on correlations between the three columns
and possibly only keep the first one, which is available for all samples.

• Floors: Important feature, keep it.
• Year_built: Important feature, keep it.
• Furnishing_quality: Important, convert to categorical and keep.
• Year_renovated: Important, but half the data is missing. There is good chance that missing values indicate
that there the house has not been renovated until today. Thus, a reasonable fill value is the year of construction.

• Condition: Important, convert to categorical and keep.
• Heating and Energy_source: Could be important, convert to categorical and keep.
• Energy_certificate, Energy_certificate_type, Energy_consumption: The first con-
tains more or less only the value 'available' (since energy certificates are required by law). The second
is irrelevant and the third is missing for most samples. Drop them all.

• Energy_efficiency_class: Likely to have influence on the selling price, although classification pro-
cedure is very unreliable in practice. Keep and convert to categorical.

• State, City, Place: Geolocation surely influences selling prices. But it’s hard to use location data for
regression. For the moment we keep these columns.

• Garages: Could be important, keep.
• Garagetype: If we keep Garages then we also have to keep this column. Convert to categorical and
rename to Garage_type to fit naming convention used for the other columns.

data = data.drop(columns=['Unnamed: 0', 'Usable_area', 'Free_of_Relation',
'Energy_certificate', 'Energy_certificate_type',

↪'Energy_consumption'])

data['Type'] = data['Type'].astype('category')
data['Furnishing_quality'] = data['Furnishing_quality'].astype('category')
data['Condition'] = data['Condition'].astype('category')
data['Heating'] = data['Heating'].astype('category')
data['Energy_source'] = data['Energy_source'].astype('category')
data['Energy_efficiency_class'] = data['Energy_efficiency_class'].astype('category

↪')
data['Garagetype'] = data['Garagetype'].astype('category')

data = data.rename(columns={'Garagetype': 'Garage_type'})

nan_mask = data['Year_renovated'].isna()
data.loc[nan_mask, 'Year_renovated'] = data.loc[nan_mask, 'Year_built']

Categorical columns Furnishing_quality, Condition and Energy_efficiency_class should have
a natural ordering, which should be represented by the data type.

print(data['Furnishing_quality'].cat.categories)
print(data['Condition'].cat.categories)
print(data['Energy_efficiency_class'].cat.categories)

Index(['basic', 'luxus', 'normal', 'refined'], dtype='object')
Index(['as new', 'by arrangement', 'dilapidated', 'first occupation',

'first occupation after refurbishment', 'fixer-upper', 'maintained',
'modernized', 'refurbished', 'renovated'],

(continues on next page)
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dtype='object')
Index([' A ', ' A+ ', ' B ', ' C ', ' D ', ' E ', ' F ', ' G ', ' H '], dtype=

↪'object')

We should rename same categories and sort them as good as possible.

data['Furnishing_quality'] = data['Furnishing_quality'] \
.cat.rename_categories({'luxus': 'luxury'}) \
.cat.reorder_categories(['basic', 'normal', 'refined', 'luxury'])

data['Condition'] = data['Condition'].cat.reorder_categories([
'first occupation',
'first occupation after refurbishment',
'as new',
'maintained',
'renovated',
'modernized',
'refurbished',
'by arrangement',
'fixer-upper',
'dilapidated'

])

data['Energy_efficiency_class'] = data['Energy_efficiency_class'] \
.cat.rename_categories({

' A ': 'A',
' A+ ': 'A+',
' B ': 'B',
' C ': 'C',
' D ': 'D',
' E ': 'E',
' F ': 'F',
' G ': 'G',
' H ': 'H'

}) \
.cat.reorder_categories(['A+', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H'])

Now let’s see how many complete samples we have.

len(data.dropna())

1591

That’s very few. So we should drop some columns with many missing values.

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10552 entries, 0 to 10551
Data columns (total 20 columns):
# Column Non-Null Count Dtype

--- ------ -------------- -----
0 Price 10552 non-null float64
1 Type 10150 non-null category
2 Living_space 10552 non-null float64
3 Lot 10552 non-null float64
4 Rooms 10552 non-null float64
5 Bedrooms 6878 non-null float64

(continues on next page)
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6 Bathrooms 8751 non-null float64
7 Floors 7888 non-null float64
8 Year_built 9858 non-null float64
9 Furnishing_quality 7826 non-null category
10 Year_renovated 10211 non-null float64
11 Condition 10229 non-null category
12 Heating 9968 non-null category
13 Energy_source 9325 non-null category
14 Energy_efficiency_class 5733 non-null category
15 State 10551 non-null object
16 City 10551 non-null object
17 Place 10262 non-null object
18 Garages 8592 non-null float64
19 Garage_type 8592 non-null category

dtypes: category(7), float64(10), object(3)
memory usage: 1.1+ MB

Energy_efficiency_class is relatively unreliable and not too important for selling prices.

len(data.drop(columns=['Energy_efficiency_class']).dropna())

2615

Better, but not good. The Bedrooms column has manymissing values, too, and it’s likely to be correlated to Rooms.
So let’s look at correlations between Rooms, Bedrooms, Bathrooms, Floors.

sns.pairplot(data[['Rooms', 'Bedrooms', 'Bathrooms', 'Floors']], plot_kws={"s": 5}
↪)

plt.show()

6.3. Worked Example: House Prices I 147



Data Science and Artificial Intelligence for Undergraduates
Volume 2: Data Visualization, Supervised Learning

Floors is not correlated to the other columns, so keep it. Bedrooms show correlation to Rooms and Bath-
rooms, so drop Bedrooms. Bathroom shows some correlation to Rooms. Wether to drop Bathrooms should
be decided by the increase in sample counts.

len(data.drop(columns=['Energy_efficiency_class', 'Bedrooms']).dropna())

3174

len(data.drop(columns=['Energy_efficiency_class', 'Bedrooms', 'Bathrooms']).
↪dropna())

3479

We should keep Bathrooms, because dropping it only yields 300 more samples while neglecting possibly important
information. Note that the number of bath rooms can be regarded as a measure for overall furnishing quality. Thus,
there should be some correlation to Furnishing_quality.

data.groupby('Furnishing_quality')['Bathrooms'].mean()
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Furnishing_quality
basic 2.207496
normal 2.363720
refined 1.826739
luxury 2.778761
Name: Bathrooms, dtype: float64

In addition, judging about furnishing quality of a house is highly subjective. Thus, we should drop the column to get
more samples without missing data.

len(data.drop(columns=['Energy_efficiency_class', 'Bedrooms', 'Furnishing_quality
↪']).dropna())

4526

The Energy_source is another candidate for dropping, because it has more than 1000 missing values and its
influence on selling prices should be rather low.

for cat in data['Energy_source'].cat.categories:
print(cat)

Bioenergie
Erdgas leicht
Erdgas leicht, Erdgas schwer
Erdgas schwer
Erdgas schwer, Bioenergie
Erdgas schwer, Holz
Erdwärme
Erdwärme, Fernwärme
Erdwärme, Gas
Erdwärme, Holzpellets
Erdwärme, Solar
Erdwärme, Solar, Holzpellets, Holz
Erdwärme, Solar, Umweltwärme
Erdwärme, Strom
Erdwärme, Umweltwärme
Fernwärme
Fernwärme, Bioenergie
Fernwärme, Flüssiggas
Fernwärme, Nahwärme, KWK fossil
Fernwärme-Dampf
Flüssiggas
Flüssiggas, Holz
Gas
Gas, Bioenergie
Gas, Fernwärme
Gas, Fernwärme-Dampf
Gas, Holz
Gas, Holz-Hackschnitzel
Gas, KWK fossil
Gas, Kohle, Holz
Gas, Strom
Gas, Strom, Holz
Gas, Strom, Kohle, Holz
Gas, Wasserenergie
Gas, Öl
Gas, Öl, Holz
Gas, Öl, Kohle
Gas, Öl, Kohle, Holz

(continues on next page)
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Gas, Öl, Strom
Holz
Holz, Bioenergie
Holz-Hackschnitzel
Holzpellets
Holzpellets, Gas
Holzpellets, Gas, Öl
Holzpellets, Holz
Holzpellets, Holz-Hackschnitzel
Holzpellets, Kohle, Holz
Holzpellets, Strom
Holzpellets, Öl
KWK erneuerbar
KWK fossil
KWK regenerativ
Kohle
Kohle, Holz
Kohle/Koks
Nahwärme
Solar
Solar, Bioenergie
Solar, Erdgas schwer
Solar, Gas
Solar, Gas, Holz
Solar, Gas, Strom
Solar, Gas, Strom, Holz
Solar, Gas, Wasserenergie
Solar, Gas, Öl
Solar, Gas, Öl, Holz
Solar, Holz
Solar, Holz-Hackschnitzel
Solar, Holzpellets
Solar, Holzpellets, Holz
Solar, Holzpellets, Strom
Solar, Holzpellets, Öl
Solar, Strom
Solar, Strom, Bioenergie
Solar, Umweltwärme
Solar, Öl
Solar, Öl, Bioenergie
Solar, Öl, Holz
Solar, Öl, Holz-Hackschnitzel
Solar, Öl, Strom
Solar, Öl, Strom, KWK fossil
Strom
Strom, Bioenergie
Strom, Flüssiggas
Strom, Holz
Strom, Holz-Hackschnitzel
Strom, Kohle
Strom, Kohle, Holz
Strom, Umweltwärme
Umweltwärme
Wasserenergie
Windenergie
Wärmelieferung
Öl
Öl, Bioenergie
Öl, Fernwärme
Öl, Holz
Öl, Kohle

(continues on next page)
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Öl, Kohle, Holz
Öl, Strom
Öl, Strom, Holz
Öl, Strom, Kohle, Holz
Öl, Umweltwärme

Values are very diverse and hard to preprocess for regression. We would have to convert the column to several boolean
columns. In addition, some grouping would be necessary (Holz is a subcategory of Bioenergie and so on).

len(data.drop(columns=['Energy_efficiency_class', 'Bedrooms', 'Furnishing_quality
↪', 'Energy_source']).dropna())

4854

Now we have almost 5000 complete samples. Should be a good compromise between completeness and level of
detail.

data = data.drop(columns=['Energy_efficiency_class', 'Bedrooms', 'Furnishing_
↪quality', 'Energy_source'])

data = data.dropna()

6.3.2 Outliers and Further Preprocessing

Now that we have a cleaned data set we should remove outliers. The simplest method of detecting outliers is to look
at the ranges of all feature. With describe we get a first overview for numerical features.

data.describe()

Price Living_space Lot Rooms Bathrooms \
count 4.854000e+03 4854.000000 4854.000000 4854.000000 4854.000000
mean 5.739566e+05 209.305740 1240.636904 7.051504 2.316028
std 5.880211e+05 118.252688 3806.518099 3.834865 1.595327
min 0.000000e+00 0.000000 0.000000 1.000000 0.000000
25% 2.800000e+05 135.000000 401.000000 5.000000 1.000000
50% 4.400000e+05 180.000000 675.000000 6.000000 2.000000
75% 6.850000e+05 248.000000 1042.000000 8.000000 3.000000
max 1.300000e+07 1742.240000 143432.000000 84.000000 26.000000

Floors Year_built Year_renovated Garages
count 4854.000000 4854.000000 4854.000000 4854.000000
mean 2.256696 1964.252369 1995.626700 2.518541
std 0.776769 49.065052 35.389067 2.719901
min 0.000000 1430.000000 1430.000000 1.000000
25% 2.000000 1950.000000 1991.000000 1.000000
50% 2.000000 1974.000000 2008.000000 2.000000
75% 3.000000 1997.750000 2016.000000 3.000000
max 8.000000 2021.000000 2206.000000 65.000000
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Price Column

sns.histplot(data['Price'])
plt.show()

There are only very few high prices and price distribution concentrates on low prices. If the target variable has wide
range, but most samples concentrate on a small portion of the range, then ‘learning’ the target is much more difficult
than for more uniformly distributed data.
A common trick is to use nonlinear scaling. Especially for market prices it is known from experience that they follow
a log-normal distribution175, that is, after applying the logarithm we see a normal distribution. Before applying the
logarithm we should drop samples with zeros in the Price column to avoid undefined results. A price of zero
indicates that the seller did not provide a price in the advertisement. Thus, dropping such sample even is a good idea
if we wouldn’t want to apply the logarithm.

data = data.loc[data['Price'] > 0, :]
sns.histplot(np.log(data['Price'].to_numpy()))
plt.show()

175 https://en.wikipedia.org/wiki/Log-normal_distribution
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There seem to be same very small values.

data.loc[data['Price'] <= np.exp(7), :]

Price Type Living_space Lot Rooms Bathrooms Floors \
6987 1.0 Duplex 459.0 2742.0 23.0 8.0 3.0

Year_built Year_renovated Condition Heating \
6987 1957.0 1957.0 refurbished stove heating

State City Place Garages Garage_type
6987 Nordrhein-Westfalen Märkischer Kreis Altena 1.0 Garage

Those samples should be dropped because house prices below e7 ≈ 1000 EUR are very uncommon.

data['Price'] = np.log(data['Price'].to_numpy())
data = data.loc[data['Price'] > 7, :]
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Living_space Column

sns.histplot(data['Living_space'])
plt.show()

Same here as for Price.

data = data.loc[data['Living_space'] > 0, :]
sns.histplot(np.log(data['Living_space'].to_numpy()))
plt.show()
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data['Living_space'] = np.log(data['Living_space'].to_numpy())

Lot Column

sns.histplot(data['Lot'])
plt.show()
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Same here as for Price again.

data = data.loc[data['Lot'] > 0, :]
sns.histplot(np.log(data['Lot'].to_numpy()))
plt.show()
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data.loc[data['Lot'] <= np.exp(2), :]

Price Type Living_space Lot Rooms Bathrooms \
722 11.492723 Mid-terrace house 4.491441 0.25 4.0 1.0
1876 12.860362 Residential property 5.342334 1.00 5.0 1.0
6435 11.707834 Duplex 5.056246 1.96 5.0 2.0
7887 12.594731 Duplex 5.857933 1.00 8.0 5.0

Floors Year_built Year_renovated Condition \
722 3.0 1900.0 1900.0 modernized
1876 1.0 2019.0 2019.0 first occupation
6435 3.0 1905.0 1981.0 refurbished
7887 3.0 1965.0 2019.0 modernized

Heating State City Place \
722 wood-pellet heating Baden-Württemberg Main-Tauber-Kreis Ahorn
1876 stove heating Bayern Regensburg (Kreis) Hemau
6435 stove heating Nordrhein-Westfalen Höxter (Kreis) Höxter
7887 stove heating Rheinland-Pfalz Neuwied (Kreis) Dierdorf

Garages Garage_type
722 1.0 Garage
1876 1.0 Outside parking lot
6435 3.0 Outside parking lot
7887 1.0 Outside parking lot

Lot size below e2 < 8 m² is very unlikely.

data['Lot'] = np.log(data['Lot'].to_numpy())
data = data.loc[data['Lot'] > 2, :]

Rooms Column

sns.histplot(data['Rooms'])
plt.show()
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data.loc[data['Rooms'] >= 30, :]

Price Type Living_space Lot Rooms \
1863 14.430696 Residential property 6.371612 7.578145 41.0
4322 14.346139 Single dwelling 6.745236 7.783224 30.0
4346 15.150512 Duplex 6.690842 6.311735 36.0
4557 12.896717 Duplex 6.653534 7.970395 36.0
4614 13.906265 Duplex 7.306531 8.234034 84.0
4615 13.906265 Duplex 7.306531 8.234034 84.0
6895 13.639966 Duplex 6.516193 7.090077 32.0
7397 13.963931 Duplex 7.057898 6.952729 45.0
7904 13.805460 Duplex 6.682109 8.505121 35.0
8705 14.506155 Bungalow 7.003065 8.575462 40.0

Bathrooms Floors Year_built Year_renovated \
1863 21.0 3.0 1907.0 2019.0
4322 6.0 3.0 2009.0 2009.0
4346 13.0 5.0 1961.0 2016.0
4557 15.0 3.0 1970.0 2000.0
4614 24.0 5.0 1991.0 2018.0
4615 24.0 5.0 1989.0 2018.0
6895 8.0 3.0 2003.0 2003.0
7397 20.0 4.0 1950.0 1950.0
7904 13.0 3.0 2004.0 2019.0
8705 0.0 3.0 2012.0 2012.0

Condition Heating \
1863 maintained stove heating
4322 dilapidated stove heating
4346 modernized stove heating
4557 maintained stove heating
4614 modernized stove heating

(continues on next page)
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4615 modernized stove heating
6895 dilapidated electric heating
7397 maintained heat pump
7904 first occupation after refurbishment stove heating
8705 fixer-upper heat pump

State City Place Garages \
1863 Bayern Eichstätt (Kreis) Dollnstein 16.0
4322 Hessen Limburg-Weilburg (Kreis) Hadamar 4.0
4346 Hessen Frankfurt am Main Rödelheim 3.0
4557 Mecklenburg-Vorpommern Demmin (Kreis) Rosenow 1.0
4614 Mecklenburg-Vorpommern Demmin (Kreis) Kruckow 16.0
4615 Mecklenburg-Vorpommern Demmin (Kreis) Kruckow 16.0
6895 Nordrhein-Westfalen Gelsenkirchen Hassel 8.0
7397 Nordrhein-Westfalen Gelsenkirchen Horst 12.0
7904 Rheinland-Pfalz Trier-Saarburg (Kreis) Saarburg 15.0
8705 Rheinland-Pfalz Vulkaneifel (Kreis) Gerolstein 40.0

Garage_type
1863 Outside parking lot
4322 Outside parking lot
4346 Garage
4557 Outside parking lot
4614 Outside parking lot
4615 Outside parking lot
6895 Parking lot
7397 Outside parking lot
7904 Outside parking lot
8705 Parking lot

There are only very few sample with high number of rooms. There is no chance to get good predictions from those
few samples.

data = data.loc[data['Rooms'] < 30, :]

Bathrooms Column

sns.histplot(data['Bathrooms'])
plt.show()
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data.loc[data['Bathrooms'] >= 15, :]

Price Type Living_space Lot Rooms Bathrooms \
3270 15.264780 Duplex 7.462927 7.693605 26.0 26.0
6006 13.457406 Bungalow 6.514713 8.750366 25.0 25.0
7224 14.038654 Duplex 6.476972 6.063785 18.0 18.0
10088 12.037654 Multiple dwelling 4.499810 5.777652 4.0 22.0

Floors Year_built Year_renovated Condition Heating \
3270 4.0 1994.0 1994.0 modernized heat pump
6006 3.0 1874.0 2016.0 renovated cogeneration units
7224 4.0 1962.0 1962.0 modernized stove heating
10088 2.0 1961.0 2000.0 modernized heat pump

State City Place \
3270 Brandenburg Teltow-Fläming (Kreis) Blankenfelde-Mahlow
6006 Niedersachsen Lüchow-Dannenberg (Kreis) Küsten
7224 Nordrhein-Westfalen Herford (Kreis) Herford
10088 Schleswig-Holstein Schleswig-Flensburg (Kreis) Tarp

Garages Garage_type
3270 26.0 Duplex lot
6006 30.0 Outside parking lot
7224 5.0 Garage
10088 1.0 Outside parking lot

data = data.loc[data['Bathrooms'] < 15, :]
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Floors Column

sns.histplot(data['Floors'])
plt.show()

Nothing to do here.

Year_built Column

sns.histplot(data['Year_built'])
plt.show()
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data.loc[data['Year_built'] <= 1500, :]

Price Type Living_space Lot Rooms Bathrooms \
1311 14.580978 Corner house 6.182085 11.522876 13.0 7.0
1458 14.077875 Duplex 6.522093 6.361302 19.0 9.0
8174 12.203570 Bungalow 5.703782 5.634790 10.0 2.0

Floors Year_built Year_renovated Condition Heating \
1311 3.0 1430.0 1430.0 fixer-upper stove heating
1458 3.0 1500.0 2014.0 modernized underfloor heating
8174 4.0 1492.0 1492.0 refurbished stove heating

State City Place \
1311 Bayern Berchtesgadener Land (Kreis) Marktschellenberg
1458 Bayern Ansbach Stadt
8174 Rheinland-Pfalz Bad Kreuznach (Kreis) Bad Kreuznach

Garages Garage_type
1311 2.0 Carport
1458 9.0 Carport
8174 2.0 Garage

data = data.loc[data['Year_built'] > 1500, :]

Values above 2020 obviously are wrong (data set is from 2020).

data.loc[data['Year_built'] > 2020, :]

Price Type Living_space Lot Rooms Bathrooms \
2437 13.623139 Single dwelling 4.897840 5.609472 4.5 1.0

(continues on next page)
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2515 13.704579 Single dwelling 4.875197 5.796058 4.0 1.0
2516 13.704579 Single dwelling 4.875197 5.963579 4.0 1.0
2519 13.928839 Mid-terrace house 4.962845 6.061457 4.5 2.0
2520 13.981025 Mid-terrace house 4.962845 6.165418 4.5 2.0
2521 13.652992 Single dwelling 4.897840 5.700444 4.5 1.0

Floors Year_built Year_renovated Condition Heating State \
2437 3.0 2021.0 2021.0 dilapidated stove heating Bayern
2515 3.0 2021.0 2021.0 dilapidated stove heating Bayern
2516 3.0 2021.0 2021.0 dilapidated stove heating Bayern
2519 3.0 2021.0 2021.0 dilapidated stove heating Bayern
2520 3.0 2021.0 2021.0 dilapidated stove heating Bayern
2521 3.0 2021.0 2021.0 dilapidated stove heating Bayern

City Place Garages Garage_type
2437 Rosenheim (Kreis) Kolbermoor 2.0 Parking lot
2515 Ebersberg (Kreis) Zorneding 2.0 Parking lot
2516 Ebersberg (Kreis) Zorneding 2.0 Parking lot
2519 Rosenheim (Kreis) Kolbermoor 2.0 Parking lot
2520 Rosenheim (Kreis) Kolbermoor 2.0 Parking lot
2521 Rosenheim (Kreis) Kolbermoor 2.0 Parking lot

data = data.loc[data['Year_built'] <= 2020, :]

To get a better distribution of the samples over the range, we again apply a logarithmic transform.

data.loc[:, 'Year_built'] = np.log(2021 - data['Year_built'].to_numpy())
sns.histplot(data['Year_built'])
plt.show()
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Year_renovated Column

sns.histplot(data['Year_renovated'])
plt.show()

There seem to be renovations before 1900, which seems somewhat strange. But remember that we filled missing
values with values from Year_built. Values above 2020 obviously are wrong.

data.loc[data['Year_renovated'] > 2020, :]

Price Type Living_space Lot Rooms Bathrooms \
7803 12.992255 Duplex 6.969791 6.818924 26.0 13.0
9324 12.971540 Mid-terrace house 5.075174 6.486161 6.0 2.0

Floors Year_built Year_renovated Condition Heating \
7803 2.0 4.025352 2026.0 by arrangement heat pump
9324 3.0 4.727388 2206.0 modernized heat pump

State City Place Garages \
7803 Rheinland-Pfalz Trier-Saarburg (Kreis) Reinsfeld 15.0
9324 Sachsen Zwickau Nordvorstadt 2.0

Garage_type
7803 Parking lot
9324 Outside parking lot

data = data.loc[data['Year_renovated'] <= 2020, :]

data.loc[:, 'Year_renovated'] = np.log(2021 - data['Year_renovated'].to_numpy())
sns.histplot(data['Year_renovated'])

(continues on next page)
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plt.show()

Garages Column

sns.histplot(data['Garages'])
plt.show()
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data.loc[data['Garages'] >= 20, :]

Price Type Living_space Lot Rooms Bathrooms \
461 14.343193 Bungalow 5.347108 8.932609 8.0 2.0
2579 14.220976 Duplex 6.278521 8.027150 15.0 4.0
3761 15.009130 Bungalow 6.476972 8.116716 10.0 2.0
3932 13.384728 Duplex 5.375278 8.809714 15.0 7.0
4175 14.066269 Duplex 5.777652 6.884487 11.0 5.0
4243 11.407565 Duplex 3.058707 7.342132 1.0 1.0
7166 13.102161 Bungalow 7.003065 9.239899 12.0 3.0
7870 12.959844 Corner house 5.828946 10.596635 14.0 2.0
9535 13.910821 Duplex 6.415097 8.097122 22.0 8.0

Floors Year_built Year_renovated Condition Heating \
461 3.0 3.332205 3.332205 modernized stove heating
2579 2.0 3.761200 2.397895 modernized underfloor heating
3761 3.0 5.293305 1.609438 renovated heat pump
3932 4.0 4.510860 4.510860 maintained stove heating
4175 2.0 3.496508 0.000000 modernized stove heating
4243 4.0 3.912023 3.912023 modernized heat pump
7166 1.0 3.970292 2.639057 modernized gas heating
7870 3.0 4.795791 1.609438 dilapidated stove heating
9535 3.0 3.091042 3.091042 modernized stove heating

State City \
461 Baden-Württemberg Ludwigsburg (Kreis)
2579 Bayern Rottal-Inn (Kreis)
3761 Hessen Frankfurt am Main
3932 Hessen Darmstadt-Dieburg (Kreis)
4175 Hessen Limburg-Weilburg (Kreis)
4243 Hessen Main-Taunus-Kreis
7166 Nordrhein-Westfalen Minden-Lübbecke (Kreis)

(continues on next page)
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7870 Rheinland-Pfalz Altenkirchen (Westerwald) (Kreis)
9535 Sachsen-Anhalt Salzlandkreis

Place Garages Garage_type
461 Vaihingen an der Enz 30.0 Outside parking lot
2579 Eggenfelden 22.0 Parking lot
3761 Niederursel 20.0 Outside parking lot
3932 Otzberg 60.0 Outside parking lot
4175 Bad Camberg 21.0 Outside parking lot
4243 Hattersheim am Main 30.0 Parking lot
7166 Espelkamp 65.0 Parking lot
7870 Birnbach 50.0 Outside parking lot
9535 Bernburg (Saale) 58.0 Outside parking lot

data = data.loc[data['Garages'] < 20, :]

Type Column

data['Type'].value_counts()

Mid-terrace house 2198
Duplex 868
Single dwelling 565
Farmhouse 265
Villa 213
Multiple dwelling 209
Special property 168
Residential property 124
Bungalow 113
Corner house 78
Castle 2
Name: Type, dtype: int64

data = data.loc[data['Type'] != 'Castle', :]
data['Type'] = data['Type'].cat.remove_categories('Castle')

Condition Column

data['Condition'].value_counts()

modernized 2146
dilapidated 663
refurbished 565
renovated 509
maintained 361
fixer-upper 268
first occupation after refurbishment 210
first occupation 50
by arrangement 26
as new 3
Name: Condition, dtype: int64

We should remove 'as new' and 'by arrangement' because only few samples use these categories and both
are somewhat dubious.
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data = data.loc[~data['Condition'].isin(['as new', 'by arrangement']), :]
data['Condition'] = data['Condition'].cat.remove_categories(['as new', 'by␣

↪arrangement'])

Heating Column

data['Heating'].value_counts()

stove heating 2900
heat pump 563
oil heating 420
central heating 248
underfloor heating 162
night storage heater 138
district heating 117
wood-pellet heating 62
floor heating 55
electric heating 52
gas heating 32
cogeneration units 13
solar heating 10
Name: Heating, dtype: int64

Something is wrong here! More than every second house sold in 2020 has stove heating? And what about 'floor
heating'? Is it gas powered or oil powered or what else? What’s the difference between 'floor heating'
and 'underfloor heating'. It’s better to drop this column.

data = data.drop(columns=['Heating'])

Garage_type Column

data['Garage_type'].value_counts()

Garage 2647
Outside parking lot 897
Parking lot 739
Carport 409
Underground parking lot 53
Duplex lot 26
Car park lot 1
Name: Garage_type, dtype: int64

There are many similar categories. We should join some.

data.loc[data['Garage_type'] == 'Car park lot', 'Garage_type'] = 'Outside parking␣
↪lot'

data.loc[data['Garage_type'] == 'Duplex lot', 'Garage_type'] = 'Outside parking␣
↪lot'

data.loc[data['Garage_type'] == 'Parking lot', 'Garage_type'] = 'Outside parking␣
↪lot'

data['Garage_type'] = data['Garage_type'].cat.remove_categories(['Car park lot',
↪'Duplex lot', 'Parking lot'])

data['Garage_type'].value_counts()
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Garage 2647
Outside parking lot 1663
Carport 409
Underground parking lot 53
Name: Garage_type, dtype: int64

6.3.3 Save Cleaned Data

We save cleaned data for future use.

data.to_csv(data_path.replace('.csv', '_preprocessed.csv'))

6.3.4 Linear Regression

Now data is almost ready for training a model. It remains to convert categorical data to numerical data. Con-
dition is ordered and numeric representation is accessible with Series.cat.codes176. Columns Type and
Garage_type should be one-hot encoded.

data['Condition_codes'] = data['Condition'].cat.codes
data = pd.get_dummies(data, columns=['Type', 'Garage_type'], drop_first=True)

data.head()

Price Living_space Lot Rooms Bathrooms Floors Year_built \
0 13.118355 4.663439 5.433722 5.5 1.0 2.0 2.772589
2 13.526494 5.093075 4.406719 5.0 2.0 4.0 2.079442
3 12.464583 4.941642 6.701960 4.0 2.0 2.0 4.795791
8 12.804909 5.424950 6.880384 10.0 4.0 2.0 5.356586
10 14.375126 5.347108 7.286192 6.0 2.0 3.0 4.406719

Year_renovated Condition State City \
0 2.772589 modernized Baden-Württemberg Bodenseekreis
2 2.079442 dilapidated Baden-Württemberg Esslingen (Kreis)
3 3.044522 fixer-upper Baden-Württemberg Waldshut (Kreis)
8 1.791759 modernized Baden-Württemberg Enzkreis
10 1.945910 modernized Baden-Württemberg Stuttgart

Place Garages Condition_codes Type_Corner house \
0 Bermatingen 2.0 4 0
2 Ostfildern 1.0 7 0
3 Bonndorf im Schwarzwald 1.0 6 0
8 Neuenbürg 8.0 4 0
10 Schönberg 2.0 4 0

Type_Duplex Type_Farmhouse Type_Mid-terrace house \
0 0 0 0
2 0 1 0
3 0 1 0
8 1 0 0
10 0 0 1

Type_Multiple dwelling Type_Residential property Type_Single dwelling \
0 1 0 0
2 0 0 0

(continues on next page)
176 https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.cat.codes.html
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3 0 0 0
8 0 0 0
10 0 0 0

Type_Special property Type_Villa Garage_type_Garage \
0 0 0 0
2 0 0 1
3 0 0 1
8 0 0 0
10 0 0 1

Garage_type_Outside parking lot Garage_type_Underground parking lot
0 1 0
2 0 0
3 0 0
8 1 0
10 0 0

We drop columns not used for regression and convert the data frame to NumPy arrays suitable for Scikit-Learn.

y = data['Price'].to_numpy()
X = data.drop(columns=['Price', 'Condition', 'State', 'City', 'Place']).to_numpy()

print(X.shape, y.shape)

(4772, 21) (4772,)

We have relatively few data. Thus, test set should be small to have more training samples.

X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_
↪size=0.2)

print(y_train.size, y_test.size)

3817 955

We use polynomial regression with regularization.

steps = [('poly', preprocessing.PolynomialFeatures()),
('ridge', linear_model.Ridge())]

pipe = pipeline.Pipeline(steps)

param_grid = {'poly__degree': [1, 2, 3],
'ridge__alpha': [0] + [2 ** k for k in range(5, 15)]}

gs = model_selection.GridSearchCV(pipe, param_grid=param_grid,
scoring='neg_mean_squared_error', n_jobs=-1,␣

↪cv=5)

gs.fit(X_train, y_train)
best_params = gs.best_params_
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6.3.5 Evaluating the Model

Now we use the test set to evaluate prediction quality of the model.

print(best_params)

pipe.set_params(**best_params)
pipe.fit(X_train, y_train)

y_test_pred = pipe.predict(X_test)

{'poly__degree': 2, 'ridge__alpha': 64}

Root mean squared error between predicted and exact targets on its own does not tell much about fitting quality. We
have to compare the value to standard deviation of the targets. Standard deviation is the root mean squared error
of the exact targets and their mean. In other words, standard deviation tells us the prediction error if we would use
constant predictions for all inputs. Obviously the constant should be the mean of the training (!) targets, but the mean
of the training targets should be very close the mean of the test targets if test sample have been selected randomly.

rmse = metrics.mean_squared_error(y_test, y_test_pred, squared=False)
sigma = np.std(y_test)
print('RMSE:', rmse)
print('standard deviation:', sigma)
print('ratio:', rmse / sigma)

RMSE: 0.549529269010328
standard deviation: 0.7553775997302192
ratio: 0.7274894955934497

We see that the model’s prediction is better than constant prediction, but not so much.
We should have a closer look at the predictions. Since there is no natural ordering in the set of samples plotting
y_test and y_test_pred with plot does not help much.

fig, ax = plt.subplots()
ax.plot(y_test, '-b', label='true targets')
ax.plot(y_test_pred, '-r', label='predictions')
ax.legend()
plt.show()
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A better idea is to plot y_test versus y_test_pred. If true and predicted labels are close, then points should
concentrate along the diagonal. Else they are far away from the diagonal.

fig, ax = plt.subplots()
ax.plot(y_test, y_test_pred, 'or', markersize=3)
ax.plot([9, 17], [9, 17], '-b')
ax.set_xlabel('true targets')
ax.set_ylabel('predictions')
ax.set_aspect('equal')
plt.show()
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The red cloud shows some rotation compared to the blue line. Small target values get too high predictions and high
target values get too low predictions. In other words, predictions tend to be too close to the target’s mean. Such
behavior is typically observed if there are many similar samples with different targets in the training data. Then there
is no clear functional dependence of the targets on the inputs and models tend to predict the mean targets.
To further investigate this issue we should look at the predictions on the training set. If we are right, then predictions
on the training set should show similar behavior (predictions close to mean).

y_train_pred = pipe.predict(X_train)

fig, ax = plt.subplots()
ax.plot(y_train, y_train_pred, 'or', markersize=3)
ax.plot([9, 17], [9, 17], '-b')
ax.set_xlabel('true targets')
ax.set_ylabel('predictions')
ax.set_aspect('equal')
plt.show()

6.3. Worked Example: House Prices I 173



Data Science and Artificial Intelligence for Undergraduates
Volume 2: Data Visualization, Supervised Learning

Again we see slight rotation. To summarize: our input data has too few details to explain the targets. There are simlar
inputs with different targets leading to underestimation of high values and over estimation of low values. The only
way out is gathering more data, either by dropping less columns or by getting relevant data from additional sources.
We will come back to this issue soon.

6.3.6 Predictions

When using our model for predicting house prices we have to keep in mind that we transformed some of the input
data. All those transforms have to be applied to new inputs, too.

living_space = 80
lot = 3600
rooms = 5
bathrooms = 0
floors = 2
year_built = 1948
year_renovated = 1948
garages = 2
condition_codes = 7 # 0 = 'first occupation', 7 = 'dilapidated'
type_corner_house = 0
type_duplex = 0
type_farmhouse = 1
type_midterrace_house = 0
type_multiple_dwelling = 0
type_residential_property = 0
type_single_dwelling = 0
type_special_property = 0
type_villa = 0
garage_type_garage = 0
garage_type_outside_parking_lot = 1
garage_type_underground_parking_lot = 0

(continues on next page)
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X = np.asarray([np.log(living_space), np.log(lot), rooms, bathrooms, floors,
np.log(2021 - year_built), np.log(2021 - year_renovated),
garages, condition_codes, type_corner_house, type_duplex, type_

↪farmhouse,
type_midterrace_house, type_multiple_dwelling, type_residential_

↪property,
type_single_dwelling, type_special_property, type_villa,
garage_type_garage, garage_type_outside_parking_lot,
garage_type_underground_parking_lot]).reshape(1, -1)

y = np.exp(pipe.predict(X))

print('predicted price: {:.0f} EUR'.format(y[0]))

predicted price: 115455 EUR

6.4 Worked Example: House Prices II

We try to improve prediction of house prices based on Erdogan Seref’s177 (unreachable in 2023) German hous-
ing dataset from www.immobilienscout24.de178 published at www.kaggle.com179 (unreachable in 2023) under a
Attribution-NonCommercial-ShareAlike 4.0 International License180.
We load preprocessed data and adjust data types.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import sklearn.linear_model as linear_model
import sklearn.metrics as metrics
import sklearn.model_selection as model_selection
import sklearn.preprocessing as preprocessing
import sklearn.pipeline as pipeline

data_path = 'german_housing_preprocessed.csv'
regions_path = 'regions.csv'

data = pd.read_csv(data_path, index_col=0)

data['Type'] = data['Type'].astype('category')
data['Condition'] = data['Condition'].astype('category')
data['Garage_type'] = data['Garage_type'].astype('category')

data['Condition'] = data['Condition'].cat.reorder_categories([
'first occupation',
'first occupation after refurbishment',
'maintained',
'renovated',
'modernized',
'refurbished',

(continues on next page)
177 https://www.kaggle.com/scriptsultan
178 https://www.immobilienscout24.de
179 https://www.kaggle.com/scriptsultan/german-house-prices
180 https://creativecommons.org/licenses/by-nc-sa/4.0
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'fixer-upper',
'dilapidated'

])

data.head()

Price Type Living_space Lot Rooms Bathrooms \
0 13.118355 Multiple dwelling 4.663439 5.433722 5.5 1.0
2 13.526494 Farmhouse 5.093075 4.406719 5.0 2.0
3 12.464583 Farmhouse 4.941642 6.701960 4.0 2.0
8 12.804909 Duplex 5.424950 6.880384 10.0 4.0
10 14.375126 Mid-terrace house 5.347108 7.286192 6.0 2.0

Floors Year_built Year_renovated Condition State \
0 2.0 2.772589 2.772589 modernized Baden-Württemberg
2 4.0 2.079442 2.079442 dilapidated Baden-Württemberg
3 2.0 4.795791 3.044522 fixer-upper Baden-Württemberg
8 2.0 5.356586 1.791759 modernized Baden-Württemberg
10 3.0 4.406719 1.945910 modernized Baden-Württemberg

City Place Garages Garage_type
0 Bodenseekreis Bermatingen 2.0 Outside parking lot
2 Esslingen (Kreis) Ostfildern 1.0 Garage
3 Waldshut (Kreis) Bonndorf im Schwarzwald 1.0 Garage
8 Enzkreis Neuenbürg 8.0 Outside parking lot
10 Stuttgart Schönberg 2.0 Garage

6.4.1 More Data

Results obtained from linear regression showed that input variables do not suffice to explain the targets. Thus, we
should add more input variables. When preprocessing the data we dropped several columns. Keeping them could
increase prediction quality slightly, but there were several good reasons to drop those columns. The main reason were
lots of missing values in those columns.
A far better idea is to collect additional data. What features of a house influence the selling price? Of course its
location! Up to now we did not use location information at all, but we have location information available. There
are columns State, City, Place. But city names do not help. We need something like proximity to big cities or
nice landscape. Adding a layer of abstraction we might ask for the demand for houses and the whealth of potential
buyers. So we should head out for statistical information about local real estate markets and about economic power
of different regions in Germany.
Everything we need is publicly available at www.regionalstatistik.de181 provided by Statistische Ämter des Bundes und
der Länder under the license Datenlizenz Deutschland – Namensnennung – Version 2.0182. Clicking here and there
we find two interesting tables:

• annual income per inhabitant183

• prices for construction ground184

From those tables we may compile a table with 4 columns for region id, region name, income, ground prices.
181 https://www.regionalstatistik.de
182 https://www.govdata.de/dl-de/by-2-0
183 https://www.regionalstatistik.de/genesis/online?operation=abruftabelleBearbeiten&levelindex=1&levelid=

1614168819692&auswahloperation=abruftabelleAuspraegungAuswaehlen&auswahlverzeichnis=ordnungsstruktur&auswahlziel=
werteabruf&code=AI-S-01&auswahltext=&werteabruf=Werteabruf#abreadcrumb
184 https://www.regionalstatistik.de/genesis/online?operation=abruftabelleBearbeiten&levelindex=1&levelid=

1614168973527&auswahloperation=abruftabelleAuspraegungAuswaehlen&auswahlverzeichnis=ordnungsstruktur&auswahlziel=
werteabruf&code=61511-01-03-4&auswahltext=&werteabruf=Werteabruf#abreadcrumb
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The difficult part is matching region names in German housing data set with region names in the region table. Here
is some code doing the job:

# remove rows with missing location information
data = data.dropna(subset=('State', 'City'))

# reindex to remove gaps in the index
data.index = pd.RangeIndex(0, len(data))

regions = pd.read_csv(regions_path)

regions.head(5)

id region income prices
0 0 Deutschland 22623 137.67
1 1 Schleswig-Holstein 22864 85.30
2 1001 Flensburg, Kreisfreie Stadt 19296 85.30
3 1002 Kiel, Landeshauptstadt, Kreisfreie Stadt 19263 85.30
4 1003 Lübeck, Hansestadt, Kreisfreie Stadt 20363 110.84

data['city_short'] = data['City'].str.replace(' (Kreis)', '', regex=False)
data['region_idx'] = 0

for (idx, city_short) in enumerate(data['city_short']):
find_results = regions['region'].str.find(str(city_short))
if not (find_results > -1).any():

#print(city_short)
if data.loc[idx, 'State'] == 'Hamburg':

find_results = regions['region'].str.find('Hamburg')
data.loc[idx, 'region_idx'] = regions.index[find_results > -1][-1]

elif data.loc[idx, 'State'] == 'Bremen':
find_results = regions['region'].str.find('Bremen')
data.loc[idx, 'region_idx'] = regions.index[find_results > -1][-1]

elif data.loc[idx, 'State'] == 'Berlin':
district = city_short.split('(')[-1][0:-1]
if district == 'Weißensee':

district = 'Pankow'
if district == 'Prenzlauer Berg':

district = 'Pankow'
if district == 'Hohenschönhausen':

district = 'Lichtenberg'
if district == 'Wedding':

district = 'Berlin-Mitte'
find_results = regions['region'].str.find(district)
#print('***', city_short, ':', district, '-->', regions['Region

↪'][find_results > -1])
data.loc[idx, 'region_idx'] = regions.index[find_results > -1][-1]

elif city_short == 'Neuss (Rhein-Kreis)':
find_results = regions['region'].str.find('Neuss')
data.loc[idx, 'region_idx'] = regions.index[find_results > -1][-1]

elif city_short == 'Sankt Wendel':
find_results = regions['region'].str.find('Wendel')
data.loc[idx, 'region_idx'] = regions.index[find_results > -1][-1]

elif city_short == 'Stadtverband Saarbrücken':
find_results = regions['region'].str.find('Saarbrücken,␣

↪Regionalverband')
data.loc[idx, 'region_idx'] = regions.index[find_results > -1][-1]

elif city_short.split()[1] in ('in', 'im', 'an', 'am'):
if city_short.split()[0] == 'Neustadt':

find_results = regions['region'].str.find(city_short.split()[-1])

(continues on next page)
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else:
find_results = regions['region'].str.find(city_short.split()[0])

#print('***', city_short, '-->', regions.loc[find_results > -1,
↪'Region'])

data.loc[idx, 'region_idx'] = regions.index[find_results > -1][-1]
else:

print('NOT FOUND:', city_short)

else:
# take last match (smallest region)
data.loc[idx, 'region_idx'] = regions.index[find_results > -1][-1]

data['Region_id'] = regions.loc[data['region_idx'], 'id'].values
data['Income'] = regions.loc[data['region_idx'], 'income'].values
data['Land_prices'] = regions.loc[data['region_idx'], 'prices'].values

data = data.drop(columns=['city_short', 'region_idx'])

data.head(5)

Price Type Living_space Lot Rooms Bathrooms \
0 13.118355 Multiple dwelling 4.663439 5.433722 5.5 1.0
1 13.526494 Farmhouse 5.093075 4.406719 5.0 2.0
2 12.464583 Farmhouse 4.941642 6.701960 4.0 2.0
3 12.804909 Duplex 5.424950 6.880384 10.0 4.0
4 14.375126 Mid-terrace house 5.347108 7.286192 6.0 2.0

Floors Year_built Year_renovated Condition State \
0 2.0 2.772589 2.772589 modernized Baden-Württemberg
1 4.0 2.079442 2.079442 dilapidated Baden-Württemberg
2 2.0 4.795791 3.044522 fixer-upper Baden-Württemberg
3 2.0 5.356586 1.791759 modernized Baden-Württemberg
4 3.0 4.406719 1.945910 modernized Baden-Württemberg

City Place Garages Garage_type \
0 Bodenseekreis Bermatingen 2.0 Outside parking lot
1 Esslingen (Kreis) Ostfildern 1.0 Garage
2 Waldshut (Kreis) Bonndorf im Schwarzwald 1.0 Garage
3 Enzkreis Neuenbürg 8.0 Outside parking lot
4 Stuttgart Schönberg 2.0 Garage

Region_id Income Land_prices
0 8435 26548 172.95
1 8116 25449 387.06
2 8337 25304 111.64
3 8236 25496 192.18
4 8111 25559 1500.34
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6.4.2 Preprocessing New Columns

Now that we have two now columns (Income and Land_prices) we should look at their values.

Income Column

sns.histplot(data['Income'])
plt.show()

Log-scaling is not mandadory here, but it brings values to a similar range like the other columns. Without log-
scaling we would have a column with very large range, which may result in problems when using regularization (see
Regularization (page 129)). Alternatively we could standardize all columns before doing linear regression.

sns.histplot(np.log(data['Income'].to_numpy()))
plt.show()
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data['Income'] = np.log(data['Income'].to_numpy())

Land_prices Column

sns.histplot(data['Land_prices'])
plt.show()
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sns.histplot(np.log(data['Land_prices'].to_numpy()))
plt.show()

data['Land_prices'] = np.log(data['Land_prices'].to_numpy())
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6.4.3 Save Data

data.to_csv(data_path.replace('preprocessed', 'extended'))

6.4.4 Linear Regression

Now we do linear regression as before, but with two additional columns.

data['Condition_codes'] = data['Condition'].cat.codes
data = pd.get_dummies(data, columns=['Type', 'Garage_type'], drop_first=True)

y = data['Price'].to_numpy()
X = data.drop(columns=['Price', 'Condition', 'State', 'City', 'Place', 'Region_id

↪']).to_numpy()

print(X.shape, y.shape)

(4772, 23) (4772,)

X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_
↪size=0.2)

print(y_train.size, y_test.size)

3817 955

steps = [('poly', preprocessing.PolynomialFeatures()),
('ridge', linear_model.Ridge())]

pipe = pipeline.Pipeline(steps)

param_grid = {'poly__degree': [1, 2, 3],
'ridge__alpha': [0] + [2 ** k for k in range(5, 15)]}

gs = model_selection.GridSearchCV(pipe, param_grid=param_grid,
scoring='neg_mean_squared_error', n_jobs=-1,␣

↪cv=5)

gs.fit(X_train, y_train)
best_params = gs.best_params_

6.4.5 Evaluation

Now the interesting part. Do we see an increase in prediction quality?

print(best_params)

pipe.set_params(**best_params)
pipe.fit(X_train, y_train)

y_test_pred = pipe.predict(X_test)

{'poly__degree': 2, 'ridge__alpha': 512}
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rmse = metrics.mean_squared_error(y_test, y_test_pred, squared=False)
sigma = np.std(y_test)
print('RMSE:', rmse)
print('standard deviation:', sigma)
print('ratio:', rmse / sigma)

RMSE: 0.41784051720522897
standard deviation: 0.7969255717596182
ratio: 0.5243156099039885

fig, ax = plt.subplots()
ax.plot(y_test, y_test_pred, 'or', markersize=3)
ax.plot([9, 17], [9, 17], '-b')
ax.set_xlabel('true targets')
ax.set_ylabel('predictions')
ax.set_aspect('equal')
plt.show()

Looks much better!
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6.4.6 Feature Importance

With a trained model we may look at feature importances to see which features have high influence on the selling
price.

import sklearn.inspection as inspection

result = inspection.permutation_importance(pipe, X, y, n_jobs=-1)

cols = data.drop(columns=['Price', 'Condition', 'State', 'City', 'Place', 'Region_
↪id']).columns

imp = pd.Series(result.importances_mean, index=cols)
imp = imp.sort_values(ascending=False)
imp

Land_prices 0.402403
Living_space 0.313045
Year_built 0.169028
Lot 0.064657
Income 0.029009
Rooms 0.019429
Bathrooms 0.019242
Type_Duplex 0.017057
Type_Villa 0.015990
Year_renovated 0.011070
Condition_codes 0.008705
Type_Mid-terrace house 0.007865
Garage_type_Outside parking lot 0.007603
Floors 0.005987
Garages 0.004356
Garage_type_Garage 0.003244
Type_Corner house 0.002825
Type_Multiple dwelling 0.002599
Type_Single dwelling 0.002530
Type_Farmhouse 0.000998
Type_Special property 0.000996
Garage_type_Underground parking lot 0.000359
Type_Residential property 0.000302
dtype: float64

6.5 Outliers

Data sets almost always contain outliers, that is, samples showing very different behavior compared to most other
samples. Outliers may influence regressions results. Thus, we have to cope with them somehow.
One approach is to remove outliers in advance, so they do not take part in the regression process. But how to detect
outliers? Exploratory data analysis might expose some outliers. Alternatively we may apply some advanced statistical
methods to automatically detect outliers. But such methods are beyond the scope of this lecture series.
Another approach is to modify regression methods in a way which makes them more robust to outliers. We will
consider two ideas in detail:

• Choose loss functions other than mean squared error.
• Run regression on subsets of the data to find subsets without outliers.
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6.5.1 Example

To illustrate the influence of outliers we consider linear regression for a synthetic data set with one feature.

import numpy as np
import matplotlib.pyplot as plt

import sklearn.linear_model as linear_model
import sklearn.metrics as metrics

from numpy.random import default_rng
rng = default_rng(42)

# feature range
xmin = 0
xmax = 1

# true coefficients: y = a * x + b
a = 0.5
b = 1

# parameters of data set
n = 100
noise_level = 0.01
outlier_rate = 0.05
outlier_noise_level = 1

To simulate data with outliers we take exact data, add some Gaussian noise, and then randomly select several data
points. The selected data points are moved upwards by some random distance.

# simulate data without outliers
X = (xmax - xmin) * rng.random((n, 1)) + xmin
y = (a * X + b).reshape(-1) + noise_level * rng.standard_normal(n)

# add some outliers
outlier_mask = rng.choice([True, False], size=y.size, p=[outlier_rate, 1 -␣

↪outlier_rate])
inlier_mask = np.logical_not(outlier_mask)
y[outlier_mask] = (a * X[outlier_mask, 0] + b).reshape(-1) \

+ outlier_noise_level * rng.random(np.count_nonzero(outlier_
↪mask))

# plot data
fig, ax = plt.subplots()
ax.plot(X.reshape(-1), y, 'or', markersize=3)
ax.set_xlabel('feature')
ax.set_ylabel('target')
plt.show()
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To investigate the influence of outliers we do two regressions: one with outliers removed from the data set and one
with the full data set.

# regression without outliers
reg = linear_model.LinearRegression()
reg.fit(X[inlier_mask, :], y[inlier_mask])

# regression with full data
outreg = linear_model.LinearRegression()
outreg.fit(X, y)

# plot results
fig, ax = plt.subplots()
ax.plot(X.reshape(-1), y, 'or', markersize=3)
ax.plot(

[xmin, xmax],
[reg.intercept_ + xmin * reg.coef_[0], reg.intercept_ + xmax * reg.coef_[0]],
'-b', label='without outliers'

)
ax.plot(

[xmin, xmax],
[outreg.intercept_ + xmin * outreg.coef_[0], outreg.intercept_ + xmax *␣

↪outreg.coef_[0]],
'-g', label='with outliers')

ax.legend()
plt.show()

# errors
err = metrics.mean_squared_error(y[inlier_mask], reg.predict(X[inlier_mask, :]),

squared=False)
outerr = metrics.mean_squared_error(y[inlier_mask], outreg.predict(X[inlier_mask,␣

↪:]),
squared=False)

(continues on next page)
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exact_err = metrics.mean_squared_error(y[inlier_mask], a * X[inlier_mask, 0] + b,
squared=False)

print('RMSE exact solution: ', exact_err)
print('RMSE without outliers:', err)
print('RMSE with outliers: ', outerr)

RMSE exact solution: 0.009791289366682039
RMSE without outliers: 0.009790327732097473
RMSE with outliers: 0.03698110315752278

We clearly see, that the small number of outliers deteriorate results significantly.

6.5.2 Loss Functions

We already discussed three different loss functions in Quality Measures (page 82):
• mean squared error (differentiable, sensitive to outliers),
• mean absolut error (non-differentiable, more robust w.r.t. outliers),
• Huber loss (differentiable, more robust w.r.t. to outliers).

If we try to minimize the mean squared error, (large) deviations from outliers get much more penalized than (small)
deviations from inliers. In other words, outliers attract the optimal solution much more than inliers. Thus, even few
outliers lead to deviations of the minimizing regression line towards the outliers.
MSE is favorable in view of computation time (linear regression requires solving only one system of linear equations).
MAE requires very advanced optimization algoritms to solve the linear regression problem. Huber loss is somewhere
in between.
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MAE with Scikit-Learn

Scikit-Learn does not implement regression with mean absolute error loss directly. But we may interpret mean
absolute error regression as a special case of a more general regression routine: the SGDRegressor185. This is
not a regression technique on its own, but a specific algorithm for minimizing a wide class of functionals typically
occuring in regression problems. We do not go into the details her, but we only use it to test mean absolute error
regression for our simple illustrating example. Take care, that SGDRegressor uses gradient based optimization
here, which might yield non-optimal results due to non-differentiability.

maereg = linear_model.SGDRegressor('epsilon_insensitive', epsilon=0, alpha=0)
maereg.fit(X, y)

maeerr = metrics.mean_squared_error(y[inlier_mask], maereg.predict(X[inlier_mask,␣
↪:]),

squared=False)
print('RMSE exact solution: ', exact_err)
print('RMSE for MSE without outliers: ', err)
print('RMSE for MSE with outliers: ', outerr)
print('RMSE for MAE loss with outliers: ', maeerr)

RMSE exact solution: 0.009791289366682039
RMSE for MSE without outliers: 0.009790327732097473
RMSE for MSE with outliers: 0.03698110315752278
RMSE for MAE loss with outliers: 0.009839046162356173

Huber Loss with Scikit-Learn

For details on linear regression with Huber loss see Scikit-Learn’s User Guide186.
Scikit-Learn provides the HuberRegressor187.

huberreg = linear_model.HuberRegressor()
huberreg.fit(X, y)

hubererr = metrics.mean_squared_error(y[inlier_mask], huberreg.predict(X[inlier_
↪mask, :]),

squared=False)
print('RMSE exact solution: ', exact_err)
print('RMSE for MSE without outliers: ', err)
print('RMSE for MSE with outliers: ', outerr)
print('RMSE for MAE loss with outliers: ', maeerr)
print('RMSE for Huber loss with outliers: ', hubererr)

RMSE exact solution: 0.009791289366682039
RMSE for MSE without outliers: 0.009790327732097473
RMSE for MSE with outliers: 0.03698110315752278
RMSE for MAE loss with outliers: 0.009839046162356173
RMSE for Huber loss with outliers: 0.00980351846505725

185 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html
186 https://scikit-learn.org/stable/modules/linear_model.html#huber-regression
187 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.HuberRegressor.html
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6.5.3 RANSAC Algorithm

If one does not want to change the loss function to lower the influence of outliers, one can apply the RANSAC
algorithm to a given regression method. RANSAC is the abbreviation of random sample consensus. The idea is to
randomly choose a small subset of the data and train the model on this subset. The smaller the subset the higher the
chance to have no outliers in the subset. But the subset has to be large enough to determine all model parameters.
In a second step all other data points are compared to corresponding model predictions. If the model provides a good
prediction, the data point is considered as inlier. If the prediction if far away from the true target, then the data point
is marked as outlier. Here, we have to choose a threshold value to separate inliers from outliers.
If there are too few inliers compared to the size of the data set (and to an estimate of the outlier rate), the model is
rejected. Else the model is refit to the whole inlier set and the fitting error is computed.
This process is repeated with different random subsets several times. The model with the lowest fitting error is chosen
as final model. Probabilistic considerations suggest up to

ln(1 − 𝑝)
ln(1 − (1 − 𝑟)𝑠) ,

iterations, where 𝑠 is the number of data points in the subset, 𝑟 ∈ (0, 1) is the estimated outlier rate for the full
data set, and 𝑝 is the prescribed probability to have at least one subset containing no outliers. Alternatively, one can
prescribe an error level to stop the iteration if the fitting error of a model is below this level.

Example

To get a better understanding of the algorithm we implement it without using Scikit-Learn routines.
First we set the parameters and calculate the number of iterations required.

estimated_outlier_rate = 0.05 # ~ outlier_rate
threshold_value = 0.04 # ~ noise_level
subset_size = 2 # two points determine a straight line (2 model parameters)
min_inliers = int(0.9 * n) # reliable lower bound on number of inliers in full␣

↪data set

max_iter = int(np.log(1 - 0.99) / np.log(1 - (1 - estimated_outlier_rate) **␣
↪subset_size))

print('max_iter =', max_iter)

max_iter = 1

max_iter = 10

To be able to investigate each step of the algorithm we store all information about each single iteration.

subset_masks = np.empty((max_iter, n), dtype=bool) # each row is a mask␣
↪determining a subset

initial_subset_masks = np.empty((max_iter, n), dtype=bool) # initial subset␣
↪used for first fit

errors = np.empty(max_iter) # MSE for all models
models_a = np.empty(max_iter) # parameter a for all models
models_b = np.empty(max_iter) # parameter b for all models
initial_models_a = np.empty(max_iter) # parameter a for all models (first fit)
initial_models_b = np.empty(max_iter) # parameter b for all models (first fit)

ordered_mask = np.full(n, False) # will be shuffled to get a random mask...
ordered_mask[0:subset_size] = True # ...for subset selection

reg = linear_model.LinearRegression()

(continues on next page)
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best_error = None
best_index = None
best_model = None

for k in range(0, max_iter):

# determine subset
subset_mask = rng.permutation(ordered_mask)
initial_subset_masks[k] = subset_mask.copy()

# fit model to subset
reg.fit(X[subset_mask, :], y[subset_mask])
initial_models_a[k] = reg.coef_[0]
initial_models_b[k] = reg.intercept_

# get points supporting the model
not_mask = np.logical_not(subset_mask)
subset_mask[not_mask] = (np.abs(reg.predict(X[not_mask, :]) - y[not_mask])

<= threshold_value)

# refit model to extended subset
reg.fit(X[subset_mask, :], y[subset_mask])
models_a[k] = reg.coef_[0]
models_b[k] = reg.intercept_
errors[k] = metrics.mean_squared_error(reg.predict(X[subset_mask, :]),␣

↪y[subset_mask])
subset_masks[k, :] = subset_mask

# find best model
if np.count_nonzero(subset_mask) >= min_inliers:

if (best_error == None) or (errors[k] < best_error):
best_error = errors[k]
best_index = k
best_model = reg

The fitting error is very good:

ransacerr = metrics.mean_squared_error(y[inlier_mask], best_model.
↪predict(X[inlier_mask, :]),

squared=False)
print('RMSE exact solution: ', exact_err)
print('RMSE for MSE without outliers: ', err)
print('RMSE for MSE with outliers: ', outerr)
print('RMSE for MAE loss with outliers: ', maeerr)
print('RMSE for Huber loss with outliers: ', hubererr)
print('RMSE for RANSAC with outliers: ', ransacerr)

RMSE exact solution: 0.009791289366682039
RMSE for MSE without outliers: 0.009790327732097473
RMSE for MSE with outliers: 0.03698110315752278
RMSE for MAE loss with outliers: 0.009839046162356173
RMSE for Huber loss with outliers: 0.00980351846505725
RMSE for RANSAC with outliers: 0.00980412170408581

Since we have stored all information, we now may plot the fitting procedure for each interation.

index = best_index

init_mask = initial_subset_masks[index]

(continues on next page)
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mask = subset_masks[index]
not_mask = np.logical_not(mask)
init_a = initial_models_a[index]
init_b = initial_models_b[index]

fig, ax = plt.subplots()

# points not supporting the model
ax.plot(X[not_mask, 0], y[not_mask], 'or', markersize=3, label='outliers')

# points supporting the model
ax.plot(X[mask, 0], y[mask], 'og', markersize=3, label='inliers')

# initial subset
ax.plot(X[init_mask, 0], y[init_mask], 'oy', markersize=6, label='initial inliers

↪')

# initial fit
ax.plot([xmin, xmax], [init_b + xmin * init_a,

init_b + xmax * init_a], '-c', label='initial fit')

# treshold value
ax.plot([xmin, xmax], [threshold_value + init_b + xmin * init_a,

threshold_value + init_b + xmax * init_a], '--c', label=
↪'threshold', linewidth=1)

ax.plot([xmin, xmax], [-threshold_value + init_b + xmin * init_a,
-threshold_value + init_b + xmax * init_a], '--c',␣

↪linewidth=1)

# final fit
ax.plot([xmin, xmax], [models_b[index] + xmin * models_a[index],

models_b[index] + xmax * models_a[index]], '-b', label=
↪'final fit')

ax.legend()
plt.show()
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RANSAC with Scikit-Learn

Scikit-Learn offers the RANSACRegressor188.

reg = linear_model.RANSACRegressor(linear_model.LinearRegression(),
min_samples=subset_size,
residual_threshold=threshold_value,
max_trials=max_iter,
stop_n_inliers=min_inliers)

reg.fit(X, y)

ransac2err = metrics.mean_squared_error(y[inlier_mask], reg.predict(X[inlier_mask,
↪ :]),

squared=False)
print('RANSAC: ', ransacerr)
print('RANSAC (Scikit-Learn):', ransac2err)

RANSAC: 0.00980412170408581
RANSAC (Scikit-Learn): 0.00980412170408581

188 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RANSACRegressor.html
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Discussion

Quality of results obtained by RANSAC heavily depends on chosen parameters and on the number of iterations. The
more iterations, the better the results, but the more computation time is required.
A major advantage is that RANSAC can be applied to almost all regression methods and is not restricted to linear
regression. In addition, RANSAC also works if there are many outliers (up to 50 per cent) and there exist extensions
of the algorithm which can cope with even more outliers. Thus, RANSAC is the first choice for problems with many
outliers, like image stitching and motion reconstruction in computer vision.
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CHAPTER

SEVEN

LOGISTIC REGRESSION

Logistic regression is a standard classification technique for binary and multiclass problems. It predicts class prob-
abilities via nonlinear regression. Probabilities are modeled as sigmoid of a linear function of the feature values (or
softmax of linear functions for multiclass). The model is fit to data by minimizing the log loss. Logistic regression
almost always requires regularization, which is easily incorporated by adding some penalty (cf. linear regression) to
the loss. Minimization is done numerically, e.g. with gradient descent.

7.1 Binary Logistic Regression

7.1.1 The Method

Given a binary classification task with classes 0 and 1 we model the probability that a sample 𝑥 ∈ ℝ𝑚 belongs to
class 1 as 1

1 + e−(𝑎0+𝑎1 𝑥(1)+⋯+𝑎𝑚 𝑥(𝑚))

with real parameters 𝑎0, 𝑎1, … , 𝑎𝑚. This is the sigmoid function applied to score which is a linear function of the
inputs. With

̊𝑥 ∶= (1, 𝑥(1), … , 𝑥(𝑚)) and ̊𝑎 ∶= (𝑎0, 𝑎1, … , 𝑎𝑚)
it reads 1

1 + e−�̊�T �̊� .

For training samples (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) corresponding log loss is

log loss = − 1
𝑛

𝑛
∑
𝑙=1

(𝑦𝑙 log
1

1 + e−�̊�T �̊�𝑙
+ (1 − 𝑦𝑙) log(1 − 1

1 + e−�̊�T �̊�𝑙
))

= 1
𝑛

𝑛
∑
𝑙=1

(𝑦𝑙 log (1 + e−�̊�T �̊�𝑙) − (1 − 𝑦𝑙) (− ̊𝑎T ̊𝑥𝑙 − log (1 + e−�̊�T �̊�𝑙)))

= 1
𝑛

𝑛
∑
𝑙=1

((1 − 𝑦𝑙) ̊𝑎T ̊𝑥𝑙 + log (1 + e−�̊�T �̊�𝑙)) .

Minimizing the loss function with respect to ̊𝑎 yields the model
1

1 + e−�̊�T �̊� .

for predicting the probability that some sample 𝑥 belongs to class 1. From that probability we may derive a class table
by thresholding.
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7.1.2 Interpretation

Thresholding predicted probabilities at some level 𝑡 ∈ (0, 1) yields class 1 if and only if
1

1 + e−�̊�T �̊� ≥ 𝑡 ⇔ 1 − 𝑡
𝑡 ≥ e−�̊�T �̊� ⇔ log 𝑡

1 − 𝑡 ≤ ̊𝑎T ̊𝑥.

The equation
log 𝑡

1 − 𝑡 = ̊𝑎T ̊𝑥 ⇔ 𝑎1 𝑥(1) + ⋯ + 𝑎𝑚 𝑥(𝑚) = log 𝑡
1 − 𝑡 − 𝑎0

defines a hyperplane in ℝ𝑚 (the set of points 𝑥 satisfying the equation is a hyperplane). Thus, logistic regression
(plus thresholding) splits the feature space into two half spaces and assigns samples in one half space the label 0 and
samples in the other half space the label 1. Logistic regression determines the direction of the splitting hyperplane,
the threshold controls parallel displacement.
From this observation it is obvious that logistic regression only yields good predictions if classes are (almost) linearly
separable.

7.1.3 Why not Fitting Scores Directly?

Logistic regression uses linear scoring, but fits sigmoids of the scores to the data. Sigmoids convert the linear ansatz to
a nonlinear one. Why not transforming data and then fit a linear model to the transformed data? If 𝑝 is the predicted
probability for 𝑥 belonging to class 0 we have

𝑝 = 1
1 + e−�̊�T �̊� ⇔ log 𝑝

1 − 𝑝 = 𝑎0 + 𝑎1 𝑥(1) + ⋯ + 𝑎𝑚 𝑥(𝑚).

Thus, if we apply the function 𝑔 defined by
𝑔(𝑣) ∶= log 𝑣

1 − 𝑣
to the labels we have linear regression with linear functions. The problem is that class labels are either 0 or 1, but the
domain of 𝑔 is (0, 1). We only have

lim
𝑣→0

𝑔(𝑣) = −∞ and lim
𝑣→1

𝑔(𝑣) = ∞,

so we would have to transform labels 0 and 1 to ±∞, which cannot be handled in a linear regression setting.

7.2 Multiclass Logistic Regression

For multiclass tasks we may use one of the following two standard (that is, not restricted to logistic regression)
approaches to reduce the problem to several binary tasks.

7.2.1 One-versus-Rest Approach

Given a multiclass classification problem with 𝐶 > 2 classes we consider 𝐶 binary classification problems, one per
class. In each binary problem we decide whether an input belongs to the corresponding class or not. This yields 𝑐
scores for the multiclass classification problem.
The one-versus-rest approach requires training 𝐶 binary classification models on the full data set, which is only
feasible if sufficient computational resources are available. One-versus-rest is mainly used in combination with logistic
regression.
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7.2.2 One-versus-One Approach

Given a multiclass classification problem with 𝐶 > 2 classes we consider binary classification problems for all com-
binations of classes. With 𝐶 classes there are 𝐶 (𝐶−1)

2 class pairs. Each binary model is trained on the subset of the
training set containing samples with targets in one of the two classes. Given an input we obtain a number of hits for
each class. The class with most hits, that is, the class chosen in most of the binary problems, is chosen as output of
the multiclass task.
With the one-versus-one approach we have to train more models than for the one-versus-rest approach and training
data sets are smaller. One-versus-one is typically used in combination with models not very sensitive to training set
size. An example are so called support vector machines (SVM) considered later on.

7.2.3 Alternative to Standard Approaches

An alternative to one-versus-rest and one-versus-one specific to logistic regression is to replace the sigmoid by softmax
for transforming lineare scores. Then logistic regression minimizes the log loss of softmax of linear score models.
Because probabilities sum to 1 we only have to predict 𝐶 − 1 probabilities in a 𝐶 classes setting. For instance we
could set the score of class 𝐶 to 0. Then the model for the 𝐶 probabilities is

e�̊�T
1 �̊�

e�̊�T
1 �̊� + ⋯ + e�̊�T

𝐶−1 �̊� + 1
, … , e�̊�T

𝐶−1 �̊�

e�̊�T
1 �̊� + ⋯ + e�̊�T

𝐶−1 �̊� + 1
, 1

e�̊�T
1 �̊� + ⋯ + e�̊�T

𝐶−1 �̊� + 1

with (𝐶 − 1) (𝑚 + 1) parameters 𝑎𝑙
𝑖, 𝑖 = 1, … , 𝐶 − 1, 𝑙 = 0, 1, … , 𝑚.

7.3 Logistic Regression with Scikit-Learn

Scikit-Learn implements three classes for logistic regression in the linear_model module:
• LogisticRegression189 implements logistic regression with regularization. Strength of regularization can be
controlled via the parameter 𝐶, which is the inverse of the usual regularization parameter 𝛼. The higher 𝐶 the
less regularization is applied. Different algorithms for solving the minimization problem can be chosen.

• SGDClassifier190 implements stochastic gradient descent (very efficient in case of many samples) for several
loss functions. Passing loss='log' yields regularized logistic regression. Regulatization is controlled by
parameter alpha.

• LogisticRegressionCV191 combines LogisticRegression with cross validation for choosing the regu-
larization parameter.

All three classes support different penalties (squares/l2, LASSO/l1, elastic net).

7.4 The Need for Regularization

Logistic regression almost always is run with regularization. There are two reasons for regularizing logistic regression:
• avoid overfitting,
• guarantee existence of a solution.

Although logistic regression uses linear models with relatively few parameters overfitting may occur. An example
will be given below.
A more serious problem is that for linearly separable classes (that is, perfect classification is possible with logistic
regression), the unregularized objective function of logistic regression has no minimizer. We may drive its value
arbitrarily close to zero, but we cannot reach zero. Model parameters will grow to infinity und numerical minimization
189 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
190 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
191 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressionCV.html
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procedures never satisfy a stopping criterion. Regularization guarantees existence of a minimizer und, thus, numerical
stability. Linearly separable classes frequently occur for problems with few training data but many features.
To demonstrate the influence of regularization we consider binary classification with two classes 0 (red) and 1 (green)
and two features. We use synthetic data with well separated classes and one outlier.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors
import sklearn.linear_model as linear_model

rng = np.random.default_rng(0)

n0 = 100 # samples in class 0
n1 = 100 # samples in class 1

# generate two point clouds and one outlier
X0 = rng.multivariate_normal([-1, -1], [[0.1, 0], [0, 0.1]], size=n0)
X1 = rng.multivariate_normal([1, 1], [[0.1, 0], [0, 0.1]], size=n1)
Xout = np.array([[-0.2, -1.5]])
X = np.concatenate((X0, X1, Xout))

# set labels
y0 = np.zeros(n0)
y1 = np.ones(n1)
yout = np.ones(1)
y = np.concatenate((y0, y1, yout))

# set plotting region
x0_min = X[:, 0].min() - 0.2
x0_max = X[:, 0].max() + 0.2
x1_min = X[:, 1].min() - 0.2
x1_max = X[:, 1].max() + 0.2

# plot data set
fig, ax = plt.subplots(figsize=(8,8))
ax.scatter(X[y == 0, 0], X[y == 0, 1], c='#ff0000', edgecolor='black')
ax.scatter(X[y == 1, 0], X[y == 1, 1], c='#00ff00', edgecolor='black')
ax.set_xlim(x0_min, x0_max)
ax.set_ylim(x1_min, x1_max)
ax.set_aspect('equal')
plt.show()
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Logistic regression for binary classification results in a list of coefficients defining the model, which maps inputs to
(0, 1). We may visualizing the model with the following function.

def plot_linreg(ax, X, y, a, b, c):
''' a, b, c are the coefficients of the linear model: a + b * x0 + c * x1 '''

# plot model (function values color-coded)
x0, x1 = np.meshgrid(np.linspace(x0_min, x0_max, 100), np.linspace(x1_min, x1_

↪max, 100))
y_grid = 1 / (1 + np.exp(-(a + b * x0 + c * x1)))
cm = matplotlib.colors.LinearSegmentedColormap.from_list('ryg', ['#ff0000', '

↪#ffff00', '#00ff00'])
ax.contourf(x0, x1, y_grid, cmap=cm, levels=np.linspace(0, 1, 50))

# plot data set
ax.scatter(X[y == 0, 0], X[y == 0, 1], c='#ff0000', edgecolor='black')
ax.scatter(X[y == 1, 0], X[y == 1, 1], c='#00ff00', edgecolor='black')

ax.set_xlim(x0_min, x0_max)
ax.set_ylim(x1_min, x1_max)
ax.set_aspect('equal')

With high regularization we obtain a good separating hyperplane neglecting the outlier. Relatively small coefficients
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result in a wide region in which predictions are close to 1
2 .

alpha = 1
logreg = linear_model.LogisticRegression(C=1/alpha)
logreg.fit(X, y)

a = logreg.intercept_[0]
b, c = logreg.coef_[0, :]
print(a, b, c)

fig, ax = plt.subplots(figsize=(8, 8))
plot_linreg(ax, X, y, a, b, c)
plt.show()

0.3275158741724573 2.742734564616664 1.7586424065927262

With almost no regularization we get perfect separation of both classes, but samples close to the red cloud might be
missclassified as green (overfitting). Almost all inputs get classified close to 0 or close to 1. The region with mean
predictions is very small.

alpha = 1e-4

(continues on next page)
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(continued from previous page)

logreg = linear_model.LogisticRegression(C=1/alpha)
logreg.fit(X, y)

a = logreg.intercept_[0]
b, c = logreg.coef_[0, :]
print(a, b, c)

fig, ax = plt.subplots(figsize=(8, 8))
plot_linreg(ax, X, y, a, b, c)
plt.show()

7.8650652464787765 38.74250199983403 -2.765877255810703

If we further decrease regularization we run into numerical difficulties, because coefficients become arbitrarily large.
The fact that for linearly separable classes the minimization problem has no solution can be restated as: the minimizer
lies at infinity. Note that Scikit-Learn stops minimization if a maximum number of iterations is reached or decrease
of the objective function is below some tolerance level. Thus, to see the influence of too low regularization we have
to adjust those parameters. Else minimization stops to early.
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alpha = 1e-15
logreg = linear_model.LogisticRegression(C=1/alpha, tol=1e-7)
logreg.fit(X, y)

a = logreg.intercept_[0]
b, c = logreg.coef_[0, :]
print(a, b, c)

np.exp(-(a + b * -2.1 + c * 1))

33.381878479995414 149.96785067058389 -9.427364096624917

2.3449177053285104e+126

7.5 Decision Boundaries for Multiclass Classification

Classification methods divide the feature space into a set of mutually disjoint subsets, one subset per class. The
boundaries between those subsets are called decision boundaries. For binary logistic regression with threshold-based
classification boundary the decision boundary between the two classes is a hyperplane.
In multiclass classification with classes 1, … , 𝐶 the class with the highest predicted probability is choses as predicted
class. Applying softmax to scores does not change the ordering of the scores. Thus, the class with the highest score
is chosen. In logistic regression scores are linear functions of the feature values. If we want to decide whether class
1 is chosen as prediction for a given feature vector 𝑥 we have to compare corresponding score to scores of all other
classes. The prediction for 𝑥 is class 1 if and only if

̊𝑎T1 ̊𝑥 ≥ ̊𝑎T2 ̊𝑥, … , ̊𝑎T1 ̊𝑥 ≥ ̊𝑎T𝐶 ̊𝑥,

where ̊𝑎𝐶 contains zeros (see above). Equivalently,

( ̊𝑎1 − ̊𝑎2)T ̊𝑥 ≥ 0, … , ( ̊𝑎1 − ̊𝑎𝐶)T ̊𝑥 ≥ 0.

The set of feature vectors 𝑥 satisfying all these inequalities is the intersection of 𝐶 − 1 halfspaces (also known as
𝐶-dimensional polytope).

n1 = 100 # samples in class 0
n2 = 100 # samples in class 1
n3 = 100 # samples in class 2

# generate three point clouds
X1 = rng.multivariate_normal([-0.2, -0.2], [[0.1, 0], [0, 0.1]], size=n1)
X2 = rng.multivariate_normal([0.2, 1], [[0.1, 0], [0, 0.1]], size=n2)
X3 = rng.multivariate_normal([1, -0.2], [[0.1, 0], [0, 0.1]], size=n3)
X = np.concatenate((X1, X2, X3))

# set labels
y1 = 1 * np.ones(n1)
y2 = 2 * np.ones(n2)
y3 = 3 * np.ones(n3)
y = np.concatenate((y1, y2, y3))

# set plotting region
x0_min = X[:, 0].min() - 0.2
x0_max = X[:, 0].max() + 0.2
x1_min = X[:, 1].min() - 0.2
x1_max = X[:, 1].max() + 0.2

(continues on next page)
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(continued from previous page)

# plot data set
fig, ax = plt.subplots(figsize=(8,8))
ax.scatter(X[y == 1, 0], X[y == 1, 1], c='#ff0000', edgecolor='black')
ax.scatter(X[y == 2, 0], X[y == 2, 1], c='#00ff00', edgecolor='black')
ax.scatter(X[y == 3, 0], X[y == 3, 1], c='#0000ff', edgecolor='black')
ax.set_xlim(x0_min, x0_max)
ax.set_ylim(x1_min, x1_max)
ax.set_aspect('equal')
plt.show()

def plot_hyperplane(ax, a, b, c, color, style='-'):

ax.plot([x0_min, x0_max], [-a/c - b/c * x0_min, -a/c - b/c * x0_max], style,␣
↪color=color)

alpha = 1
logreg = linear_model.LogisticRegression(C=1/alpha)
logreg.fit(X, y)

fig, ax = plt.subplots(figsize=(8, 8))

# regions
x0, x1 = np.meshgrid(np.linspace(x0_min, x0_max, 200), np.linspace(x1_min, x1_max,

↪ 200)) (continues on next page)
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(continued from previous page)

y_grid = logreg.predict(np.stack((x0.reshape(-1), x1.reshape(-1)), axis=1)).
↪reshape(x0.shape)

cm = matplotlib.colors.LinearSegmentedColormap.from_list('rgb', ['#ff0000', '
↪#00ff00', '#0000ff'])

ax.contourf(x0, x1, y_grid, cmap=cm)

# data set
ax.scatter(X[y == 1, 0], X[y == 1, 1], c='#ff0000', edgecolor='black')
ax.scatter(X[y == 2, 0], X[y == 2, 1], c='#00ff00', edgecolor='black')
ax.scatter(X[y == 3, 0], X[y == 3, 1], c='#0000ff', edgecolor='black')

a1, a2, a3 = logreg.intercept_
b1, b2, b3 = logreg.coef_[:, 0]
c1, c2, c3 = logreg.coef_[:, 1]

# decision boundaries (halfspaces)
plot_hyperplane(ax, a1 - a2, b1 - b2, c1 - c2, '#ffff00')
plot_hyperplane(ax, a1 - a3, b1 - b3, c1 - c3, '#ff00ff')
plot_hyperplane(ax, a2 - a3, b2 - b3, c2 - c3, '#00ffff')

# per class decision boundary (threshold = 0.5)
#plot_hyperplane(ax, a1, b1, c1, '#ff0000', '--')
#plot_hyperplane(ax, a2, b2, c2, '#00ff00', '--')
#plot_hyperplane(ax, a3, b3, c3, '#0000ff', '--')

ax.set_xlim(x0_min, x0_max)
ax.set_ylim(x1_min, x1_max)
ax.set_aspect('equal')

plt.show()
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CHAPTER

EIGHT

ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks (ANNs) are a fundamental technique in modern machine learning and artificial intelli-
gence. The buzzword deep learning is used for artificial neural networks with many layers of neurons. In this chapter
we consider layered ANNs and the important special case convolutional ANNs (CNNs).

• ANN Basics (page 207)
• Training ANNs (page 216)
• ANNs with Keras (page 233)
• Convolutional Neural Networks (page 252)
• CNNs with Keras (page 265)
• What did the CNN learn? (page 275)
• Improving CNN performance (page 324)

Related projects:
•
• House Prices ANN (page 484)
• PCA and ANN for QMNIST (page 456)
• CNN for QMNIST (page 456)
• CNN Analysis for QMNIST (page 456)
• Hyperparameter Optimization for Cats and Dogs (page 487)

8.1 ANN Basics

Supervised learning aims at approximating a function 𝑓 ∶ 𝑋 → 𝑌 by a function 𝑓approx ∶ 𝑋 → 𝑌 based on a finite
set of examples (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) satisfying 𝑓(𝑥𝑙) = 𝑦𝑙 or at least 𝑓(𝑥𝑙) ≈ 𝑦𝑙 for 𝑙 = 1, … , 𝑛. Almost always
we have finite dimensional feature spaces 𝑋 = ℝ𝑚 and target spaces 𝑌 = ℝ.
A good hypothesis 𝑓approx has to satisfy 𝑓approx(𝑥) ≈ 𝑓(𝑥) for all 𝑥 from the example set (good fit on training set)
and for all other 𝑥 expected to appear in the underlying practical problem (good generalization). To construct good
hypotheses we have to pose additional assumptions on 𝑓approx.
In linear regression we assume that the hypothesis is a linear combination of several prescribed basis functions. The
coefficients are chosen to minimize the fitting error on the training set. Artificial neural networks follow the same idea:
take some function containing several parameters and choose parameters such that the fitting error on the training set
is small. The only difference to linear regression is the chosen ansatz. Typically one does not write down an explicit
formula for 𝑓approx, but one provides a graphical scheme containing all information about the hypothesis. In contrast
to linear regression, ANNs contain the parameters in a nonlinear fashion, resulting in more difficult minimization
procedures. ANNs thus are an example for nonlinear regression. ANNs can be used for classification, too (see
below).
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8.1.1 Motivation from Biology

ANNs originated from the wish to simulate human brains. A brain consists of many nerve cells (neurons) intercon-
nected to transmit information (electrical pulses). All nerve cells have similar structure. The strength of interconnec-
tions between different nerve cells may vary and it is this varying strength which allows humans to learn new things.
Learning, as far as we know, is realized by changing the strength of interconnections between nerve cells and, thus,
reducing or improving the flow of information between different cells. A neuron takes all the electrical pulses from
connected cells (inputs) and generates an output pulse from the inputs.

Fig. 8.1: It also works for anything you teach someone else to do. “Oh yeah, I trained a pair of neural nets, Emily
and Kevin, to respond to support tickets.” Source: Randall Munroe, xkcd.com/2173192

Of course human brains are much more complicated than described here and many mechanisms are not well un-
derstood. But the idea of many interconnected simple units forming a large powerful machine seems to be a key to
artificial intelligence. ANNs try to simulate such networks of neurons on a digital computer.
Next to ANNs there exist several other ideas based on the concept of connecting many simple units. If you are
interested have a look at cellular automata193 and collective intelligence194.
192 https://xkcd.com/2173
193 https://en.wikipedia.org/wiki/Cellular_automaton
194 https://en.wikipedia.org/wiki/Collective_intelligence
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8.1.2 Artificial Neurons

ANNs are composed of artificial neurons, mimicking biological neurons. An artificial neuron is a function taking 𝑝
inputs and yielding one output. Inputs and outputs are real numbers. Each input is multiplied by a weight, then all
the products are added, and an activation function is applied to the sum. The outcome of the activation function is
the neuron’s output.
Weights correspond to the strength of interconnections between biological neurons. The activation function simulates
the fact, that a biological neuron fires (that is, generates an output pulse) only if the level and number of input pulses
is high enough.
Activation functions almost always are monotonically increasing. Some examples:

More activation functions are shown in the Wikipedia article on activation functions195. Which activation function to
choose depends on the underlying practical problem and heavily on experience.
Denoting the inputs by 𝑢1, … , 𝑢𝑝 ∈ ℝ, the weights by 𝑤1, … , 𝑤𝑝 ∈ ℝ, the activation function by 𝑔 ∶ ℝ → ℝ, and the
output by 𝑣 ∈ ℝ, we have

𝑣 = 𝑔 (
𝑝

∑
𝜅=1

𝑤𝜅 𝑢𝜅) .

If 𝑢 is the vector of inputs and 𝑤 is the vector of weights, we may write

𝑣 = 𝑔(𝑤T 𝑢).

8.1.3 Networks of Artificial Neurons

The simplest ANN consists of only one neuron. It takes the the feature values 𝑥(1), … , 𝑥(𝑚) of a feature vector 𝑥 as
inputs, that is, 𝑝 = 𝑚, and the output is interpreted as prediction for the corresponding target 𝑓(𝑥).
We could also take more neurons and feed them with all or some of the feature values. Then the outputs of all neurons
may be fed to one or more other neurons and so on. This way we obtain a network of neurons similar to biological
neural networks (brains). The output of one of the neurons is interpreted as prediction for the targets.
ANNs can be represented graphically. Each neuron is a circle or rect containing information about the activation
function used by the neuron. Connections between inputs and outputs are lines and the weights are numbers assigned
to the corresponding input’s line.
The depicted ANN contains 5 neurons. It’s a special case of a fully connected two-layered feedforward network.
These terms will be introduced below. Wemay write down corresponding hypothesis 𝑓approx as mathematical formula.
Denote the weight vectors by 𝑤, �̂�, �̊�, �̃�, �̄� and the activation functions by 𝑔, ̂𝑔, ̊𝑔, ̃𝑔, ̄𝑔. Then we have

𝑓approx(𝑥) = ̄𝑔(�̄�1 𝑔(𝑤T 𝑥) + �̄�2 ̂𝑔(�̂�T 𝑥) + �̄�3 ̊𝑔(�̊�T 𝑥) + �̄�4 ̃𝑔(�̃�T 𝑥))
195 https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions
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Fig. 8.2: A simple ANN with 5 neurons. Neurons are depicted as circles. Rectangles symbolize input and ouput
values.

with 16 parameters (all the weights). Those 16 parameters have to be chosen to solve

1
𝑛

𝑛
∑
𝑙=1

(𝑓approx(𝑥𝑙) − 𝑦𝑙)
2 → min

weights

with training samples (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛). Below we will discuss how to solve such nonlinear minimization prob-
lems numerically.

8.1.4 Feedforward and Layered Networks

There are many kinds of ANNs and we will meet most of them when going on studying data science. The simplest
and most widely used type of ANNs are feedforward networks. Those are networks in which information flows only
in one direction. The feature values are fed to a set of neurons. Corresponding outputs are fed to a different set
of neurons and so on. The process always ends with a single neuron yielding the prediction. No neuron is used
twice. In contrast there are ANNs which feed a neuron’s output back to another neuron involved in generating the
neuron’s input. Such ANNs contain circles and it is not straight forward how to compute the ANN’s output. It’s a
dynamic process which may converge or not. Although such ANNs are more close to biological neural networks, they
are rarely used because of their computational complexity. Only very special and well structured non-feedforward
ANNs appear in practice.
To allow for more efficient computation, feedforward ANNs often are organized in layers. A layer is a set of neurons
with no interconnections. Neurons of a layer only have connections to other layers. Layers are organized sequentially.
Inputs of the first layer’s neurons are connected to the network inputs (feature values). Outputs are connected to the
inputs of the second layer’s neurons. Outputs from second layer are connected to inputs of third layer and so on. The
last layer has only one neuron yielding the ANN’s output.
A layer may be fully connected to previous and next layer or some connections may be missing (corresponding weights
are fixed to zero). Networks with all layers fully connected are called dense networks.
Computational efficiency of layered feedword networks stems from the fact that the outputs of all neurons in a layer
can be computed simultaneously by matrix vector multiplication. Matrix vector multiplication is a very fast operation
on modern computers, especially if additional GPU (graphics processing unit) capabilities are available.
If 𝑢 is the vector of inputs of a layer (that is, the vector of outputs of the previous layer), then to get the output of each
neuron we have to compute the inner products 𝑤T 𝑢 with 𝑤 being different for each neuron. Taking all the weight
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Fig. 8.3: A layered ANN with 3 or 4 layers (depending on the definition of number of layers).

8.1. ANN Basics 211



Data Science and Artificial Intelligence for Undergraduates
Volume 2: Data Visualization, Supervised Learning

vectors of the neurons in the layer as rows of a matrix 𝑊 the components of 𝑊 𝑢 are exactly those inner products.
If all neurons in the layer use the same activation function (which typically is the case), then we simply have to apply
the activation function to all components of 𝑊 𝑢 to get the layer’s outputs.
In a three-layered network with weight matrices𝑊1, 𝑊2, 𝑊3 and (per layer) activation functions 𝑔1, 𝑔2, 𝑔3 we would
have

𝑓approx(𝑥) = 𝑔3(𝑊3 𝑔2(𝑊2 𝑔1(𝑊1 𝑥))),

where the activation functions are applied componentwise.

8.1.5 Training ANNs

Training an ANN means solving the minimization problem

1
𝑛

𝑛
∑
𝑙=1

(𝑓approx(𝑥𝑙) − 𝑦𝑙)
2 → min

weights
.

The dependence of 𝑓approx on the weights is highly nonlinear. Thus, there is no simple analytical solution. Instead we
have to use numerical procedures to find weights which are at least close to minimizing weights.
The basic idea of such numerical algorithms is to start with arbitrary weights and to improve weights iteratively. Next
to several more advanced techniques, there is a class of algorithms known as gradient descent method. They take the
gradient of the objective function to calculate improved weights. The negative gradient is the direction of steepest
descent. Thus, it should be a good idea to modify weights by substracting the gradient from the current weights. We
stop the iteration, if the gradient is close to zero, that is, if we reached a stationary point.
Gradient descent methods suffer from different problems:

• We need to calculate the gradient of the objective with respect to the weights analytically. Due to the structure
of ANNs this involves repeated application of the chain rule for differentiation.

• Usually we end up in an arbitrary stationary point. With some luck it’s at least a local minimizer. Finding the
global minimizer of a nonlinear function with gradient descent is almost impossible.

• Convergence is slow. We have to do many iterations to find a stationary point.
Due to their simplicity, gradient descent methods are the standard technique for training ANNs. More involved
methods only work for special ANNs, whereas gradient descent is almost always applicable.
We will cover the details of gradient descent in a subsequent chapter.

8.1.6 Overfitting and Regularization

Large ANNs tend to overfit the training data. As for linear regression we might add a penalty to the objective function
to avoid overfitting. Concerning overfitting and regularization there is no difference between linear regression and
ANNs.
For ANNs there also exist regularization techniques not applicable to linear regression. One such technique is kown
as drop out. In each training step the weights of a randomly selected set of neurons are held fixed, that is, they are
excluded from training. This set changes from step to step and the size of the set is a hyperparameter. The idea is
to get more redundancies in the ANN and, thus, more reliable predictions. Especially, generalization power can be
improved by drop out.
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8.1.7 Hyperparameters

ANNs contain two obvious hyperparameters:
• number of layers,
• number of neurons in each layer.

But activation functions may be regarded as hyperparameters, too, since we have to choose them in advance.
There is no essential difference between tuning hyperparameters for ANNs and tuning hyperparameters for linear
regression.

8.1.8 Bias Neurons

Artificial neurons suffer from a problem with inputs being all zero. If all inputs are zero, then multiplication with
weights yields zero, too. Activation functions again map zero to zero. Thus, artificial neurons are not able to give a
nonzero response to all-zero inputs.
One solution would be to use activation functions with nonzero activation for zero input. But this would contradict
the idea of an activation function and we would have to add parameters to activation functions to get variable output
for all-zero inputs.
A better idea is to add a bias neuron to each layer. A bias neuron takes no inputs and always yields the number one
as its output. Neurons in the next layer connected to the bias neuron of the previous layer now always have nonzero
input. With the corresponding weight we are able to adjust the size of the input. Even if all regular inputs are zero
we are able to yield nonzero neuron output this way.

Fig. 8.4: Bias neurons are represented by circles with a one inside.
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Denote the activation function of a neuron by 𝑔. If 𝑤0 is the weight for the input from the bias neuron and if 𝑤 and
𝑢 are the vectors of regular weights and inputs, respectively, then the neuron’s output is

𝑔(𝑤0 + 𝑤T 𝑢).

We see that using bias neurons, the activation function is shifted to the left or to the right, depending on the weight
𝑤0.
For instance, if we use the activation function

𝑔(𝑡) = {1, if 𝑡 > 0,
0, else,

which fires if and only if the weighted inputs add up to a positive number, then introducing a bias neuron, we obtain

𝑔(𝑤0 + 𝑤T 𝑢) = {1, if 𝑤T 𝑢 > −𝑤0,
0, else.

That is, the neuron fires if the sum of weighted regular inputs lies above −𝑤0. In this special case, bias neurons allow
for modifying the threshold for acitvation without modifying the activation function.
From the training point of view, bias neurons do not matter, because they have inputs and thus no weights to train.

8.1.9 Approximation Properties

In linear regression it is obvious which types of functions can be represented by the ansatz for 𝑓approx (linear functions,
polynomials, and so on). For ANNs we have to look more closely. Representable function classes depend on the
activation function, on the number of layers, and on the number of neurons in each layer.
For instance, if we have only one layer and we use threshold activation (zero or one), then 𝑓approx always is a piecewise
constant function. With rectified linear units we always would obtain piecewise linear functions.
Considering more than one layer, things become tricky. But an important result in the theory of ANNs states, that
an ANN with at least one layer is able to approximate arbitrary continuous functions. We simply have to use enough
neurons. The more neurons the better the approximation.
The number of neurons required for good approximation in a single layer ANN might be very large. Often it is
computationally more efficient to have more layers with less neurons. There exist many results on approximation
properties of ANNs. The keyword is universal approximation theorems.

8.1.10 Vector-valued Regression

Up to nowwe only considered approximating realvalued functions of several variables (features), that is, the underlying
truth has continuous range in ℝ. If we want to approximate functions 𝑓 taking values in some higher dimensional
space ℝ𝑑, then we could apply linear regression or ANNs to each of the 𝑑 components of the function independently
(multiplying computational cost by factor 𝑑).
In constrast to linear regression, ANNs allow for more natural extension to multiple outputs. We simply have to add
some neurons to the output layer. This way, the ‘knowledge’ of the ANN can be used by all outputs without training
individual nets for each output component.
Squared error loss for vector-valued regression is

1
𝑛

𝑛
∑
𝑙=1

∣𝑓approx(𝑥𝑙) − 𝑦𝑙∣
2,

where 𝑓approx(𝑥𝑙) − 𝑦𝑙 is a vector with 𝑑 components and | ⋅ | denotes the length of a vector.
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Fig. 8.5: An ANN with three outputs. Number of outputs is independent of the ANN’s overall structure.

8.1.11 ANNs for Classification

An import application of multiple output ANNs are classification tasks. Classification differs from regression in that
the range of the truth 𝑓 is discrete with only few different values (classes). If we predict for each class the probability
that a feature vector belongs to this class, we have a regression problem with multiple outputs. Thus, ANNs can be
used for solving classification problems, too.
ANNs may adapted to classification task in several ways, which we briefly discuss here.

Number of Outputs

Especially for binary classification task we have to decide whether the ANN has one output or two outputs. With
one output (and sigmoid activation in the output neuron) predictions close to 1 indicate one class, predictions close
to 0 indicate the other class. With two output neurons (sigmoid each) the ANN is able to predict ‘both classes’ (both
outputs close to one) or ‘no class’ (both outputs close to zero). Which variant to choose depends on the context.
For multiclass classification with 𝐶 class the analog question is whether to use 𝐶 or 𝐶 − 1 output neurons.
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Softmax Activation

Having as many output neurons as classes may result in unclear predictions if sigmoid activation is used in each output
neuron (multiple outputs could be close to one). Better for interpretation would be a scoring procedure guaranteeing
that all scores add up to 1. Then scores can be interpreted as probability that the input belongs to a certain class.
To implement probability-like scores in ANNs there is the softmax activation function. Strictly speaking it’s not an
activation function because it does not work per neuron but applies jointly to the activations of several neurons. For
a classification problem with 𝐶 classes denote by 𝑎1, … , 𝑎𝐶 the output neurons’ activations (weighted sums of inputs
plus bias) and by 𝑜1, … , 𝑜𝐶 the outputs (activation function applied to activations). Then softmax activation computes

𝑜𝑖 = e𝑎𝑖

𝐶
∑
𝑗=1

e𝑎𝑗

for 𝑖 = 1, … , 𝐶.

The exponential function maps (arbitrary) activations to (0, ∞) and results are weighted to add up to 1.

Log Loss

Mean squared error loss also works for probability-like scores (ANN outputs). But log loss is much more suitable
because it interprets ANN outputs as probabilities and computes the overall predicted probability on a test set, that
all samples belong to their true class.

8.2 Training ANNs

In this chapter we have a close look at gradient descent methods and implement a complete ANN algorithm. Then
we went on to Scikit-Learn’s ANN routines.

8.2.1 Gradient Descent for Nonlinear Minimization Problems

Consider a function ℎ ∶ ℝ𝑝 → ℝ and the corresponding minimization problem

ℎ(𝑤1, … , 𝑤𝑝) → min
𝑤∈ℝ𝑝

.

The gradient

∇ℎ(𝑤1, … , 𝑤𝑝) = ⎡
⎢
⎣

𝜕
𝜕𝑤1

ℎ(𝑤1, … , 𝑤𝑝)
⋮

𝜕
𝜕𝑤𝑝

ℎ(𝑤1, … , 𝑤𝑝)
⎤
⎥
⎦

is the vector of partial derivatives of ℎ with respect to all variables 𝑤1, … , 𝑤𝑝. The gradient is known to be the
direction of steepest ascent. In other words, −∇ℎ(𝑤) is the direction of steepest descent of ℎ at 𝑤.
To find a minimizer of ℎ we might start at some point 𝑤(0), substract the gradient ∇ℎ(𝑤(0)) giving a new point 𝑤(1),
substract∇ℎ(𝑤(1)), and so on. This way function values should become smaller step by step. The problem is that the
negative gradient only provides a direction, but no information about how far we should go in this direction. Thus,
we have to introduce a parameters 𝑠0, 𝑠1, … for each step controlling the step length.
For general directions we have the following algorithm:

1. Choose a starting point 𝑤(0).
2. Repeat for 𝑖 = 0, 1, …:

1. Choose a direction 𝑟𝑖.
2. Choose a step length 𝑠𝑖.
3. Set 𝑤(𝑖+1) = 𝑤(𝑖) + 𝑠𝑖 𝑟𝑖

4. If |𝑤(𝑖+1) − 𝑤(𝑖)| is small enough, then stop iteration.
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In the simplest case we would choose

𝑟𝑖 = −∇ℎ(𝑤(𝑖)) and 𝑠𝑖 = 𝑠

with a constant step length 𝑠 > 0. With this choice we obtain the steepest descent method. It is not guaranteed to
converge. Convergence means, that the stopping cirterion is satisfied after sufficiently many steps. Small 𝑠 yields
higher chances for convergence, but many iterations are required. Large 𝑠 decreases the number of iterations, but the
method may not converge.
To improve performance directions different from the negative gradient can be used. There is a long list of sensible
directions and step lengths, but details are out of this book’s scope.

8.2.2 Gradient Descent for ANNs

To apply gradient descent for training ANNs we have to compute the gradient of the objective

ℎ(𝑤) = 1
𝑛

𝑛
∑
𝑙=1

(𝑓approx(𝑥𝑙) − 𝑦𝑙)
2

with respect to th weight vector 𝑤 containing all weights of the ANN.
For each component of the gradient ∇𝑤ℎ(𝑤) we have

𝜕
𝜕𝑤𝜅

ℎ(𝑤) = 1
𝑛

𝜕
𝜕𝑤𝜅

𝑛
∑
𝑙=1

(𝑓approx(𝑥𝑙) − 𝑦𝑙)
2 = 1

𝑛
𝑛

∑
𝑙=1

𝜕
𝜕𝑤𝜅

(𝑓approx(𝑥𝑙) − 𝑦𝑙)
2.

Chain rule yields
𝜕

𝜕𝑤𝜅
ℎ(𝑤) = 1

𝑛
𝑛

∑
𝑙=1

2 (𝑓approx(𝑥𝑙) − 𝑦𝑙)
𝜕

𝜕𝑤𝜅
𝑓approx(𝑥𝑙).

Thus,
∇ℎ(𝑤) = 2

𝑛
𝑛

∑
𝑙=1

(𝑓approx(𝑥𝑙) − 𝑦𝑙) ∇𝑓approx(𝑥𝑙).

If we take∇𝑓approx(𝑥1), … , ∇𝑓approx(𝑥𝑛) as columns of a matrix𝐺 ∈ ℝ𝑝×𝑛 with 𝑝 being the total number of weights
and if we set

𝑦pred ∶= ⎡⎢
⎣

𝑓approx(𝑥1)
⋮

𝑓approx(𝑥𝑛)
⎤⎥
⎦

and 𝑦 = ⎡⎢
⎣

𝑦1
⋮

𝑦𝑛

⎤⎥
⎦

,

we obtain
∇ℎ(𝑤) = 2

𝑛 𝐺 (𝑦pred − 𝑦).

It remains to find the gradient of 𝑓approx(𝑥) with respect to the weight vector 𝑤 for some feature vector 𝑥. This
gradient heavily depends on the structure of the ANN.

Single Layer ANNs

We compute the gradient ∇𝑓approx(𝑥) for an ANN with only one layer. The main difficulty is to find manageable
notation. We have 𝑚 features, 𝑞 regular neurons, two bias neurons and one output neuron.
We number the regular neurons by 1, … , 𝑞. Weights of the regular neuron with number 𝜇 are denoted by
𝑤in,𝜇

0 , 𝑤in,𝜇
1 , … , 𝑤in,𝜇

𝑚 , where𝑤in,𝜇
0 is the weight of the bias input and the others are for the𝑚 feature inputes. Weights

of the output neuron are denoted by 𝑤out
0 , 𝑤out

1 , … , 𝑤out
𝑞 . Again, 𝑤out

0 is for the bias input and the others are for the
inputs from the 𝑞 regular neurons. Activation functions are 𝑔in for all regular neurons and 𝑔out for the output neuron.
With this notation we have

𝑤 = [𝑤in,1
0 ⋯ 𝑤in,1

𝑚 ⋯ 𝑤in,𝑞
0 ⋯ 𝑤in,𝑞

𝑚 𝑤out
0 ⋯ 𝑤out

𝑞 ]T ∈ ℝ(𝑚+1) 𝑞+𝑞+1
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Fig. 8.6: Single layer ANN with mathematical notation for weights.

for the weight vector and

𝑓approx(𝑥) = 𝑔out (𝑤out
0 +

𝑞
∑
𝜇=1

𝑤out
𝜇 𝑔in (𝑤in,𝜇

0 +
𝑚

∑
𝑘=1

𝑤in,𝜇
𝑘 𝑥(𝑘)))

for the hypothesis. Chain rule yields

𝜕
𝜕𝑤in,𝜇

0
𝑓approx(𝑥) = 𝑤out

𝜇 𝑔′
in (𝑤in,𝜇

0 +
𝑚

∑
𝑘=1

𝑤in,𝜇
𝑘 𝑥(𝑘)) 𝑔′

out (𝑤out
0 +

𝑞
∑
�̃�=1

𝑤out
�̃� 𝑔in (𝑤in,�̃�

0 +
𝑚

∑
𝑘=1

𝑤in,�̃�
𝑘 𝑥(𝑘))) ,

𝜕
𝜕𝑤in,𝜇

𝑘
𝑓approx(𝑥) = 𝑥(𝑘) 𝑤out

𝜇 𝑔′
in

⎛⎜
⎝

𝑤in,𝜇
0 +

𝑚
∑
�̃�=1

𝑤in,𝜇
�̃� 𝑥(�̃�)⎞⎟

⎠
𝑔′
out

⎛⎜
⎝

𝑤out
0 +

𝑞
∑
�̃�=1

𝑤out
�̃� 𝑔in ⎛⎜

⎝
𝑤in,�̃�

0 +
𝑚

∑
�̃�=1

𝑤in,�̃�
�̃� 𝑥(�̃�)⎞⎟

⎠
⎞⎟
⎠

and
𝜕

𝜕𝑤out
0

𝑓approx(𝑥) = 𝑔′
out (𝑤out

0 +
𝑞

∑
𝜇=1

𝑤out
𝜇 𝑔in (𝑤in,𝜇

0 +
𝑚

∑
𝑘=1

𝑤in,𝜇
𝑘 𝑥(𝑘))) ,

𝜕
𝜕𝑤out𝜇

𝑓approx(𝑥) = 𝑔in (𝑤in,𝜇
0 +

𝑚
∑
𝑘=1

𝑤in,𝜇
𝑘 𝑥(𝑘)) 𝑔′

out (𝑤out
0 +

𝑞
∑
�̃�=1

𝑤out
�̃� 𝑔in (𝑤in,�̃�

0 +
𝑚

∑
𝑘=1

𝑤in,�̃�
𝑘 𝑥(𝑘))) .

Introducing activations

𝑎in,𝜇 ∶= 𝑤in,𝜇
0 +

𝑚
∑
𝑘=1

𝑤in,𝜇
𝑘 𝑥(𝑘)

for the regular neurons and

𝑎out ∶= 𝑤out
0 +

𝑞
∑
𝜇=1

𝑤out
𝜇 𝑔in(𝑎in,𝜇)

for the output neuron, we may rewrite those formulas as
𝜕

𝜕𝑤in,𝜇
0

𝑓approx(𝑥) = 𝑤out
𝜇 𝑔′

in(𝑎in,𝜇) 𝑔′
out(𝑎out),

𝜕
𝜕𝑤in,𝜇

𝑘
𝑓approx(𝑥) = 𝑥(𝑘) 𝑤out

𝜇 𝑔′
in(𝑎in,𝜇) 𝑔′

out(𝑎out)
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and
𝜕

𝜕𝑤out
0

𝑓approx(𝑥) = 𝑔′
out(𝑎out),

𝜕
𝜕𝑤out𝜇

𝑓approx(𝑥) = 𝑔in(𝑎in,𝜇) 𝑔′
out(𝑎out).

To get the gradient ∇ℎ(𝑤) we have to do the following:
1. Calculate all activations for all feature vectors 𝑥1, … , 𝑥𝑛.
2. Calculate predictions for all feature vectors 𝑥1, … , 𝑥𝑛 (based on activations from step 1).
3. Built the gradient matrix 𝐺 (based on activations from step 1).
4. Calculate ∇ℎ(𝑤) from predictions and gradient matrix (see above).

Multilayer ANNs

We compute the gradient ∇𝑓approx(𝑥) for an ANN with 𝐿 ≥ 2 layers (excluding the output layer). Above we
considered the special case 𝐿 = 1. For general 𝐿 ∈ ℕ notation is slightly more difficult.

Fig. 8.7: Multilayer ANN with mathematical notation for weights.

We number the layers from 1 (connected to ANN inputs) to 𝐿 (connected to output neuron). Layer 1 has 𝑞1 neurons,
layer 2 has 𝑞2 neurons, and so on. We set 𝑞0 ∶= 𝑚 to be the number of features (inputs to layer 1). Weights are
denoted by 𝑤𝜆,𝜇

𝜈 with 𝜆 = 1, … , 𝐿 for the layer, 𝜇 = 1, … , 𝑞𝜆 for the neuron in the layer, 𝜈 = 0, 1, … , 𝑞𝜆−1 for the
inputs of the neuron (0 for bias neuron plus 𝑞𝜆−1 regular neurons in previous layer). Weights of the output neuron
are 𝑤out

0 , … , 𝑤out
𝑞𝐿
. Activation functions are denoted layerwise by 𝑔1, … , 𝑔𝐿 and 𝑔out.
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We have
𝑤 = [𝑤1,1

0 ⋯ 𝑤1,𝑞1𝑞0 ⋯ 𝑤𝐿,1
0 ⋯ 𝑤𝐿,𝑞𝐿𝑞𝐿−1 𝑤out

0 ⋯ 𝑤out
𝑞𝐿

]T ∈ ℝ𝑝

with

𝑝 = 1 + 𝑞𝐿 +
𝐿

∑
𝜆=1

𝑞𝜆 (1 + 𝑞𝜆−1)

for the weight vector.
For each neuron corresponding activations are defined as follows:

𝑎1,𝜇 ∶= 𝑤1,𝜇
0 +

𝑞0

∑
𝜈=1

𝑤1,𝜇
𝜈 𝑥(𝜈) for 𝜇 = 1, … , 𝑞1,

𝑎𝜆,𝜇 ∶= 𝑤𝜆,𝜇
0 +

𝑞𝜆−1

∑
𝜈=1

𝑤𝜆,𝜇
𝜈 𝑔𝜆−1(𝑎𝜆−1,𝜈) for 𝜇 = 1, … , 𝑞𝜆 and 𝜆 = 2, … , 𝐿,

𝑎out ∶= 𝑤out
0 +

𝑞𝐿

∑
𝜈=1

𝑤out
𝜈 𝑔𝐿(𝑎𝐿,𝜈).

With this notation the hypothesis is
𝑓approx(𝑥) = 𝑔out(𝑎out).

Partial derivatives with respect to the weights of the output neuron are

𝜕
𝜕𝑤out

0
𝑓approx(𝑥) = 𝑔′

out(𝑎out) 𝜕
𝜕𝑤out

0
𝑎out = 𝑔′

out(𝑎out),

𝜕
𝜕𝑤out𝜈

𝑓approx(𝑥) = 𝑔′
out(𝑎out) 𝜕

𝜕𝑤out𝜈
𝑎out = 𝑔′

out(𝑎out) 𝑔𝐿(𝑎𝐿,𝜈) for 𝜈 = 1, … , 𝑞𝐿.

For the other neurons we have

𝜕
𝜕𝑤𝜆,𝜇

𝜈
𝑓approx(𝑥) = 𝑔′

out(𝑎out) 𝜕
𝜕𝑤𝜆,𝜇

𝜈
𝑎out = 𝑔′

out(𝑎out) (
𝑞𝐿

∑
̃𝜈=1

𝑤out
̃𝜈 𝑔′

𝐿(𝑎𝐿, ̃𝜈) 𝜕
𝜕𝑤𝜆,𝜇

𝜈
𝑎𝐿, ̃𝜈) for 𝜈 = 0, 1, … , 𝑞𝜆−1.

We see that we need the partial derivatives of the activations at layer 𝐿. These will depend on the derivatives of the
activations at previous layers. Thus, we calculate all partial derivatives of all activations. Consider a weight𝑤𝜆,𝜇

𝜈 . This
weight has no influence on activations at layers above layer 𝜆 and it also has no influence on activations of neurons at
layer 𝜆 other than neuron 𝜇. So corresponding derivatives are zero. For activations 𝑎𝜆,𝜇 (neuron the weight belongs
to) we get an explicit formula. For layers below layer 𝜆 we obtain recursive formulas:

𝜕
𝜕𝑤𝜆,𝜇

𝜈
𝑎�̃�,�̃� = 𝜕

𝜕𝑤𝜆,𝜇
𝜈

(𝑤�̃�,�̃�
0 +

𝑞�̃�−1

∑
̃𝜈=1

𝑤�̃�,�̃�
̃𝜈 𝑔�̃�−1(𝑎�̃�−1, ̃𝜈))

=

⎧{{{{
⎨{{{{⎩

0, if �̃� < 𝜆,
0, if �̃� = 𝜆, ̃𝜇 ≠ 𝜇,
1, if �̃� = 𝜆, ̃𝜇 = 𝜇, 𝜈 = 0,
𝑔𝜆−1(𝑎𝜆−1,𝜈), if �̃� = 𝜆, ̃𝜇 = 𝜇, 𝜈 > 0,
𝑞�̃�−1
∑
̃𝜈=1

𝑤�̃�,�̃�
̃𝜈 𝑔′

�̃�−1(𝑎�̃�−1, ̃𝜈) 𝜕
𝜕𝑤𝜆,𝜇

𝜈
𝑎�̃�−1, ̃𝜈, if �̃� > 𝜆.

To get partial derivatives for activations on layer 𝐿 with respect to a weight at layer 𝜆 we first have to calculate all
derivatives for activations at layer 𝜆, then at layer 𝜆 + 1 and so on until we reach layer 𝐿. Partial derivatives at layer
𝐿 then yield the desired partial derivative of the ANN’s output.
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Weight Initialization

For the gradient descent algorithm we need to choose a starting guess. That is we have to choose initial values for
all weights. We could set all weights to zero, but then all neurons in a layer would get identical input, leading to
identical partial derivatives in the gradient. Thus, each layer would behave like only one single neuron. To brake this
symmetry one chooses small random numbers as inital weights. All neurons will have different contributions to the
ANN’s output and gradient descent will favor some neurons and some neurons will become less influencial.
We have to keep in mind that gradient descent is likely to converge to a local minimum or, even worse, a stationary
point close to the starting point. Thus, different sets of initial weights may yield different training results.

Input Standardization

Training data should be standardized to equalize numeric ranges of different features. If there would be a feature
with much higher values than the others, then this feature would have much more influence on the initial activations
of the neurons. Thus, corresponding weights will have large components in the gradient and will undergo heavy
manipulation whereas the other weights change only slightly in each gradient descent step.

Stochastic and Mini-batch Training

In each step of the gradient descent method we need to access the whole data set. Each column of the gradient matrix
𝐺 corresponds to one sample. For large data sets this approach consumes too many resources. If the data set does
not fit into memory, then we cannot use the algorithm.
A much more efficient approach is to use only one sample per step. Then the gradient matrix 𝐺 has only one column
and we save lots of resources. For each gradient descent step we randomly choose a different sample. Thus, all
samples will have influence on the training result as before. This approach is known as stochastic gradient descent.
Another advantage is that if the training data set grows during training, then we can integrate newly arrived data
directly into the training process. This is known as online learning.
Mini-batch gradient descent is a mixture of both approaches. We split the training data set into a number of disjoint
subsets and use a different subset in each gradient descent step. Compared to the full data approach we save resources,
but each sample has more influence on the result than for stochastic gradient descent. If the mini-batches are chosen
randomly, then this method sometimes is refered to as stochastic gradient descent, too.

How to Choose Step Length?

If the step length is small, then there is a good chance to find a minimizer of the objective function, but convergence
will be slow. If the step length is large, then we will be relatively close to a minimizer after few descent steps, but the
iterates will overshoot the minimizer. Thus, there will be no convergence.
There exist several strategies to choose the step length. In principle, step length for training is a hyperparameter of an
ANN. We could try different step lengths and look at the prediction quality of the resulting ANN. Another strategy
is to start with large step length and to decrease it during iteration. The idea is to get close to a minimizer within few
iterations. Then the minimizer is approached slowly to avoid overshooting. There exist several other proposals for
step length schedules and there are mathematically justified step length selection rules, too.
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Momentum Methods

Steepest descent is only one variant of gradient descent methods. Steepest descent is the simplest and straight forward,
but suffers from slow convergence and from getting trapped at saddle points. An imporvement is to add momentum.
Here, momentum is to be understood in the sense of physics: a ball rolling down a curvy hill does not follow the
direction of steepest descent, but, due to its momentum, overshoots curves slightly and will cross small dents without
problems. Thus, it will not get trapped by flat local minima or saddle points.
From the mathematical point of view adding momentummeans that the step direction not only depends on the current
gradient, but also on previous gradients. Usually only the gradient at the previous iterate is used in addition. There
are different concrete realizations of the momentum idea out there.

8.2.3 Implementation from Scratch

Later on we will use specialized Python modules for defining and training ANNs. But to gain greater insight into
ANNs we implement the code for a multi-layered feedforward net from scratch.
We first define a class for representing ANNs and then we write a script implementing the steepest descent method.

import numpy as np
import matplotlib.pyplot as plt
import plotly.graph_objects as go

rng = np.random.default_rng(0)

class LayeredFeedforwardANN:

def __init__(self, inputs, neurons, act_funcs):
'''
inputs ... number of inputs (features) to the ANN
neurons ... neurons per layer (list with one item per layer, without␣

↪output layer)
act_funcs ... activation functions (list with one item per layer,␣

↪including output layer),
an activation function has to take two arguments:
- 2d NumPy array with activations,
- True/False, False for function evaluation, True for␣

↪derivative,
has to return NumPy array of same shape as first argument

'''

# number of layers (excluding output layer) --> L
self.layers = len(neurons)

# number of neurons per layer (layer 0 contains feature values, bias␣
↪neurons excluded)

# in formulas above: q_0, ..., q_L, 1
self.neurons = np.array([inputs] + neurons + [1])

# activation function for each layer (layer 0 has no activation function)
# in formulas above: -, g_1, ..., g_L, g_out
self.act_funcs = [None] + act_funcs

# number of weights per layer
self.weights = np.empty(self.layers + 2, dtype=np.int32)
self.weights[0] = 0 # feature values (layer 0)
self.weights[1:] = self.neurons[1:] * (1 + self.neurons[:-1])

# weight vector
self.weight_vector = np.zeros(np.sum(self.weights))

(continues on next page)
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# activations (one matrix per layer, one row per sample,
# columns correspond to neurons, column 0 is bias neurons with nan as␣

↪activation
# to have first regular neuron at column 1)
self.activations = [None] # no neurons with activations on layer 0
for layer in range(1, self.layers + 2):

self.activations.append(np.zeros((1, 1 + self.neurons[layer])))
self.activations[layer][0] = np.nan

# outputs (one matrix per layer, one row per sample,
# columns correspond to neurons, column 0 is bias neuron)
self.outputs = []
for layer in range(0, self.layers + 2):

self.outputs.append(np.zeros((1, 1 + self.neurons[layer])))

def update(self, X):
''' calculate activations and outputs for all neurons (rows of X are␣

↪feature vectors) '''

# outputs of layer 0 are feature values
self.outputs[0] = np.hstack((np.ones((X.shape[0], 1)), X))

for layer in range(1, self.layers + 2):

# weight matrix for layer
W = self.weight_vector[np.sum(self.weights[0:layer]):np.sum(self.

↪weights[0:(layer+1)])]
W = W.reshape(self.neurons[layer], 1 + self.neurons[layer - 1])

# activation of neurons in layer
self.activations[layer] = np.empty((X.shape[0], 1 + self.

↪neurons[layer]))
self.activations[layer][:, 0] = np.nan # bias neuron has no␣

↪activation
self.activations[layer][:, 1:] = np.matmul(W, self.outputs[layer - 1].

↪T).T

# outputs of neurons in layer
self.outputs[layer] = np.empty((X.shape[0], 1 + self.neurons[layer]))
self.outputs[layer][:, 0] = 1
self.outputs[layer][:, 1:] = self.act_funcs[layer](self.

↪activations[layer][:, 1:])

def predict(self, X):
''' rows of X are feature vectors '''

self.update(X)

return self.outputs[-1][:, -1] # exclude output of bias neuron in␣
↪output layer

def _flat(self, l, n, i):
''' calculate index for self.weight_vector from layer, neuron, input␣

↪indices
(in formulas above: l --> \lambda, n --> \mu, i --> \nu) '''

return np.sum(self.weights[0:l]) + (n - 1) * (1 + self.neurons[l - 1]) + i
# (n - 1) because bias neuron has no weights

def get_gradient(self, X=None):

(continues on next page)
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''' If X is None, then gradient with X from previous call to self.predict
is returned. Else self.predict(X) is called before calculating the␣

↪gradient.
Return value is matrix with one column per sample (column is gradient).
'''

# update activations and outputs, if necessary
if not (X is None):

self.update(X)

# derivatives of activation functions at current activations
derivatives = [None]
for layer in range(1, self.layers + 2):

derivatives.append(np.empty(self.activations[layer].shape))
derivatives[layer][:, 0] = np.nan
derivatives[layer][:, 1:] = self.act_funcs[layer](self.

↪activations[layer][:, 1:],
derivative=True)

# partial derivatives of all activations w.r.t. all weights
# (one 3d-array per layer: dim. 0 is weight, dim. 1 is sample, dim. 2 is␣

↪neuron)
# Python names versus variables in formulas above:
# layer --> \tilde{\lambda} ... layer of activation
# neuron --> \tilde{\mu} ... neuron of activation
# l --> \lambda ... layer neuron weight belongs to
# n --> \mu ... neuron weight belongs to
# i --> \nu ... neuron input comes from
pd_of_acts = [None] # no activations on layer 0 (feature values)
for layer in range(1, self.layers + 2):

pd_of_acts.append(np.zeros((self.weight_vector.size, *self.
↪activations[layer].shape)))

for neuron in range(1, self.neurons[layer] + 1):

# l < layer
for l in range(1, layer):

for n in range(1, self.neurons[l] + 1):
for i in range(0, self.neurons[l - 1] + 1):

pd_of_acts[layer][self._flat(l, n, i), :, neuron] \
= np.sum(self.weight_vector[self._flat(layer,␣

↪neuron, 1):(self._flat(layer, neuron, self.neurons[layer-1])+1)]
* derivatives[layer - 1][:, 1:]
* pd_of_acts[layer - 1][self._flat(l, n,␣

↪i), :, 1:], axis=1)

# l == layer (only p.d. for n == neuron are nonzero)
pd_of_acts[layer][self._flat(layer, neuron, 0), :, neuron] = 1
for i in range(1, self.neurons[layer - 1] + 1):

pd_of_acts[layer][self._flat(layer, neuron, i), :, neuron] \
= self.outputs[layer - 1][:, i]

# make gradient
G = np.empty((self.weight_vector.size, self.outputs[-1].shape[0]))
for l in range(1, self.layers + 2):

for n in range(1, self.neurons[l] + 1):
for i in range(0, self.neurons[l - 1] + 1):

G[self._flat(l, n, i), :] = (derivatives[-1][:, 1:]
* pd_of_acts[-1][self._flat(l, n,␣

↪i), :, 1:]).reshape(-1)

(continues on next page)
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return G

We need some activation functions. Linear activation is used for the output neuron. The others are for the hidden
neurons.

def linear_activation(a, derivative=False):

if derivative:
return np.ones(a.shape)

else:
return a

def relu_activation(a, derivative=False):

if derivative:
return (a > 0).astype(a.dtype)

else:
return np.maximum(np.zeros(a.shape), a)

def tanh_activation(a, derivative=False):

if derivative:
return 1 - np.tanh(a) ** 2

else:
return np.tanh(a)

To test our ANN code we simulate some data with two features. We only use two features for testing, because a
function on ℝ2 can be visualized as 3d plot.

def truth(x1, x2):
return np.sin(np.pi * x1) + x2 ** 2

n_grid = 50 # grid point per axis for plotting

x1 = np.linspace(-1, 1, n_grid)
x2 = np.linspace(-1, 1, n_grid)
[grid_x1, grid_x2] = np.meshgrid(x1, x2)
grid_truth = truth(grid_x1, grid_x2)

fig = go.Figure()
fig.layout.width = 800
fig.layout.height = 600

fig.add_trace(go.Surface(
x=grid_x1, y=grid_x2, z=grid_truth,
colorscale=[[0, 'rgb(0,0,255)'], [1, 'rgb(0,0,255)']],
showscale=False

))

fig.update_scenes(
xaxis_title_text='feature 1',
yaxis_title_text='feature 2',
zaxis_title_text='target'

)
fig.update_layout(title={'text': 'truth', 'x': 0.5, 'xanchor': 'center'})

fig.show()
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<IPython.core.display.HTML object>

From the true function (which is unknown in practise) we draw samples for training the ANN. To come closer to real
data we add some random noise.

n_samples = 100
noise_level = 0.05

X = rng.uniform(-1, 1, (n_samples, 2))
y = truth(X[:, 0], X[:, 1]) + rng.normal(0, noise_level, n_samples)

fig = go.Figure()
fig.layout.width = 800
fig.layout.height = 600

fig.add_trace(go.Surface(
x=grid_x1, y=grid_x2, z=grid_truth,
colorscale=[[0, 'rgb(0,0,255)'], [1, 'rgb(0,0,255)']],
showscale=False

))

fig.add_trace(go.Scatter3d(
x=X[:, 0], y=X[:, 1], z=y,
marker={'size': 2, 'color': 'rgba(255,0,0,1)'},
line={'width': 0, 'color': 'rgba(0,0,0,0)'},
hoverinfo = 'none'

))

fig.update_scenes(
xaxis_title_text='feature 1',
yaxis_title_text='feature 2',
zaxis_title_text='target'

)
fig.update_layout(title={'text': 'truth and noisy data', 'x': 0.5, 'xanchor':

↪'center'})

fig.show()

<IPython.core.display.HTML object>

We implement gradient descent using all training samples in each gradient step.

def gradient_descent_full_batch(net, X, y):

step_length = 0.1
max_iter = 10000 # stop after at most so many iterations
smallest_grad = 1e-10 # abort iteration if gradient size is below this␣

↪value
show_status_after = 100 # print infos after so many interations

for i in range(0, max_iter):

y_pred = net.predict(X)
G = net.get_gradient()
grad = 2 / y.size * np.matmul(G, (y_pred - y))

net.weight_vector = net.weight_vector - step_length * grad

grad_size = np.max(np.abs(grad))
if grad_size < smallest_grad:

(continues on next page)
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print('Stopped by small gradient after {} iterations.'.format(i))
break

if i % show_status_after == 0:
objective = 1 / y.size * np.sum((y - y_pred) ** 2)
print('iteration {}, grad size {}, objective value {}'.format(i, grad_

↪size, objective))

else:
print('Stopped by max_iter with grad_size = {}.'.format(grad_size))

Now we define an ANN and start training.

net = LayeredFeedforwardANN(2, [5, 4, 3], 3 * [tanh_activation] + [linear_
↪activation])

#net = LayeredFeedforwardANN(2, [5], 1 * [relu_activation] + [linear_activation])

net.weight_vector = 0.1 * rng.normal(size=net.weight_vector.size)
gradient_descent_full_batch(net, X, y)

iteration 0, grad size 0.5199772941237953, objective value 0.6682282913363523
iteration 100, grad size 0.004188259115251231, objective value 0.

↪6001853239675975
iteration 200, grad size 0.0067462327164474, objective value 0.5994163438040679
iteration 300, grad size 0.01947130728030662, objective value 0.5945976349492498
iteration 400, grad size 0.05696353674497658, objective value 0.

↪27437575660531127
iteration 500, grad size 0.027526464130790823, objective value 0.

↪21478552687825506
iteration 600, grad size 0.009114642672881857, objective value 0.

↪19661760598408443
iteration 700, grad size 0.004846327193297142, objective value 0.193206235258564
iteration 800, grad size 0.004872007975520194, objective value 0.

↪19187781786194577
iteration 900, grad size 0.007417776383947535, objective value 0.

↪19043590964259213
iteration 1000, grad size 0.008885552556249987, objective value 0.

↪18837353720412067
iteration 1100, grad size 0.009568037192828935, objective value 0.

↪18563996550698536
iteration 1200, grad size 0.010012054354481381, objective value 0.

↪18220440430619483
iteration 1300, grad size 0.010418178877651126, objective value 0.

↪17803497660056844
iteration 1400, grad size 0.01075639712936235, objective value 0.

↪17321340025738413
iteration 1500, grad size 0.010947923113323852, objective value 0.

↪16795120443934383
iteration 1600, grad size 0.010934279401701321, objective value 0.

↪16253664459446235
iteration 1700, grad size 0.010698097971309628, objective value 0.

↪1572670641107871
iteration 1800, grad size 0.010262207608537792, objective value 0.

↪1523889646805046
iteration 1900, grad size 0.009676890023421739, objective value 0.

↪14806085026090485
iteration 2000, grad size 0.00900891008384827, objective value 0.14434372346886
iteration 2100, grad size 0.00833508321112536, objective value 0.

↪14120819144319677
iteration 2200, grad size 0.0077223848466977055, objective value 0.

↪13856023629741945 (continues on next page)
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iteration 2300, grad size 0.0072026400917086, objective value 0.
↪13628658605000918

iteration 2400, grad size 0.006774949415083191, objective value 0.
↪1342867512079747

iteration 2500, grad size 0.4381234445624277, objective value 0.
↪15948243205052437

iteration 2600, grad size 0.3040936511232076, objective value 0.1459351832762161
iteration 2700, grad size 0.2935434609394815, objective value 0.

↪14490588894469558
iteration 2800, grad size 0.28580780347654683, objective value 0.

↪14391902900710235
iteration 2900, grad size 0.27746029701818486, objective value 0.

↪14245411381443282
iteration 3000, grad size 0.29328182758454185, objective value 0.

↪1400263806581496
iteration 3100, grad size 0.3103952148237437, objective value 0.1357177431813228
iteration 3200, grad size 0.3089037082357916, objective value 0.

↪12854283894561383
iteration 3300, grad size 0.2906689025696309, objective value 0.

↪12016943141244246
iteration 3400, grad size 0.2703828281297573, objective value 0.

↪11274969322635943
iteration 3500, grad size 0.25129739381599697, objective value 0.106501641601027
iteration 3600, grad size 0.24135077314606818, objective value 0.

↪10141104705971411
iteration 3700, grad size 0.2421217908293113, objective value 0.

↪09778612839471253
iteration 3800, grad size 0.25711890185003916, objective value 0.

↪09568766417502658
iteration 3900, grad size 0.284722246737777, objective value 0.0947076864898635
iteration 4000, grad size 0.3296932782682503, objective value 0.

↪09403499028986839
iteration 4100, grad size 0.3798402640685176, objective value 0.

↪09248875950132941
iteration 4200, grad size 0.4245701332943749, objective value 0.

↪08898185624750109
iteration 4300, grad size 0.45647057405936353, objective value 0.

↪08323629490675982
iteration 4400, grad size 0.4776166938744331, objective value 0.

↪07560503586718813
iteration 4500, grad size 0.4756286013031701, objective value 0.

↪06580074692959394
iteration 4600, grad size 0.4237758050301021, objective value 0.

↪05261848784999673
iteration 4700, grad size 0.32792804776147605, objective value 0.

↪03712512520184369
iteration 4800, grad size 0.23425395310685446, objective value 0.

↪02445699644936167
iteration 4900, grad size 0.18114834289066026, objective value 0.

↪017227636682214578
iteration 5000, grad size 0.16603929903997156, objective value 0.

↪0139897055034033
iteration 5100, grad size 0.1623863909382122, objective value 0.

↪012446982807328397
iteration 5200, grad size 0.1586237216430685, objective value 0.

↪011479020481321035
iteration 5300, grad size 0.15370335463078733, objective value 0.

↪010749620797045056
iteration 5400, grad size 0.1484288710518272, objective value 0.

↪010166610010989872
iteration 5500, grad size 0.14333675997862402, objective value 0.

↪009690543922116402 (continues on next page)
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iteration 5600, grad size 0.13870582731696862, objective value 0.
↪009298915283085041

iteration 5700, grad size 0.13458156869585244, objective value 0.
↪008972069187505413

iteration 5800, grad size 0.1309219560547808, objective value 0.
↪008694452506876942

iteration 5900, grad size 0.12764751905438942, objective value 0.
↪008453672061747604

iteration 6000, grad size 0.12467834200270841, objective value 0.
↪008240424124501034

iteration 6100, grad size 0.12194550534874606, objective value 0.
↪008047859024417934

iteration 6200, grad size 0.11939480580182533, objective value 0.
↪007871041114899354

iteration 6300, grad size 0.11698545180964257, objective value 0.
↪0077064369028187205

iteration 6400, grad size 0.11468761611433648, objective value 0.
↪0075515233404994725

iteration 6500, grad size 0.11247971986898214, objective value 0.
↪007404486914100332

iteration 6600, grad size 0.11034623722964698, objective value 0.
↪007264013112872696

iteration 6700, grad size 0.10827590974319178, objective value 0.
↪007129133998917132

iteration 6800, grad size 0.10626050161504519, objective value 0.
↪006999126177998285

iteration 6900, grad size 0.10429386528215825, objective value 0.
↪0068734380340564755

iteration 7000, grad size 0.10237132613873698, objective value 0.
↪006751641659555333

iteration 7100, grad size 0.10048923678407225, objective value 0.
↪006633398560380885

iteration 7200, grad size 0.09864468941543514, objective value 0.
↪006518436751616424

iteration 7300, grad size 0.09683531271854097, objective value 0.
↪0064065343126327

iteration 7400, grad size 0.09505913998032933, objective value 0.
↪0062975080366066164

iteration 7500, grad size 0.0939519377661455, objective value 0.
↪006191205164444023

iteration 7600, grad size 0.09285496082438308, objective value 0.
↪0060874973754314445

iteration 7700, grad size 0.09176074803899621, objective value 0.
↪0059862762779628554

iteration 7800, grad size 0.0906688020220651, objective value 0.
↪005887449924631518

iteration 7900, grad size 0.08957875395805977, objective value 0.
↪005790940069909926

iteration 8000, grad size 0.08849035491376321, objective value 0.
↪005696679930145535

iteration 8100, grad size 0.08740346792360068, objective value 0.
↪0056046123270596685

iteration 8200, grad size 0.08631806015976771, objective value 0.
↪005514688110645113

iteration 8300, grad size 0.0852341950423185, objective value 0.
↪005426864801858907

iteration 8400, grad size 0.0841520242567544, objective value 0.
↪005341105413835451

iteration 8500, grad size 0.0830717796635153, objective value 0.
↪005257377420520317

iteration 8600, grad size 0.0819937652102004, objective value 0.
↪005175651854001437 (continues on next page)
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iteration 8700, grad size 0.08091834891682995, objective value 0.
↪005095902514808226

iteration 8800, grad size 0.07984595502241544, objective value 0.
↪005018105283735866

iteration 8900, grad size 0.07877705637468307, objective value 0.
↪004942237526011821

iteration 9000, grad size 0.0777121671202834, objective value 0.
↪004868277579470936

iteration 9100, grad size 0.07665183574576094, objective value 0.
↪0047962043195361485

iteration 9200, grad size 0.07559663850276738, objective value 0.
↪004725996794204519

iteration 9300, grad size 0.0745471732378859, objective value 0.
↪004657633922577992

iteration 9400, grad size 0.0735040536377324, objective value 0.
↪00459109425080472

iteration 9500, grad size 0.07246790389135159, objective value 0.
↪004526355759560328

iteration 9600, grad size 0.07143935376462186, objective value 0.
↪0044633957174459735

iteration 9700, grad size 0.07041903407678365, objective value 0.
↪00440219057498265

iteration 9800, grad size 0.06940757256578538, objective value 0.
↪004342715894193019

iteration 9900, grad size 0.06840559012591425, objective value 0.
↪0042849463090558135

Stopped by max_iter with grad_size = 0.06732832266043533.

Now the net is trained and we may use it for predicting the target variable for arbitrary data.

X_grid = np.stack((grid_x1.reshape(-1), grid_x2.reshape(-1)), axis=1)
grid_pred = net.predict(X_grid).reshape(n_grid, n_grid)

fig = go.Figure()
fig.layout.width = 800
fig.layout.height = 600

fig.add_trace(go.Surface(
x=grid_x1, y=grid_x2, z=grid_truth,
colorscale=[[0, 'rgb(0,0,255)'], [1, 'rgb(0,0,255)']],
showscale=False

))

fig.add_trace(go.Scatter3d(
x=grid_x1.reshape(-1), y=grid_x2.reshape(-1), z=grid_pred.reshape(-1),
marker={'size': 1, 'color': 'rgba(0,255,0,1)'},
line={'width': 0, 'color': 'rgba(0,0,0,0)'},
hoverinfo='none',
name='predictions'

))

fig.add_trace(go.Scatter3d(
x=X[:, 0], y=X[:, 1], z=y,
marker={'size': 2, 'color': 'rgba(255,0,0,1)'},
line={'width': 0, 'color': 'rgba(0,0,0,0)'},
hoverinfo = 'none',
name='training data'

))

fig.update_scenes(

(continues on next page)
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xaxis_title_text='feature 1',
yaxis_title_text='feature 2',
zaxis_title_text='target'

)
fig.update_layout(title={'text': 'truth vs. predictions', 'x': 0.5, 'xanchor':

↪'center'})

fig.show()

<IPython.core.display.HTML object>

8.2.4 ANNs with Scikit-Learn

Scikit-Learn supports layered feedworward ANNs, too. Sometimes, for instance in Scikit-Learn, they are
called multi-layer perceptrons or MLPs for short. Corresponding class is MLPRegressor196 in sklearn.
neural_network. Scikit-Learn’s implementation is more efficient than ours above, but not intended for training
large scale ANNs. For small and medium sized ANNs it’s okay.
Usage is identical to other Scikit-Learn regressors: create an object of type MLPRegressor, call fit, and then
predict. Different training algorithms are offered including gradient descent with full batch and mini-batches as
well as online learning. For other algorithms have a look at the documentation. Regularization is included, too.

# X, y from above

import sklearn.neural_network as neural_network

reg = neural_network.MLPRegressor(hidden_layer_sizes=(5, 4, 3),
activation='relu',
solver='sgd', # gradient descent
alpha=0, # no regularization
batch_size=y.size, # full batch
learning_rate_init=0.1,
max_iter=10000,
momentum=0, # no momentum
tol=1e-10, # stop if change of loss is below
verbose=False) # print status information

reg.fit(X, y)

MLPRegressor(alpha=0, batch_size=100, hidden_layer_sizes=(5, 4, 3),
learning_rate_init=0.1, max_iter=10000, momentum=0, solver='sgd',
tol=1e-10)

Now the net is trained and we may use it for prediction.

# grid_x1, grid_x2, grid_truth from above

X_grid = np.stack((grid_x1.reshape(-1), grid_x2.reshape(-1)), axis=1)
grid_pred = reg.predict(X_grid).reshape(n_grid, n_grid)

fig = go.Figure()
fig.layout.width = 800
fig.layout.height = 600

fig.add_trace(go.Surface(

(continues on next page)
196 https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html
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x=grid_x1, y=grid_x2, z=grid_truth,
colorscale=[[0, 'rgb(0,0,255)'], [1, 'rgb(0,0,255)']],
showscale=False

))

fig.add_trace(go.Scatter3d(
x=grid_x1.reshape(-1), y=grid_x2.reshape(-1), z=grid_pred.reshape(-1),
marker={'size': 1, 'color': 'rgba(0,255,0,1)'},
line={'width': 0, 'color': 'rgba(0,0,0,0)'},
hoverinfo='none',
name='predictions'

))

fig.add_trace(go.Scatter3d(
x=X[:, 0], y=X[:, 1], z=y,
marker={'size': 2, 'color': 'rgba(255,0,0,1)'},
line={'width': 0, 'color': 'rgba(0,0,0,0)'},
hoverinfo = 'none',
name='training data'

))

fig.update_scenes(
xaxis_title_text='feature 1',
yaxis_title_text='feature 2',
zaxis_title_text='target'

)
fig.update_layout(title={'text': 'truth vs. predictions', 'x': 0.5, 'xanchor':

↪'center'})

fig.show()

<IPython.core.display.HTML object>

Scikit-Learn provides access to several parameters of the ANN and of the training phase. For example, we may
inspect the loss curve, that is, the loss (value of objective function) for each iteration. See documentation for more.

fig, ax = plt.subplots()
ax.plot(reg.loss_curve_, '-b')
ax.set_xlabel('iteration')
ax.set_ylabel('loss')
plt.show()
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8.3 ANNs with Keras

To represent complex hypotheses with ANNs we need thousands or even millions of artificial neurons. ANNs with
few large layers turned out be less effective than ANNs with many smaller layers. The latter are referred to as deep
networks and their usage is known as deep learning.
Training ANNs requires lots of computation time for large data sets and large networks. Thus, we need efficient
implementations of learning procedures and powerful hardware. Scikit-Learn aims at educational projects and offers
a wide scale of machine learning methods. Implementation is less optimized for execution speed than for providing
insight into the algorithms and providing access to all the parameters and intermediate results. Further, Scikit-Learn
does not use all features of modern hardware.
Libraries for high-performance machine learning have to be more specialized on specific tasks to allow for optimizing
efficiency. Keras197 is an open source library for implementing and training ANNs. Like Scikit-Learn it provides
preprocessing routines as well as postprocessing (optimizing hyperparameters). But Keras utilizes full computation
power of modern computers for training ANNs, leading to much shorter training times.
Modern computers have multi-core CPUs. So they can process several programs in parallel. In addition, almost all
computers have a powerful GPU (graphics processing unit). It’s like a second CPU specialized at doing floating point
computations for rendering 3d graphics. GPUs are much more suited for training ANNs than CPUs, because they are
designed to work with many large matrices of floating point numbers in parallel. Nowadays GPUs can be accessed
by software developers relatively easily. Thus, we may run programs on the GPU instead of the CPU.
Keras seamlessly integrates GPU power for ANN training into Python. We do not have to care about the details.
Keras piggybacks on an open source library called TensorFlow198 developed by Google. Keras does much of the
work for us, but from time to time TensorFlow will show up, too. Keras started independently from TensorFlow,
then integrated support for TensorFlow, and now is distributed as a module in the TensorFlow Python package.
197 https://keras.io
198 https://www.tensorflow.org/
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import tensorflow.keras as keras

2023-04-25 10:26:31.847362: I tensorflow/core/platform/cpu_feature_guard.
↪cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network␣
↪Library (oneDNN) to use the following CPU instructions in performance-
↪critical operations: SSE4.1 SSE4.2 AVX AVX2 FMA

To enable them in other operations, rebuild TensorFlow with the appropriate␣
↪compiler flags.

8.3.1 An ANN for Handwritten Digit Recognition

To demonstrate usage of Keras we implement and train a layered feedforward ANN to classify handwritten digits
from the QMNIST data set. Inputs to the ANN are images of size 28x28. Thus, the feature space has dimension 784.
Outputs are 10 real numbers in [0, 1]. Each number represents the probability that the image shows the corresponding
digit.
We could also use an ANN with only one output and require that this output is the digit, that is, it has range [0, 9].
But how to interpret an output of 3.5? It suggests that the ANN cannot decide between 3 and 4. Or it might waffle
on 2 and 5. Using only one output we would introduce artificial order and, thus, wrong similarity assumptions. From
the view of similarity of shape (and only that matters in digit recognition), 3 and 8 are more close to each other than
7 and 8 are. Using one output per figure we avoid artificial assumptions and get more precise information on possible
missclassifications. Images with high outputs for both 1 and 7 could be marked for subsequent review by a human,
for example

Loading Data

For loading QMNIST data we may reuse code from Load QMNIST (page 453) project. We have to load training data
and test data, both consisting of 60000 images and corresponding labels.

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns

import qmnist

train_images, train_labels, _, _ = qmnist.load('../../../../datasets/qmnist/',␣
↪subset='train')

test_images, test_labels, _, _ = qmnist.load('../../../../datasets/qmnist/',␣
↪subset='test')

train_images.shape, test_images.shape, train_labels.shape, test_labels.shape

((60000, 28, 28), (60000, 28, 28), (60000,), (60000,))

train_images[0, :, :].min(), train_images[0, :, :].max()

(0.0, 1.0)

For visualization of data we use a gray scale with black at smallest value and white at highest value.
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def show_image(img):
fig, ax = plt.subplots(figsize=(2, 2))
ax.imshow(img, vmin=0, vmax=1, cmap='gray')
ax.axis('off')
plt.show()

idx = 123

show_image(train_images[idx, :, :])
print('label:', train_labels[idx])

label: 7

Preprocessing

Input to an ANN should be standardized or normalized. QMNIST images have range [0, 1]. That’s okay.
Optionally, we may center the images with respect to a figure’s bounding box. Without this step the center of mass
is identical to the image center (we may reuse code from ). As a by-product of centering bounding boxes each image
will have 4 unused pixels at the boundary. Thus, we may crop images to 20x20 pixels without loss of information
(resulting in 400 instead of 784 features).

def auto_crop(img):

# binarize image
mask = img > 0

# whole image black?
if not mask.any():

return np.array([])

# get top and bottom index of bounding box
row_mask = mask.any(axis=1)
top = np.argmax(row_mask)
bottom = row_mask.size - np.argmax(row_mask[::-1]) # bottom index + 1

# get left and right index of bounding box
col_mask = mask[top:bottom, :].any(axis=0) # [top:bottom, :] for␣

↪efficiency only
left = np.argmax(col_mask)
right = col_mask.size - np.argmax(col_mask[::-1]) # right index + 1

# crop
return img[top:bottom, left:right].copy()

(continues on next page)
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def center(img, n):

# check image size
if np.max(img.shape) > n:

print('n too small! Cropping image.')
img = img[0:np.minimum(n, img.shape[0]), 0:np.minimum(n, img.shape[1])]

# calculate margin width
top_margin = (n - img.shape[0]) // 2
left_margin = (n - img.shape[1]) // 2

# create image
img_new = np.zeros((n, n), dtype=img.dtype)
img_new[top_margin:(top_margin + img.shape[0]),

left_margin:(left_margin + img.shape[1])] = img

return img_new

train_images = qmnist.preprocess(train_images, [auto_crop, lambda img: center(img,
↪ 20)])

test_images = qmnist.preprocess(test_images, [auto_crop, lambda img: center(img,␣
↪20)])

idx = 123

show_image(train_images[idx, :, :])
print('label:', train_labels[idx])

label: 7

Training labels have to be one-hot encoded. This can be done manually with NumPy or automatically with Pandas
or Scikit-Learn. Also Keras provides a function for one-hot encoding: to_categorical199.

train_labels = keras.utils.to_categorical(train_labels)
test_labels = keras.utils.to_categorical(test_labels)

train_labels.shape, test_labels.shape

((60000, 10), (60000, 10))

199 https://keras.io/api/utils/python_utils/#tocategorical-function
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Defining the ANN

Keras has a Model200 class representing a directed graph of layers of neurons. At the moment we content ourselves
with simple network structures, that is, we have a sequence of layers. For such simple structures Keras has the
Sequential201 class. That class represents a stack of layers of neurons. It’s a subclass of Model.
A layer is represented by one of several layer classes in Keras. For a fully connected feedforward ANN we need an
Input202 layer and several Dense203 layers. Layers can be added one by one with Sequential.add204.
Input layers accept multi-dimensional inputs. Thus, we do not have to convert the 20x20 images to vectors with
400 components. But Dense layers want to have one-dimensional input. Thus, we use a Flatten205 layer. Like the
Input layer that’s not a layer of neurons. Layers in Keras have to be understood as transformations taking some
input and yielding some output. For Dense layers we need to specify the number of neurons and the activation
function to use. There are several pre-defined activation functions206 in Keras.
Layers may have a name, which will help accessing single layers for analysis of a trained model. If we do not specify
layer names, Keras generates them automatically.

model = keras.Sequential()

model.add(keras.Input(shape=(20, 20)))
model.add(keras.layers.Flatten())

model.add(keras.layers.Dense(10, activation='relu', name='dense1'))
model.add(keras.layers.Dense(10, activation='relu', name='dense2'))

2023-04-25 10:26:40.248000: E tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪driver.cc:267] failed call to cuInit: CUDA_ERROR_UNKNOWN: unknown error

2023-04-25 10:26:40.248032: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪diagnostics.cc:169] retrieving CUDA diagnostic information for host: WHZ-46349

2023-04-25 10:26:40.248039: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪diagnostics.cc:176] hostname: WHZ-46349

2023-04-25 10:26:40.248184: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪diagnostics.cc:200] libcuda reported version is: 470.161.3

2023-04-25 10:26:40.248204: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪diagnostics.cc:204] kernel reported version is: 470.161.3

2023-04-25 10:26:40.248209: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪diagnostics.cc:310] kernel version seems to match DSO: 470.161.3

2023-04-25 10:26:40.248864: I tensorflow/core/platform/cpu_feature_guard.
↪cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network␣
↪Library (oneDNN) to use the following CPU instructions in performance-
↪critical operations: SSE4.1 SSE4.2 AVX AVX2 FMA

To enable them in other operations, rebuild TensorFlow with the appropriate␣
↪compiler flags.

The output layer is a Dense layer with 10 neurons. Because all outputs shall have range [0,1] we use the sigmoid
function.

model.add(keras.layers.Dense(10, activation='sigmoid', name='out'))

Output shape can be accessed via corresponding member variable:

model.output_shape

200 https://keras.io/api/models/model/
201 https://keras.io/api/models/sequential/
202 https://keras.io/api/layers/core_layers/input/
203 https://keras.io/api/layers/core_layers/dense/
204 https://keras.io/api/models/sequential/#add-method
205 https://keras.io/api/layers/reshaping_layers/flatten/
206 https://keras.io/api/layers/activations/
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(None, 10)

Almost always the first dimension of input or output shapes is the batch size for mini-batch training in Keras. None
is used, if there is no fixed batch size.
More detailed information about the constructed ANN is provided by Sequential.summary:

model.summary()

Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #

=================================================================
flatten (Flatten) (None, 400) 0

dense1 (Dense) (None, 10) 4010

dense2 (Dense) (None, 10) 110

out (Dense) (None, 10) 110

=================================================================
Total params: 4,230
Trainable params: 4,230
Non-trainable params: 0
_________________________________________________________________

Training the ANN

Parameters for training are set with Model.compile207. Here we may define an optimization routine. Next to
gradient descent there are several other optimizers available208. The optimizer can be passed by name (as string) or
we may create a Python object of the respective optimizer class. The latter allows for custom parameter choice.
Next to the optimizer we have to provide a loss function209. Again we may pass a string or an object. Because we
have a classification problem we may use log loss.
If we want to validate the model during training, we may pass validation metrics210 to compile. Then output during
training includes updated values for the validation metrics on training and validation data. For classification we may
use accuracy score. Again, metrics can be passsed by name or as an object. Since we might wish to compute several
different metrics, the metrics argument expects a list.

model.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=[
↪'categorical_accuracy'])

Now the model is ready for training. In Keras training is done by calling Model.fit211. We may specify the batch
size for mini-batch training and the number of epochs. An epoch is a sequence of iterations required to cycle through
the training data once. Small batch sizes require more iterations per epoch, large batch sizes require fewer iterations.
In full-batch training epochs and iterations are equivalent. We may also specify validation data (directly or as fraction
of the training data) to get validation metrics after each epoch. Thus, we can see wether the model overfits the data
during training and abort training if necessary. The return value of fit will be discussed below.

history = model.fit(train_images, train_labels, batch_size=100, epochs=5,␣
↪validation_split=0.2)

207 https://keras.io/api/models/model_training_apis/#compile-method
208 https://keras.io/api/optimizers/#available-optimizers
209 https://keras.io/api/losses/#available-losses
210 https://keras.io/api/metrics/
211 https://keras.io/api/models/model_training_apis/#fit-method
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Epoch 1/5
480/480 [==============================] - 1s 2ms/step - loss: 2.0348 -␣

↪categorical_accuracy: 0.3197 - val_loss: 1.6531 - val_categorical_accuracy: 0.
↪4880

Epoch 2/5
480/480 [==============================] - 1s 1ms/step - loss: 1.2421 -␣

↪categorical_accuracy: 0.6128 - val_loss: 0.8575 - val_categorical_accuracy: 0.
↪7488

Epoch 3/5
480/480 [==============================] - 1s 1ms/step - loss: 0.7235 -␣

↪categorical_accuracy: 0.7898 - val_loss: 0.5639 - val_categorical_accuracy: 0.
↪8444

Epoch 4/5
480/480 [==============================] - 1s 1ms/step - loss: 0.5463 -␣

↪categorical_accuracy: 0.8456 - val_loss: 0.4627 - val_categorical_accuracy: 0.
↪8720

Epoch 5/5
480/480 [==============================] - 1s 1ms/step - loss: 0.4769 -␣

↪categorical_accuracy: 0.8661 - val_loss: 0.4172 - val_categorical_accuracy: 0.
↪8847

Hint: Note that validation accuracy displayed by Keras sometimes is higher than training accuracy. The reason is
that train accuracy is the mean over all iterations of an epoche, but validation accuracy is calulated only at the end of
an epoche. Thus, training accuracy includes poorer accuracy values from beginning of an epoche.

Incremental Training

The Model.fitmethod returns a History object containing information about loss and metrics for each training
epoch. The object has a dict member history containing losses and metrics. Loss keys are loss and val_loss
for training and validation, respectively. Metrics keys depend an the chosen metrics.

fig, ax = plt.subplots()
ax.plot(history.history['loss'], '-b', label='training loss')
ax.plot(history.history['val_loss'], '-r', label='validation loss')
ax.legend()
plt.show()
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fig, ax = plt.subplots()
ax.plot(history.history['categorical_accuracy'], '-b', label='training accuracy')
ax.plot(history.history['val_categorical_accuracy'], '-r', label='validation␣

↪accuracy')
ax.legend()
plt.show()
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We see that further training could improve the model. Thus, we call fit again. Training proceeds from where it has
been stopped. We may execute corresponding code cell as often as we like to continue training. To keep the losses
and metrics we append them to lists.

loss = history.history['loss']
val_loss = history.history['val_loss']
acc = history.history['categorical_accuracy']
val_acc = history.history['val_categorical_accuracy']

history = model.fit(train_images, train_labels, batch_size=100, epochs=5,␣
↪validation_split=0.2)

loss.extend(history.history['loss'])
val_loss.extend(history.history['val_loss'])
acc.extend(history.history['categorical_accuracy'])
val_acc.extend(history.history['val_categorical_accuracy'])

Epoch 1/5
480/480 [==============================] - 1s 1ms/step - loss: 0.4419 -␣

↪categorical_accuracy: 0.8773 - val_loss: 0.3943 - val_categorical_accuracy: 0.
↪8908

Epoch 2/5
480/480 [==============================] - 1s 1ms/step - loss: 0.4203 -␣

↪categorical_accuracy: 0.8845 - val_loss: 0.3797 - val_categorical_accuracy: 0.
↪8942

Epoch 3/5
480/480 [==============================] - 1s 1ms/step - loss: 0.4045 -␣

↪categorical_accuracy: 0.8891 - val_loss: 0.3674 - val_categorical_accuracy: 0.
↪8992

Epoch 4/5
480/480 [==============================] - 1s 1ms/step - loss: 0.3920 -␣

↪categorical_accuracy: 0.8930 - val_loss: 0.3564 - val_categorical_accuracy: 0.
↪8999

Epoch 5/5
480/480 [==============================] - 1s 1ms/step - loss: 0.3813 -␣

↪categorical_accuracy: 0.8954 - val_loss: 0.3486 - val_categorical_accuracy: 0.
↪9016

fig, ax = plt.subplots()
ax.plot(loss, '-b', label='training loss')
ax.plot(val_loss, '-r', label='validation loss')
ax.legend()
plt.show()

fig, ax = plt.subplots()
ax.plot(acc, '-b', label='training accuracy')
ax.plot(val_acc, '-r', label='validation accuracy')
ax.legend()
plt.show()
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Evaluation and Prediction

To get loss and metrics on the test set call Model.evaluate212.

test_loss, test_metric = model.evaluate(test_images, test_labels)

test_loss, test_metric

1875/1875 [==============================] - 2s 968us/step - loss: 0.3572 -␣
↪categorical_accuracy: 0.9006

(0.3571886718273163, 0.9005666375160217)

For predictions call Model.predict213.

test_pred = model.predict(test_images)

1875/1875 [==============================] - 1s 710us/step

Predictions are vectors of values from [0, 1]. A one indicates that the image shows the corresponding digit, a zero
indicates that the digits is not shown in the image.

idx = 2

print('truth: ', test_labels[idx, :])
print('prediction:', test_pred[idx, :])

fig, ax = plt.subplots()
ax.plot(test_labels[idx, :], 'ob', label='truth')
ax.plot(test_pred[idx, :], 'or', markersize=4, label='prediction')
ax.legend()
plt.show()

truth: [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
prediction: [0.01495721 0.9989413 0.81571907 0.9306395 0.24000315 0.67344236
0.7693644 0.39637503 0.88925314 0.50644916]

212 https://keras.io/api/models/model_training_apis/#evaluate-method
213 https://keras.io/api/models/model_training_apis/#predict-method
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To get more insight into the prediction accuracy we reverse one-hot encoding.

true_digits = test_labels.argmax(axis=1)
pred_digits = test_pred.argmax(axis=1)

# indices with wrong predictions
wrong_predictions = np.arange(0, true_digits.size)[true_digits != pred_digits]
print(wrong_predictions.size)
print(wrong_predictions)

5987
[ 8 18 33 ... 59974 59998 59999]

idx = 7

show_image(test_images[idx])

print('truth: {}, prediction: {}'.format(true_digits[idx], pred_digits[idx]))

truth: 9, prediction: 9
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A confusion matrix depicts which digits are hard to separate for the ANN. The matrix is 10x10. The entry at row 𝑖 and
column 𝑗 gives the number of images which show digit 𝑖 (truth), but corresponding prediction is 𝑗. Several Python
modules provide functions for building a confusion matrix. Next to Scikit-Learn we may use Pandas for getting the
matrix and Seaborn for plotting (pd.crosstab214, sns.heatmap215).

conf_matrix = pd.crosstab(pd.Series(true_digits, name='truth'),
pd.Series(pred_digits, name='prediction'))

print(conf_matrix)

prediction 0 1 2 3 4 5 6 7 8 9
truth
0 5591 3 35 26 41 71 74 8 97 6
1 1 6448 26 54 9 91 31 13 94 24
2 66 58 5374 94 54 29 136 66 139 10
3 23 22 147 5405 6 218 6 90 120 47
4 21 57 24 2 5183 8 132 2 33 318
5 46 38 43 253 125 4637 51 34 184 43
6 72 37 73 1 35 80 5618 0 41 0
7 6 41 41 28 31 16 1 5654 28 385
8 40 214 98 105 106 276 19 66 4883 83
9 20 33 3 79 150 43 1 200 86 5220

# scale values nonlinearly to get different colors at small values
scaled_conf_matrix = conf_matrix.apply(lambda x: x ** (1/2))

fig = plt.figure(figsize=(10, 8))
sns.heatmap(scaled_conf_matrix,

annot=conf_matrix, # use original matrix for labels
fmt='d', # format numbers as integers
cmap='hot', # color map
cbar_kws={'ticks': []}) # no ticks for colorbar (would have scaled␣

↪labels)
plt.show()

214 https://pandas.pydata.org/docs/reference/api/pandas.crosstab.html
215 https://seaborn.pydata.org/generated/seaborn.heatmap.html

8.3. ANNs with Keras 245

https://pandas.pydata.org/docs/reference/api/pandas.crosstab.html
https://seaborn.pydata.org/generated/seaborn.heatmap.html


Data Science and Artificial Intelligence for Undergraduates
Volume 2: Data Visualization, Supervised Learning

8.3.2 Hyperparameter Optimization

Keras itself offers no hyperparameter optimization routines. But there is the keras-tuner216 module (import as
keras_tuner).

import keras_tuner

We first have to create a function which builds the model and returns a Model instance. This function takes a
HyperParameters217 object as argument containing information about hyperparameters to optimize. The build
function calls methods of the HyperParameters object to get values from the current set of hyperparameters.

def build_model(hp):

model = keras.Sequential()
model.add(keras.Input(shape=(20, 20)))
model.add(keras.layers.Flatten())

layers = hp.Int('layers', 1, 3)
neurons_per_layer = hp.Int('neurons_per_layer', 10, 40, step=10)

for l in range(0, layers):

(continues on next page)
216 https://keras-team.github.io/keras-tuner/
217 https://keras-team.github.io/keras-tuner/documentation/hyperparameters/
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(continued from previous page)

model.add(keras.layers.Dense(neurons_per_layer, activation='relu'))

model.add(keras.layers.Dense(10, activation='sigmoid'))

model.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=[
↪'categorical_accuracy'])

return model

Now we create a Tuner218 object and call its search219 method. Several subclasses are available. Random-
Search220 randomly selects sets of hyperparameters and trains the model for each set of hyperparameters. The
constructor takes the model building function, an objective (string with objective name of one of the model’s met-
rics), and the maximum number of parameter sets to test. The search function takes training and validation data
in full analogy to fit.

tuner = keras_tuner.tuners.randomsearch.RandomSearch(build_model, 'val_
↪categorical_accuracy', 10)

tuner.search(train_images, train_labels, validation_split=0.2, epochs=10)

INFO:tensorflow:Reloading Tuner from ./untitled_project/tuner0.json
INFO:tensorflow:Oracle triggered exit

Here is a summary of all models considered during hyperparameter optimization:

tuner.results_summary()

Results summary
Results in ./untitled_project
Showing 10 best trials
Objective(name="val_categorical_accuracy", direction="max")

Trial 09 summary
Hyperparameters:
layers: 3
neurons_per_layer: 30
Score: 0.9556666612625122

Trial 02 summary
Hyperparameters:
layers: 2
neurons_per_layer: 30
Score: 0.9505000114440918

Trial 08 summary
Hyperparameters:
layers: 2
neurons_per_layer: 40
Score: 0.9503333568572998

Trial 05 summary
Hyperparameters:
layers: 2
neurons_per_layer: 20
Score: 0.9451666474342346

(continues on next page)
218 https://keras-team.github.io/keras-tuner/documentation/tuners/
219 https://keras.io/api/keras_tuner/tuners/base_tuner/#search-method
220 https://keras.io/api/keras_tuner/tuners/random/#randomsearch-class
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(continued from previous page)

Trial 04 summary
Hyperparameters:
layers: 3
neurons_per_layer: 20
Score: 0.9445000290870667

Trial 01 summary
Hyperparameters:
layers: 1
neurons_per_layer: 40
Score: 0.9440000057220459

Trial 06 summary
Hyperparameters:
layers: 1
neurons_per_layer: 30
Score: 0.9401666522026062

Trial 07 summary
Hyperparameters:
layers: 1
neurons_per_layer: 20
Score: 0.9340833425521851

Trial 03 summary
Hyperparameters:
layers: 1
neurons_per_layer: 10
Score: 0.922249972820282

Trial 00 summary
Hyperparameters:
layers: 3
neurons_per_layer: 10
Score: 0.9195833206176758

To get the best model we may call Tuner.get_best_models221, which returns a sorted (best first) list of trained
Model instances. Alternatively, we may call Tuner.get_best_hyperparameters222 returning a list of
HyperParameter objects of the best models. Based on the best hyperparameters we may train corresponding
model on the full data set to improve results. Both methods take an argument specifying the number of models to
return and defaulting to 1.

best_hp = tuner.get_best_hyperparameters()[0]
best_model = build_model(best_hp)
best_model.summary()

Model: "sequential_1"
_________________________________________________________________
Layer (type) Output Shape Param #

=================================================================
flatten_1 (Flatten) (None, 400) 0

dense (Dense) (None, 30) 12030

dense_1 (Dense) (None, 30) 930

dense_2 (Dense) (None, 30) 930

(continues on next page)
221 https://keras.io/api/keras_tuner/tuners/base_tuner/#get_best_models-method
222 https://keras.io/api/keras_tuner/tuners/base_tuner/#get_best_hyperparameters-method
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(continued from previous page)

dense_3 (Dense) (None, 10) 310

=================================================================
Total params: 14,200
Trainable params: 14,200
Non-trainable params: 0
_________________________________________________________________

best_model.fit(train_images, train_labels, epochs=10)

Epoch 1/10
1875/1875 [==============================] - 2s 1ms/step - loss: 0.7758 -␣

↪categorical_accuracy: 0.7655
Epoch 2/10
1875/1875 [==============================] - 2s 1ms/step - loss: 0.3384 -␣

↪categorical_accuracy: 0.9027
Epoch 3/10
1875/1875 [==============================] - 3s 1ms/step - loss: 0.2765 -␣

↪categorical_accuracy: 0.9202
Epoch 4/10
1875/1875 [==============================] - 2s 1ms/step - loss: 0.2381 -␣

↪categorical_accuracy: 0.9314
Epoch 5/10
1875/1875 [==============================] - 2s 1ms/step - loss: 0.2127 -␣

↪categorical_accuracy: 0.9384
Epoch 6/10
1875/1875 [==============================] - 2s 1ms/step - loss: 0.1937 -␣

↪categorical_accuracy: 0.9430
Epoch 7/10
1875/1875 [==============================] - 2s 1ms/step - loss: 0.1786 -␣

↪categorical_accuracy: 0.9478
Epoch 8/10
1875/1875 [==============================] - 2s 1ms/step - loss: 0.1668 -␣

↪categorical_accuracy: 0.9514
Epoch 9/10
1875/1875 [==============================] - 2s 1ms/step - loss: 0.1571 -␣

↪categorical_accuracy: 0.9545
Epoch 10/10
1875/1875 [==============================] - 2s 1ms/step - loss: 0.1478 -␣

↪categorical_accuracy: 0.9569

<keras.callbacks.History at 0x7f86bc2a9960>

test_loss, test_metric = best_model.evaluate(test_images, test_labels)

test_loss, test_metric

1875/1875 [==============================] - 2s 1000us/step - loss: 0.1729 -␣
↪categorical_accuracy: 0.9482

(0.17285792529582977, 0.948199987411499)
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8.3.3 Stopping Criteria

So far we stopped training after a fixed number of epochs. But Keras also implements a mechanism for stopping
training if loss or metrics stop improving. That mechanism is denoted as callbacks223. We simply have to create
a suitable Callback object and pass it to the fit method. Stopping criteria can be implemented with EarlyStop-
ping224 objects (it’s a subclass of Callback). If we want to stop training if the validation loss starts to increase
for at least 3 consecutive epochs, we have to pass monitor='val_loss', mode='min', patience=3, re-
store_best_weights=True. The last argument tells the fit method to not return the final model, but the
best model.

es = keras.callbacks.EarlyStopping(monitor='val_loss', mode='min', patience=3,␣
↪restore_best_weights=True)

best_model.fit(train_images, train_labels, validation_split=0.2, epochs=1000,␣
↪callbacks=[es])

Epoch 1/1000
1500/1500 [==============================] - 2s 2ms/step - loss: 0.1421 -␣

↪categorical_accuracy: 0.9586 - val_loss: 0.1316 - val_categorical_accuracy: 0.
↪9625

Epoch 2/1000
1500/1500 [==============================] - 2s 1ms/step - loss: 0.1361 -␣

↪categorical_accuracy: 0.9603 - val_loss: 0.1337 - val_categorical_accuracy: 0.
↪9603

Epoch 3/1000
1500/1500 [==============================] - 2s 1ms/step - loss: 0.1307 -␣

↪categorical_accuracy: 0.9615 - val_loss: 0.1365 - val_categorical_accuracy: 0.
↪9598

Epoch 4/1000
1500/1500 [==============================] - 2s 1ms/step - loss: 0.1250 -␣

↪categorical_accuracy: 0.9633 - val_loss: 0.1283 - val_categorical_accuracy: 0.
↪9613

Epoch 5/1000
1500/1500 [==============================] - 2s 1ms/step - loss: 0.1196 -␣

↪categorical_accuracy: 0.9649 - val_loss: 0.1277 - val_categorical_accuracy: 0.
↪9620

Epoch 6/1000
1500/1500 [==============================] - 2s 1ms/step - loss: 0.1153 -␣

↪categorical_accuracy: 0.9659 - val_loss: 0.1260 - val_categorical_accuracy: 0.
↪9629

Epoch 7/1000
1500/1500 [==============================] - 2s 1ms/step - loss: 0.1112 -␣

↪categorical_accuracy: 0.9673 - val_loss: 0.1286 - val_categorical_accuracy: 0.
↪9628

Epoch 8/1000
1500/1500 [==============================] - 2s 1ms/step - loss: 0.1070 -␣

↪categorical_accuracy: 0.9683 - val_loss: 0.1286 - val_categorical_accuracy: 0.
↪9614

Epoch 9/1000
1500/1500 [==============================] - 2s 2ms/step - loss: 0.1032 -␣

↪categorical_accuracy: 0.9697 - val_loss: 0.1299 - val_categorical_accuracy: 0.
↪9618

<keras.callbacks.History at 0x7f86bc0224a0>

Resulting accuracy on test set:

223 https://keras.io/api/callbacks/
224 https://keras.io/api/callbacks/early_stopping/
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test_loss, test_metric = best_model.evaluate(test_images, test_labels)
test_loss, test_metric

1875/1875 [==============================] - 2s 1ms/step - loss: 0.1479 -␣
↪categorical_accuracy: 0.9562

(0.14791476726531982, 0.9561833143234253)

8.3.4 Saving and Loading Models

Keras models provide a save225 to a model to a file. To load a model use load_model226.

best_model.save('keras_save_best_model')

WARNING:absl:Found untraced functions such as _update_step_xla while saving␣
↪(showing 1 of 1). These functions will not be directly callable after loading.

INFO:tensorflow:Assets written to: keras_save_best_model/assets

INFO:tensorflow:Assets written to: keras_save_best_model/assets

model = keras.models.load_model('keras_save_best_model')

8.3.5 Visualization of Training Progress

TensorFlow comes with a visualization tool called TensorBoard. It uses a web interface for visualizing training
dynamics and it can be integrated into Jupyter notebooks.
To use TensorBoard we have to pass a TensorBoard227 callback to fit. Corresponding constructor takes a path
to a directory for storing temporary training data. Running

tensorboard --logdir=path/to/directory

in the terminal will show an URL to access the TensorBoard interface within a web browser.
To use TensorBoard inside a Jupyter Notebook, execute the magic commands

%load_ext tensorboard
%tensorboard --logdir path/to/directory

es = keras.callbacks.EarlyStopping(monitor='val_loss', mode='min', patience=3,␣
↪restore_best_weights=True)

tb = keras.callbacks.TensorBoard('tensorboard_data')
best_model.fit(train_images, train_labels, validation_split=0.2, epochs=1000,␣

↪callbacks=[es, tb])

225 https://keras.io/api/models/model_saving_apis/model_saving_and_loading/#save-method
226 https://keras.io/api/models/model_saving_apis/model_saving_and_loading/#load_model-function
227 https://keras.io/api/callbacks/tensorboard/
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Epoch 1/1000
1500/1500 [==============================] - 2s 2ms/step - loss: 0.1106 -␣

↪categorical_accuracy: 0.9669 - val_loss: 0.1313 - val_categorical_accuracy: 0.
↪9596

Epoch 2/1000
1500/1500 [==============================] - 2s 2ms/step - loss: 0.1069 -␣

↪categorical_accuracy: 0.9683 - val_loss: 0.1273 - val_categorical_accuracy: 0.
↪9618

Epoch 3/1000
1500/1500 [==============================] - 2s 1ms/step - loss: 0.1036 -␣

↪categorical_accuracy: 0.9689 - val_loss: 0.1255 - val_categorical_accuracy: 0.
↪9626

Epoch 4/1000
1500/1500 [==============================] - 2s 1ms/step - loss: 0.0994 -␣

↪categorical_accuracy: 0.9700 - val_loss: 0.1300 - val_categorical_accuracy: 0.
↪9615

Epoch 5/1000
1500/1500 [==============================] - 2s 1ms/step - loss: 0.0970 -␣

↪categorical_accuracy: 0.9715 - val_loss: 0.1274 - val_categorical_accuracy: 0.
↪9628

Epoch 6/1000
1500/1500 [==============================] - 2s 1ms/step - loss: 0.0940 -␣

↪categorical_accuracy: 0.9726 - val_loss: 0.1297 - val_categorical_accuracy: 0.
↪9611

<keras.callbacks.History at 0x7f869ae5ae60>

%load_ext tensorboard
%tensorboard --logdir tensorboard_data

8.4 Convolutional Neural Networks

Convolutional ANNs (CNNs or ConvNets for short) are specially structured layered feedforward ANNs. Their main
field of application are computer vision tasks, but also predictions based on time series data. CNNs have the following
special properties:

• Spacial relationship between neurons in a layer: A layer’s neurons are arranged in a grid (1d or 2d or 3d or
higher). Thus, we may talk about neighboring neurons or about distance between two neurons.

• Local connectivity: Neurons aren’t connected to all neurons of the previous layer. Instead, each neuron has
only few connections to the previous layer and all those connected neurons are located close to each other.

• Weight sharing: Different connections between neurons may share the same weight. Thus, the number of
trainable weights is much lower than the number of connections between neurons.

Before we present the details of CNNs we have to understand convolutions, an important mathematical tool for signal
and image processing. We only consider convolutions for finite discrete signals (vectors, images), not for continuous
signals or signals of infinite length.
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8.4.1 Convolutions in 1d

By 1d-convolution we refer to a mathematical operation taking two input vectors and yielding one output vector. One
of the input vectors is the signal, the other the convolution kernel or filter. The filter is much shorter than the signal.
The length of the output vector is more or less the same as the input vector.
Denote the input vector by 𝑢 ∈ ℝ𝑚 and the filter by 𝑤 ∈ ℝ𝑝 with 𝑝 ≤ 𝑚 (typically 𝑝 is odd). We denote the
convolution of 𝑢 and 𝑤 by 𝑢 ∗ 𝑤. It’s a vector in ℝ𝑚−𝑝+1 with components

[𝑢 ∗ 𝑤]𝜅 ∶=
𝑝

∑
𝜈=1

𝑢𝜅+𝜈−1 𝑤𝜈.

In machine learning contexts convolutions are defined as we did here. In mathematics 𝑤𝜈 is replaced by 𝑤𝑝+1−𝜈 . If
𝑤 is symmetric, that is, 𝑤𝜈 = 𝑤𝑝+1−𝜈 for 𝜈 = 1, … , 𝑝, then both variants coincide.
To see the principle we consider an example with 𝑚 = 9 and 𝑝 = 3. Thus, the convolution will have 7 components.

Fig. 8.8: For computing 1d convolutions place the filter at the signal’s start, compute the inner product of signal and
filter, then move the filter one step to the right, compute the inner product, and so on.

With convolutions we may filter information out of a signal. To see this effect we consider longer signals.

import numpy as np
import matplotlib.pyplot as plt

rng = np.random.default_rng(0)

def plot_signal(x):

fig, ax = plt.subplots()
ax.stem(x, markerfmt=' ')
plt.show()

fig = plt.figure(figsize=(14, 1))
plt.imshow(x.reshape(1, -1), cmap='gray')
plt.show()

Consider the following signal:

u = np.abs(1 + np.sign(np.sin(np.linspace(2, 15, 100)))
+ np.linspace(0, 1, 100)
+ rng.normal(0, 0.1, size=100))

plot_signal(u)
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To detect jumps in the signal we may use a suitable filter, looking itself like a jump in a signal.

w = np.array([-1, -1, 0, 1, 1])

plot_signal(w)
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The filtered signal (that is, the convolution of signal and filter) has peaks at the jump positions and is almost zero else.

conv = np.empty(u.size - w.size + 1)
for k in range(0, conv.size):

conv[k] = np.sum(u[k:(k + w.size)] * w)

plot_signal(conv)
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Another application of filters is blurring for noise reduction.

w = np.array([1, 2, 3, 4, 3, 2, 1])

plot_signal(w)
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The filtered signal shows less oscillations.

conv = np.empty(u.size - w.size + 1)
for k in range(0, conv.size):

conv[k] = np.sum(u[k:(k + w.size)] * w)

plot_signal(conv)
plot_signal(u)
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Filtering decreases signal length slightly. To avoid this effect one can add sufficiently many zeros at both sides of
the signel (𝑝−1

2 zeros at each side if 𝑝 is the filter length). Then filtering can start with the filter centered at the first
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regular signal value.

Fig. 8.9: With zero padding original and filtered signal are of same length.

Whether zero padding is necessary and appropriate has to be decided from case to case. It’s important to keep in
mind that zero padding adds artificial information to the signal. Maybe the signal is a slice of a longer signal. Then
zero padding adds the information that the longer signal is zero before and after the sliced signal. That might be
wrong.

8.4.2 Convolutions in 2d

Let 𝑢 be a large matrix (a gray scale image for instance) and 𝑤 be a small matrix. The convolution of 𝑢 and 𝑤 is
defined analogously to the 1d case, yielding a matrix of almost the same size as 𝑢. Number of rows is decreased by
the number of rows in 𝑤 minus 1. Same for the columns. We skip mathematical formulas and content ourselves with
an example.

Fig. 8.10: Computations for 2d convolutions follow the same scheme as for 1d convolutions.

Like in 1d we may use convolutions to detect certain features in images or to remove noise. Here is an edge detection
example:

import imageio.v3 as imageio
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u = imageio.imread('cat.png')[:, :, 0]
plt.imshow(u, cmap='gray')
plt.show()

wh = np.array([[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[0, 0, 0, 0, 0],
[-1, -1, -1, -1, -1],
[-1, -1, -1, -1, -1]])

wv = wh.T
wd = np.array([[0, 0, 1, 1, 0],

[0, 1, 1, 0, -1],
[1, 1, 0, -1, -1],
[1, 0, -1, -1, 0],
[0, -1, -1, 0, 0]])

fig, [ax1, ax2, ax3] = plt.subplots(1, 3)
ax1.imshow(wh, cmap='gray')
ax2.imshow(wv, cmap='gray')
ax3.imshow(wd, cmap='gray')
plt.show()
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def get_conv2d(u, w):
conv = np.empty((u.shape[0] - w.shape[0] + 1, u.shape[1] - w.shape[1] + 1))
for k in range(0, conv.shape[0]):

for l in range(0, conv.shape[1]):
conv[k, l] = np.sum(u[k:(k + w.shape[0]), l:(l + w.shape[1])] * w)

return conv

convh = get_conv2d(u, wh)
convv = get_conv2d(u, wv)
convd = get_conv2d(u, wd)

fig, [[ax1, ax2], [ax3, ax4]] = plt.subplots(2, 2, figsize=(10, 10))
ax1.imshow(u, cmap='gray')
ax1.set_title('original')
ax2.imshow(convh, cmap='gray')
ax2.set_title('horizontal lines')
ax3.imshow(convv, cmap='gray')
ax3.set_title('vertical lines')
ax4.imshow(convd, cmap='gray')
ax4.set_title('diagonal lines (to upper right)')
plt.show()

8.4. Convolutional Neural Networks 261



Data Science and Artificial Intelligence for Undergraduates
Volume 2: Data Visualization, Supervised Learning

8.4.3 Convolutions in 3d

Digital color images are represented as a set of three matrices in computer science. Each pixel’s color is composed
of certain amounts of red, green and blue (additive color mixing, see Wikipedia on color mixing228). One says that
the image has three color channels, the red channel, the green channel and the blue channel. Each single channel can
be considered a gray scale image. Sometimes there is also a fourth channel, the alpha channel. The alpha channel
contains information on transparency (small values for opaque pixels, high values for transparent pixels).

u = imageio.imread('balloons.png')[:, :, 0:3]
print(u.shape)
plt.imshow(u)
plt.show()

fig, [ax1, ax2, ax3] = plt.subplots(1, 3, figsize=(14,4))
ax1.imshow(u[:, :, 0], cmap='gray')
ax1.set_title('red channel')
ax2.imshow(u[:, :, 1], cmap='gray')
ax2.set_title('green channel')
ax3.imshow(u[:, :, 2], cmap='gray')
ax3.set_title('blue channel')
plt.show()

(224, 224, 3)

228 https://en.wikipedia.org/wiki/Color_mixing
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Filters in 3d are cuboids of numbers (or stacks of matrices or tensors of rank 3). Convolution takes a subcuboid of
the color image, multiplies componentwise by the filter, and then sums up all the products.
We may use 3d convolution for color extraction: If we want to mark regions with red colored objects, we could look
at the red channel. But white or yellow or pink objects have maximum values at the red channel, too. Filtering allows
to look for differences between channels. We may think of color extraction as looking for jumps or edges in the depth
direction.

w = np.array([1, -0.5, -0.5]).reshape(1, 1, 3)

conv = np.empty((u.shape[0] - w.shape[0] + 1, u.shape[1] - w.shape[1] + 1, u.
↪shape[2] - w.shape[2] + 1))

for k in range(0, conv.shape[0]):
for l in range(0, conv.shape[1]):

for m in range(0, conv.shape[2]):
conv[k, l, m] = np.sum(u[k:(k + w.shape[0]), l:(l + w.shape[1]), m:(m␣

↪+ w.shape[2])] * w)

fig, [ax1, ax2, ax3] = plt.subplots(1, 3, figsize=(14,4))
ax1.imshow(u)
ax1.set_title('original')
ax2.imshow(conv, cmap='gray')
ax2.set_title('filtered for red')
ax3.imshow(u[:, :, 0], cmap='gray')
ax3.set_title('red channel')
plt.show()
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8.4.4 Convolutional Layers

CNNs mainly contain so called convolutional layers. A 1d convolutional layer takes a multi-channel signal as input,
a 2d convolutional layer takes a multi-channel image as input. The output is a list of filtered signals or images, which
again can be considered as a multi-channel signal or image. Filter size in the depth dimension equals the number of
input channels. Thus, there is exactly one output channel per filter. The output of a convolutional layer is sometimes
referred to as feature map, because it contains information about certain features of the input.
Filters correspond to the ANN’s weights as follows:

• A convolutional layer has as many neurons as the filtered signal or image has components and neurons are
(mentally) arranged in the same layout as the signal’s or image’s components.

• Each neuron gets input only from the signal or image components used for calculating corresponding component
of the convolution (local connectivity).

• Weights play the role of the filter’s components. Thus, all neurons share the same set of weights (weight
sharing).

Fig. 8.11: Convolutional layers take a stack of signals/images and yield a stack of filtered signals/images.

Filters for convolution layers are not prescribed as in classical image processing. Instead the CNN has to learn useful
filters from training data. As for usual ANNs each layer may get input from an additional bias neuron.
Convolutional layers may have a further parameter: the stride. A stride of 1 means that we consider every component
of the filtered signal or image. With a stride of 2 we only keep every second component, and so on. Strides greater
than one should be used only in combination with large filters. Else we would miss too much information.
Often rectified linear units are used as neurons in convolutional layers. Negative activations indicate presence of
features that contradict the filter. If we only want to know if the feature corresponding to a filter is in the image,
then the interpretation of negative and zero activation is identical (feature not present in both cases). Thus, it seems
reasonable to cut off negative acitvations. That is exactly what rectified linear units do.
The principles of local connectivity and weight sharing lead to much fewer weights to be trained, thus allowing for
deeper networks.
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8.4.5 Overall CNN structure

Typical CNNs contain a stack of convolutional layers followed by a stack of dense layers. The idea is that the
convolutional layers extract features from the inputs and the dense layers combine extracted features to predictions.
The deeper a convolutional layer in the stack the larger the area of the input image having influence on the layer
activations. Thus, deeper layers extract less localized features, whereas the first layers only have access to very small
regions of the input image.
The stack of convolutional layers may contain so called pooling layers. A pooling layer samples feature maps down
to smaller feature maps. Usually each feature map is split into disjoint pieces of size 2x2 and each piece is replaced
by its average value (average pooling) or the maximum value (max pooling). The idea behind pooling is that features
will not vary much locally or that only most relevant features are of interest locally. Max pooling seems to yield better
results than average pooling, but the need for pooling at all is controversial. From the computational point of view
pooling reduces feature map sizes and thus the number of weights to train.

Fig. 8.12: CNNs typically consist of serveral convolution stacks and a small number of dense layers.

8.5 CNNs with Keras

We aim to construct and train a CNN for object detection in images using Keras. The CNN shall decide whether
there is a cat or a dog in the image presented to the net. Training data for such tasks can be scraped from the web.
But nowadays there are lots of image data bases holding additional information like labels for the images. We use a
set of 25000 cat/dog images published under CC0229 for competition on www.kaggle.com230. Next to 25000 labeled
(cat or dog) images for training the data set contains 12500 unlabeled images of cats and dogs.

import numpy as np
import matplotlib.pyplot as plt
import tensorflow.keras as keras

data_path = '/home/jef19jdw/myfiles/datasets_teaching/ds2/catsdogs/data/'

229 https://creativecommons.org/publicdomain/zero/1.0/
230 https://www.kaggle.com/tongpython/cat-and-dog
231 https://xkcd.com/1425
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Fig. 8.13: In the 60s, Marvin Minsky assigned a couple of undergrads to spend the summer programming a computer
to use a camera to identify objects in a scene. He figured they’d have the problem solved by the end of the summer.
Half a century later, we’re still working on it. Source: Randall Munroe, xkcd.com/1425231
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2023-07-03 05:33:58.382411: I tensorflow/core/platform/cpu_feature_guard.
↪cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network␣
↪Library (oneDNN) to use the following CPU instructions in performance-
↪critical operations: SSE4.1 SSE4.2 AVX AVX2 FMA

To enable them in other operations, rebuild TensorFlow with the appropriate␣
↪compiler flags.

# workarounds for some problems with Tensorflow (only use if neccessary)

import tensorflow as tf
import os

physical_devices = tf.config.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(physical_devices[0], True)

os.environ['XLA_FLAGS']='--xla_gpu_cuda_data_dir=/usr/lib/cuda'

2023-07-03 05:34:00.580105: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪gpu_executor.cc:981] successful NUMA node read from SysFS had negative value␣
↪(-1), but there must be at least one NUMA node, so returning NUMA node zero

2023-07-03 05:34:00.626591: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪gpu_executor.cc:981] successful NUMA node read from SysFS had negative value␣
↪(-1), but there must be at least one NUMA node, so returning NUMA node zero

2023-07-03 05:34:00.627646: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪gpu_executor.cc:981] successful NUMA node read from SysFS had negative value␣
↪(-1), but there must be at least one NUMA node, so returning NUMA node zero

8.5.1 Loading and Preprocessing Images

Keras supports loading images and labels from directories step by step during training without holding the whole data
set in memory. Each class (cat or dog) has to have its own subdirectory. To use this feature we have to call keras.
preprocessing.image_dataset_from_directory232, which returns a Tensorflow Dataset233 ob-
ject. That object is an iterator yielding batches of images and corresponding labels.
We use 15000 images for training, 5000 for validation, and 5000 for testing.
Next to loading images from disk image_dataset_from_directory may apply simple preprocessing steps.
Since all the images have different sizes we have to resize them.

img_size = 128 # width and height of images

train_data = keras.preprocessing.image_dataset_from_directory(
data_path + 'labeled/train',
label_mode = 'categorical', # one-hot encoding with two columns
image_size=(img_size, img_size),
validation_split=0.25,
subset='training',
seed=0

)
val_data = keras.preprocessing.image_dataset_from_directory(

data_path + 'labeled/train',
label_mode = 'categorical',
image_size=(img_size, img_size),
validation_split=0.25,
subset='validation',
seed=0 # same seed as for training

(continues on next page)
232 https://keras.io/api/preprocessing/image/
233 https://www.tensorflow.org/api_docs/python/tf/data/Dataset
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(continued from previous page)

)
test_data = keras.preprocessing.image_dataset_from_directory(

data_path + 'labeled/test',
label_mode = 'categorical',
image_size=(img_size, img_size),

)

Found 20000 files belonging to 2 classes.
Using 15000 files for training.

2023-07-03 05:34:01.436610: I tensorflow/core/platform/cpu_feature_guard.
↪cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network␣
↪Library (oneDNN) to use the following CPU instructions in performance-
↪critical operations: SSE4.1 SSE4.2 AVX AVX2 FMA

To enable them in other operations, rebuild TensorFlow with the appropriate␣
↪compiler flags.

2023-07-03 05:34:01.437382: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪gpu_executor.cc:981] successful NUMA node read from SysFS had negative value␣
↪(-1), but there must be at least one NUMA node, so returning NUMA node zero

2023-07-03 05:34:01.438385: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪gpu_executor.cc:981] successful NUMA node read from SysFS had negative value␣
↪(-1), but there must be at least one NUMA node, so returning NUMA node zero

2023-07-03 05:34:01.438842: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪gpu_executor.cc:981] successful NUMA node read from SysFS had negative value␣
↪(-1), but there must be at least one NUMA node, so returning NUMA node zero

2023-07-03 05:34:02.164888: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪gpu_executor.cc:981] successful NUMA node read from SysFS had negative value␣
↪(-1), but there must be at least one NUMA node, so returning NUMA node zero

2023-07-03 05:34:02.165241: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪gpu_executor.cc:981] successful NUMA node read from SysFS had negative value␣
↪(-1), but there must be at least one NUMA node, so returning NUMA node zero

2023-07-03 05:34:02.165544: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪gpu_executor.cc:981] successful NUMA node read from SysFS had negative value␣
↪(-1), but there must be at least one NUMA node, so returning NUMA node zero

2023-07-03 05:34:02.165814: I tensorflow/core/common_runtime/gpu/gpu_device.
↪cc:1613] Created device /job:localhost/replica:0/task:0/device:GPU:0 with␣
↪1649 MB memory: -> device: 0, name: NVIDIA GeForce MX130, pci bus id:␣
↪0000:01:00.0, compute capability: 5.0

Found 20000 files belonging to 2 classes.
Using 5000 files for validation.
Found 5000 files belonging to 2 classes.

Note that resizing a non-square image to a square image distorts its content. Alternatively we could crop the longer
side or fill the shorter with some color. Experiments have shown that distortions from resizing have no substantial
influence on the prediction accuracy of the ANN trained with distorted images.
Each iterate generated by one of the data iterators is a tuple containing two NumPy arrays. The first array is a batch
of images, the second contains the one-hot encoded labels.
To get an iterate we call Python’s built-in functions iter and next (a TensorFlow Dataset object is an iterable
object, which becomes an iterator via iter).

images, labels = next(iter(train_data))
images.shape, labels.shape

(TensorShape([32, 128, 128, 3]), TensorShape([32, 2]))
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Default batch size is 32. Other batch sizes can be set via batch_size argument of im-
age_dataset_from_directory. Images are 128x128 and have 3 color channels. We have two classes (cats
and dogs), thus two columns for one-hot encoded labels.
Let’s have a look at the images:

images = 1/255 * images # scale to range [0, 1]

rows = 4
cols = 8

fig, axs = plt.subplots(4, 8, figsize=(14,8))

for r in range(0, rows):
for c in range(0, cols):

idx = r * cols + c
axs[r, c].imshow(images[idx, :, :, :])
if labels[idx, 0] == 1:

axs[r, c].set_title('cat')
else:

axs[r, c].set_title('dog')
axs[r, c].axis('off')

plt.show()

8.5.2 Defining the CNN

There is nothing special in defining a CNN with Keras. We simply have to use the correct layer types. We need
Conv2D234, MaxPooling2D235 and Dense236.
To scale the image’s range to [0, 1] we may use a Rescaling layer237.

Important: Due to a bug in TensorFlow 2.9 and above training of Keras models with preprocessing layers is
234 https://keras.io/api/layers/convolution_layers/convolution2d/
235 https://keras.io/api/layers/pooling_layers/max_pooling2d/
236 https://keras.io/api/layers/core_layers/dense/
237 https://keras.io/api/layers/preprocessing_layers/image_preprocessing/rescaling/
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extremely slow. See TensorFlow issue238 for current discussion.

model = keras.models.Sequential()

model.add(keras.Input(shape=(img_size, img_size, 3)))
model.add(keras.layers.Rescaling(1/255))

model.add(keras.layers.Conv2D(16, 3, activation='relu', name='conv1'))
model.add(keras.layers.Conv2D(16, 3, activation='relu', name='conv2'))
model.add(keras.layers.MaxPooling2D(name='pool1'))
model.add(keras.layers.Conv2D(32, 3, activation='relu', name='conv3'))
model.add(keras.layers.Conv2D(32, 3, activation='relu', name='conv4'))
model.add(keras.layers.MaxPooling2D(name='pool2'))

model.add(keras.layers.Flatten( name='flatten'))

#model.add(keras.layers.Dropout(0.5, name='dropout'))
#model.add(keras.layers.Dense(10, activation='relu', kernel_regularizer='l2'))

model.add(keras.layers.Dense(10, activation='relu', name='dense1'))
model.add(keras.layers.Dense(10, activation='relu', name='dense2'))

model.add(keras.layers.Dense(2, activation='sigmoid', name='out'))

model.summary()

Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #

=================================================================
rescaling (Rescaling) (None, 128, 128, 3) 0

conv1 (Conv2D) (None, 126, 126, 16) 448

conv2 (Conv2D) (None, 124, 124, 16) 2320

pool1 (MaxPooling2D) (None, 62, 62, 16) 0

conv3 (Conv2D) (None, 60, 60, 32) 4640

conv4 (Conv2D) (None, 58, 58, 32) 9248

pool2 (MaxPooling2D) (None, 29, 29, 32) 0

flatten (Flatten) (None, 26912) 0

dense1 (Dense) (None, 10) 269130

dense2 (Dense) (None, 10) 110

out (Dense) (None, 2) 22

=================================================================
Total params: 285,918
Trainable params: 285,918
Non-trainable params: 0
_________________________________________________________________

Number of filters per convolutional layer is chosen from experience. As rule of thumb many small (3x3 or 5x5)
filters and several convolutional layers are better than few large filters. From layer to layer number of filters may be
238 https://github.com/tensorflow/tensorflow/issues/55639
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increased as feature map sizes get smaller. Without increasing the number of filters we lose information. This could
be good (if lost information is useless for the net’s task) or bad (if too much is lost).
By default, convolutional layers in Keras do not zero pad inputs. Padding is controlled by the padding argument
of Conv2D.

8.5.3 Training

For classifications tasks log loss is a good choice. For numerical minimization we may use stochastic gradient descent
or Kera’s default minimizer RMSProp (a momentum method).

model.compile(loss='categorical_crossentropy', metrics=['categorical_accuracy'])

Note that Model.fit does not support automatic train-validation splits if data is provided as iterator object. Thus,
we have to provide a separate validation set.

loss = []
val_loss = []
acc = []
val_acc = []

history = model.fit(train_data, epochs=10, validation_data=val_data)

loss.extend(history.history['loss'])
val_loss.extend(history.history['val_loss'])
acc.extend(history.history['categorical_accuracy'])
val_acc.extend(history.history['val_categorical_accuracy'])

Epoch 1/10

2023-07-03 05:34:07.590706: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪dnn.cc:428] Loaded cuDNN version 8401

2023-07-03 05:34:08.843518: I tensorflow/compiler/xla/service/service.cc:173]␣
↪XLA service 0x7f7e59b32570 initialized for platform CUDA (this does not␣
↪guarantee that XLA will be used). Devices:

2023-07-03 05:34:08.843578: I tensorflow/compiler/xla/service/service.cc:181] ␣
↪StreamExecutor device (0): NVIDIA GeForce MX130, Compute Capability 5.0

2023-07-03 05:34:08.849771: I tensorflow/compiler/mlir/tensorflow/utils/dump_
↪mlir_util.cc:268] disabling MLIR crash reproducer, set env var `MLIR_CRASH_
↪REPRODUCER_DIRECTORY` to enable.

2023-07-03 05:34:09.009400: I tensorflow/compiler/jit/xla_compilation_cache.
↪cc:477] Compiled cluster using XLA! This line is logged at most once for the␣
↪lifetime of the process.

469/469 [==============================] - 68s 131ms/step - loss: 0.6774 -␣
↪categorical_accuracy: 0.5473 - val_loss: 0.6027 - val_categorical_accuracy: 0.
↪6616

Epoch 2/10
469/469 [==============================] - 60s 126ms/step - loss: 0.5719 -␣

↪categorical_accuracy: 0.6987 - val_loss: 0.5256 - val_categorical_accuracy: 0.
↪7410

Epoch 3/10
469/469 [==============================] - 60s 126ms/step - loss: 0.4951 -␣

↪categorical_accuracy: 0.7602 - val_loss: 0.4864 - val_categorical_accuracy: 0.
↪7690

Epoch 4/10
469/469 [==============================] - 60s 127ms/step - loss: 0.4416 -␣

↪categorical_accuracy: 0.7971 - val_loss: 0.4803 - val_categorical_accuracy: 0.
↪7660 (continues on next page)
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Epoch 5/10
469/469 [==============================] - 60s 128ms/step - loss: 0.3980 -␣

↪categorical_accuracy: 0.8213 - val_loss: 0.4730 - val_categorical_accuracy: 0.
↪7786

Epoch 6/10
469/469 [==============================] - 60s 128ms/step - loss: 0.3507 -␣

↪categorical_accuracy: 0.8469 - val_loss: 0.4731 - val_categorical_accuracy: 0.
↪7924

Epoch 7/10
469/469 [==============================] - 60s 128ms/step - loss: 0.3054 -␣

↪categorical_accuracy: 0.8683 - val_loss: 0.5329 - val_categorical_accuracy: 0.
↪7846

Epoch 8/10
469/469 [==============================] - 60s 128ms/step - loss: 0.2576 -␣

↪categorical_accuracy: 0.8925 - val_loss: 0.6474 - val_categorical_accuracy: 0.
↪7658

Epoch 9/10
469/469 [==============================] - 60s 128ms/step - loss: 0.2156 -␣

↪categorical_accuracy: 0.9115 - val_loss: 0.6397 - val_categorical_accuracy: 0.
↪7986

Epoch 10/10
469/469 [==============================] - 60s 128ms/step - loss: 0.1751 -␣

↪categorical_accuracy: 0.9311 - val_loss: 0.7653 - val_categorical_accuracy: 0.
↪7898

fig, ax = plt.subplots()
ax.plot(loss, '-b', label='training loss')
ax.plot(val_loss, '-r', label='validation loss')
ax.legend()
plt.show()

fig, ax = plt.subplots()
ax.plot(acc, '-b', label='training accuracy')
ax.plot(val_acc, '-r', label='validation accuracy')
ax.legend()
plt.show()
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After 5 epochs we observe overfitting. Thus, we should add some regularization. We could use one or more
Dropout239 layers. Placement in the layer stack is somewhat arbitrary. But placing them before a dense layer will
have more effect because dense layers have many input weights. With dropout we deactivate a random selection of
these weights in each training step.
If dropout does not prevent overfitting, more training data should be aquired or penalty based regularization techniques
239 https://keras.io/api/layers/regularization_layers/dropout/
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should be tested. How to obtain more data will be discussed later. Penalty based regularization on a layer’s weights
can be activatet by passing kernel_regularizer='l2' to the layer’s constructor. See Keras’ documentation
for details on penalty based regularization240.

model.save('cnnmodel')

WARNING:absl:Found untraced functions such as _jit_compiled_convolution_op, _
↪jit_compiled_convolution_op, _jit_compiled_convolution_op, _jit_compiled_
↪convolution_op while saving (showing 4 of 4). These functions will not be␣
↪directly callable after loading.

INFO:tensorflow:Assets written to: cnnmodel/assets

INFO:tensorflow:Assets written to: cnnmodel/assets

model = keras.models.load_model('cnnmodel')

8.5.4 Evaluation

To evaluate model performance we look at the metrics on the test set, which was not involved in training.

test_loss, test_metric = model.evaluate(test_data)

157/157 [==============================] - 7s 45ms/step - loss: 0.7523 -␣
↪categorical_accuracy: 0.7894

We should have a look at missclassified images to get an idea of what features might cause missclassification.

test_images, test_labels = next(iter(test_data))
test_pred = model.predict(test_images)

1/1 [==============================] - 0s 134ms/step

fig, [ax1, ax2] = plt.subplots(1, 2, figsize=(12, 2))
ax1.plot(test_labels[:, 0], 'or', label='truth')
ax1.plot(test_pred[:, 0], 'ob', label='prediction')
ax1.legend()
ax1.set_title('cat?')
ax2.plot(test_labels[:, 1], 'or', label='truth')
ax2.plot(test_pred[:, 1], 'ob', label='prediction')
ax2.legend()
ax2.set_title('dog?')
plt.show()

240 https://keras.io/api/layers/regularizers/
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idx = 3

fig, ax = plt.subplots()
ax.imshow(1/255 * test_images[idx, :, :, :])
ax.set_title('cat: {:.2f}, dog: {:.2f}'.format(test_pred[idx, 0], test_pred[idx,␣

↪1]))
ax.axis('off')
plt.show()

8.6 What did the CNN learn?

We want to obtain some insight into the internal workings of CNNs. The techniques presented below are mainly used
for CNNs, but same principles apply to all types of feedforward ANNs.

import numpy as np
import matplotlib.pyplot as plt
import tensorflow.keras as keras
import tensorflow as tf

data_path = '/home/jef19jdw/myfiles/datasets_teaching/ds2/catsdogs/data/'

2023-07-03 06:38:04.012731: I tensorflow/core/platform/cpu_feature_guard.
↪cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network␣
↪Library (oneDNN) to use the following CPU instructions in performance-
↪critical operations: SSE4.1 SSE4.2 AVX AVX2 FMA

To enable them in other operations, rebuild TensorFlow with the appropriate␣
↪compiler flags.
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# workarounds for some problems with Tensorflow (only use if neccessary)

#import os

#physical_devices = tf.config.list_physical_devices('GPU')
#tf.config.experimental.set_memory_growth(physical_devices[0], True)

#os.environ['XLA_FLAGS']='--xla_gpu_cuda_data_dir=/usr/lib/cuda'

model = keras.models.load_model('cnnmodel')
model.summary()

2023-07-03 06:38:05.643827: E tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪driver.cc:267] failed call to cuInit: CUDA_ERROR_UNKNOWN: unknown error

2023-07-03 06:38:05.643893: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪diagnostics.cc:169] retrieving CUDA diagnostic information for host: WHZ-46349

2023-07-03 06:38:05.643911: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪diagnostics.cc:176] hostname: WHZ-46349

2023-07-03 06:38:05.644122: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪diagnostics.cc:200] libcuda reported version is: 470.161.3

2023-07-03 06:38:05.644175: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪diagnostics.cc:204] kernel reported version is: 470.161.3

2023-07-03 06:38:05.644191: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪diagnostics.cc:310] kernel version seems to match DSO: 470.161.3

2023-07-03 06:38:05.645067: I tensorflow/core/platform/cpu_feature_guard.
↪cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network␣
↪Library (oneDNN) to use the following CPU instructions in performance-
↪critical operations: SSE4.1 SSE4.2 AVX AVX2 FMA

To enable them in other operations, rebuild TensorFlow with the appropriate␣
↪compiler flags.

Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #

=================================================================
rescaling (Rescaling) (None, 128, 128, 3) 0

conv1 (Conv2D) (None, 126, 126, 16) 448

conv2 (Conv2D) (None, 124, 124, 16) 2320

pool1 (MaxPooling2D) (None, 62, 62, 16) 0

conv3 (Conv2D) (None, 60, 60, 32) 4640

conv4 (Conv2D) (None, 58, 58, 32) 9248

pool2 (MaxPooling2D) (None, 29, 29, 32) 0

flatten (Flatten) (None, 26912) 0

dense1 (Dense) (None, 10) 269130

dense2 (Dense) (None, 10) 110

out (Dense) (None, 2) 22

=================================================================
Total params: 285,918

(continues on next page)
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Trainable params: 285,918
Non-trainable params: 0
_________________________________________________________________

8.6.1 Visualizing Feature Maps

Each convolutional layer outputs a stack of feature maps. In the language of CNNs feature maps are filtered versions
of the input image. In the language of ANNs a feature map contains neuron activations. Given an input image we
may look at the feature maps to get an idea of what features the learned filters extract.
To get activations of intermediate layers for a given input image we define a new Keras model, which reuses parts
of the existing model. When creating a model Keras builds a TensorFlow data structure (the graph) representing the
flow of data and operations on data. This graph starts with an input node (a Tensor241 object) and ends with the
output node (again a Tensor object). When calling Model.predict Keras takes the data and hands it over to
TensorFlow. TensorFlow executes the graph with the provided data and returns the output to Keras. Each layer’s
output is represented by an intermediate Tensor object in the graph, too. So we may fool Keras by creating a new
model providing existing Tensor objects as inputs and outputs of the model. This feature is not well documented.
What is missing in the documentation is the fact, that keyword arguments inputs and outputs of the Model
constructor also accept TensorFlows Tensor objects instead of Keras’ Input and Layer objects. Tensor objects
of existing models or layers are accessible through inputs and outputsmember variables. From this knowledge
we are able to create a new Model instance using an existing TensorFlow graph or parts of it.

layer_name = 'conv1'

submodel = keras.models.Model(inputs=model.inputs, outputs=model.get_layer(layer_
↪name).output)

submodel.summary()

Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #

=================================================================
input_1 (InputLayer) [(None, 128, 128, 3)] 0

rescaling (Rescaling) (None, 128, 128, 3) 0

conv1 (Conv2D) (None, 126, 126, 16) 448

=================================================================
Total params: 448
Trainable params: 448
Non-trainable params: 0
_________________________________________________________________

No we load an image and get corresponding predictions from the submodel. Predictions of the submodel are the
feature maps (after applying activation function) of the chosen layer in the original model. The image has to be resized
to fit the model’s input size. We use Kera’s load_img242. This function returns a PIL image object243 which
is understood by NumPy.

img_size = 128
img = keras.preprocessing.image.load_img(data_path + 'unlabeled/4.jpg',

target_size=(img_size, img_size))
img = np.asarray(img, dtype=np.float32)

(continues on next page)
241 https://www.tensorflow.org/api_docs/python/tf/Tensor
242 https://keras.io/api/preprocessing/image/#loadimg-function
243 https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image
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fig, ax = plt.subplots()
ax.imshow(img / 255)
plt.show()

fmaps = submodel.predict(img.reshape(1, img_size, img_size, 3))
fmaps = fmaps.reshape(fmaps.shape[1:])
print(fmaps.shape)

1/1 [==============================] - 0s 203ms/step
(126, 126, 16)

It remains to rescale and plot all the feature maps. We first rescale all feature maps at once to have range [0, 1]. Then
we rescale each map individually to increase contrast for low intensity images. The individual scaling factor will be
shown in the plots. A high factor indicates low intensities.

cols = 4
rows = fmaps.shape[2] // cols

fmaps = 1 / (fmaps.max() - fmaps.min()) * (fmaps - fmaps.min())

fig, axs = plt.subplots(rows, cols, figsize=(15, 15))

for r in range(0, rows):
for c in range(0, cols):

fmap = fmaps[:, :, r * cols + c]
if fmap.max() > 0:

fac = 1 / fmap.max()
fmap = fac * fmap

else:
fac = 1

(continues on next page)

278 Chapter 8. Artificial Neural Networks



Data Science and Artificial Intelligence for Undergraduates
Volume 2: Data Visualization, Supervised Learning

(continued from previous page)

axs[r, c].imshow(fmap, cmap='gray')
axs[r, c].axis('off')
axs[r, c].set_title('x {:.0f}'.format(fac))

plt.show()

8.6.2 Visualizing Filters

Each convolutional layer is defined by a list of filters. Filters are a set of shared weights. We may obtain weights of a
layer by calling Layer.get_weights244. For layers with input from a bias neuron the method returns a list with
two items. First item is a NumPy array of regular weights, second is a NumPy array of bias weights.

layer = model.get_layer('conv1')

filters, bias_weights = layer.get_weights()
print(filters.shape, bias_weights.shape)

244 https://keras.io/api/layers/base_layer/#getweights-method
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(3, 3, 3, 16) (16,)

In the first layer we have three input channels (red, green, blue). Thus, filter depth is 3 and we may visualize each
filter as color image. Filter pixels may have range different from [0, 1]. Thus, we linearly scale all filters.

filters = 1 / (filters.max() - filters.min()) * (filters - filters.min())

fig, axs = plt.subplots(filters.shape[3], 4, figsize=(4, 12))

for row in range(0, filters.shape[3]):
axs[row, 0].imshow(filters[:, :, :, row], vmin=0, vmax=1)
axs[row, 0].axis('off')
axs[row, 1].imshow(filters[:, :, 0, row], cmap='gray', vmin=0, vmax=1)
axs[row, 1].axis('off')
axs[row, 2].imshow(filters[:, :, 1, row], cmap='gray', vmin=0, vmax=1)
axs[row, 2].axis('off')
axs[row, 3].imshow(filters[:, :, 2, row], cmap='gray', vmin=0, vmax=1)
axs[row, 3].axis('off')
if row == 0:

axs[row, 0].set_title('RGB')
axs[row, 1].set_title('R')
axs[row, 2].set_title('G')
axs[row, 3].set_title('B')

plt.show()
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For deeper layers there is no color interpretation, because filters have more than 3 depth levels. So we may visualize
a filter as a list of sections perpendicular to the depth axis. In the following plot each row contains the sections of one
filter.

layer = model.get_layer('conv2')

filters, bias_weights = layer.get_weights()
filters = 1 / (filters.max() - filters.min()) * (filters - filters.min())

fig, axs = plt.subplots(filters.shape[3], filters.shape[2], figsize=(12, 12))

for row in range(0, filters.shape[3]):
for col in range(0, filters.shape[2]):

axs[row, col].imshow(filters[:, :, col, row], cmap='gray')
axs[row, col].axis('off')

plt.show()
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8.6.3 Maximizing Neuron Activation

To get a better idea of what causes neurons to fire, we may seek for images with high activation of a fixed neuron.
This is an optimization problem. The objective is a neuron’s activation. The search space is the set of all images
fitting the model’s input size.
We apply gradient descent to the negative objective (that is, gradient ascent to the objective) and use some Keras
features simplifying implementation.
The objective is a neuron’s output and we handle the objective as a Keras model. This will allow for using Keras to
compute gradients.

layer = model.get_layer('conv3')
neuron = (5, 5, 0)
#layer = model.get_layer('dense2')
#neuron = (0, )
#layer = model.get_layer('out')
#neuron = (0, )

submodel = keras.models.Model(inputs=model.inputs, outputs=layer.output[(0, ) +␣
↪neuron])

submodel.summary()

Model: "model_5"
_________________________________________________________________
Layer (type) Output Shape Param #

=================================================================
input_1 (InputLayer) [(None, 128, 128, 3)] 0

rescaling (Rescaling) (None, 128, 128, 3) 0

conv1 (Conv2D) (None, 126, 126, 16) 448

conv2 (Conv2D) (None, 124, 124, 16) 2320

pool1 (MaxPooling2D) (None, 62, 62, 16) 0

conv3 (Conv2D) (None, 60, 60, 32) 4640

tf.__operators__.getitem_4 () 0
(SlicingOpLambda)

=================================================================
Total params: 7,408
Trainable params: 7,408
Non-trainable params: 0
_________________________________________________________________

Now we define a function which computes objective value and gradient for a given input image. First we call con-
vert_to_tensor245 to convert the image into a Tensor object, which fits the model’s input dimensions. Then
we tell TensorFlow to watch the operations performed on the image while calculating the objective function. From
the collected information TensorFlow then can calculate the gradient of the objective function. To watch the flow of
the image through the TensorFlow graph we have to create a context manager of type GradientTape246. The flow
of all variables marked for watching with GradientTape.watch247 is recorded for all graph executions inside
the with block. After executing the graph we get the gradient from GradientTape.gradient248. Note that
calling Model.predict does not support watching the variables flow. Instead we have to use a different API
variant of Keras: Model objects are callable, that is, they can be used as a function, and yield a prediction if called
245 https://www.tensorflow.org/api_docs/python/tf/convert_to_tensor
246 https://www.tensorflow.org/api_docs/python/tf/GradientTape
247 https://www.tensorflow.org/api_docs/python/tf/GradientTape#watch
248 https://www.tensorflow.org/api_docs/python/tf/GradientTape#gradient
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with some input as argument.

def get_grad(submodel, img):

img_tensor = tf.convert_to_tensor(img.reshape(1, img_size, img_size, 3))

with tf.GradientTape() as tape:
tape.watch(img_tensor)
objective_value = submodel(img_tensor)
grad = tape.gradient(objective_value, img_tensor)

return objective_value.numpy(), grad.numpy().reshape(img.shape)

We are ready for gradient ascent. We are free to choose an arbitrary initial guess, but we have to keep in mind that on
the one hand we may end up in a local maximum and on the other hand there might be many global maxima. Thus,
the initial guess will have influence on the result. We put everything in a function. So we can reuse it below.

def gradient_ascent(submodel, init_img, max_iter, step_length):

img = init_img

for i in range(0, max_iter):
obj, grad = get_grad(submodel, img)

img = img + step_length * grad

print(i, obj, np.max(np.abs(grad)))

return img

# constant image
img = 128 * np.ones((img_size, img_size, 3), dtype=float)

# photo
#img = keras.preprocessing.image.load_img(data_path + 'unlabeled/365.jpg',
# target_size=(img_size, img_size))
#img = np.asarray(img, dtype=np.float32)

# parameters for gradient ascent
img = gradient_ascent(submodel, img, 1000, 100) # for conv3/dense2 with constant
#img = gradient_ascent(submodel, img, 100, 100) # for output neuron with photo

# show result
img_to_show = 1 / (img.max() - img.min()) * (img - img.min())
fig, ax = plt.subplots()
ax.imshow(img_to_show)
plt.show()

0 0.07344329 0.0003321536350995302
1 0.073513456 0.00028220663079991937
2 0.07358889 0.0003213614400010556
3 0.07369768 0.00030644104117527604
4 0.07383166 0.00031520603806711733
5 0.07399155 0.00030644104117527604
6 0.074129954 0.00031513432622887194
7 0.0742565 0.00030454201623797417
8 0.07441732 0.0003239291545469314
9 0.07457861 0.00030454201623797417
10 0.07470061 0.00030454201623797417

(continues on next page)
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11 0.07487879 0.00030454201623797417
12 0.07501966 0.00030454201623797417
13 0.07516515 0.0003058453439734876
14 0.075305745 0.00030454201623797417
15 0.0754803 0.0003058453439734876
16 0.07562959 0.00030454201623797417
17 0.07579061 0.00030454201623797417
18 0.07593748 0.0003058453439734876
19 0.07606852 0.00030454201623797417
20 0.076212205 0.00030454201623797417
21 0.07638178 0.0003369719488546252
22 0.076535545 0.00030454201623797417
23 0.07666714 0.0003113079583272338
24 0.07682478 0.00030454201623797417
25 0.07697314 0.00030454201623797417
26 0.07714298 0.00030454201623797417
27 0.077249855 0.0003259675286244601
28 0.07743089 0.00030454201623797417
29 0.07758624 0.0003369719488546252
30 0.07774404 0.00030454201623797417
31 0.0778713 0.00031524914084002376
32 0.07803682 0.0003058453439734876
33 0.078191474 0.0003058453439734876
34 0.07833725 0.00036290791467763484
35 0.07847955 0.00030454201623797417
36 0.07863803 0.00030454201623797417
37 0.07877792 0.0003113079583272338
38 0.07892162 0.00030454201623797417
39 0.07909869 0.00030454201623797417
40 0.07921913 0.0003113079583272338
41 0.07938554 0.00030454201623797417
42 0.07953825 0.00030454201623797417
43 0.07970761 0.00030454201623797417
44 0.07983406 0.00031524914084002376
45 0.07996544 0.0003058453439734876
46 0.08013553 0.00030454201623797417
47 0.0802946 0.00030454201623797417
48 0.08043927 0.0003058453439734876
49 0.08059702 0.00030454201623797417
50 0.08072535 0.00030454201623797417
51 0.08089805 0.00030454201623797417
52 0.08103597 0.0003369719488546252
53 0.08119964 0.0003058453439734876
54 0.08135997 0.00030454201623797417
55 0.08145313 0.0003259675286244601
56 0.08164934 0.00030454201623797417
57 0.081796795 0.00030454201623797417
58 0.08194393 0.00030454201623797417
59 0.08208322 0.00033827530569396913
60 0.08226341 0.00030454201623797417
61 0.08238993 0.00031524914084002376
62 0.082546435 0.00030454201623797417
63 0.08268981 0.00030454201623797417
64 0.082855605 0.0003113079583272338
65 0.08297971 0.00030454201623797417
66 0.08315368 0.00030454201623797417
67 0.08331067 0.00030454201623797417
68 0.08345787 0.0003048637881875038
69 0.083590515 0.0003035604313481599
70 0.0837581 0.0003232989402022213
71 0.08390607 0.0003113079583272338
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72 0.084045365 0.0003247601562179625
73 0.08419961 0.0003035604313481599
74 0.08436007 0.0003035604313481599
75 0.08451763 0.0003048637881875038
76 0.08465027 0.0003060454619117081
77 0.08482045 0.0003035604313481599
78 0.084977776 0.0003035604313481599
79 0.08512163 0.0003035604313481599
80 0.08527139 0.0003035604313481599
81 0.08544078 0.0003048637881875038
82 0.085562915 0.0003035604313481599
83 0.085736886 0.0003048637881875038
84 0.085881226 0.0003035604313481599
85 0.086030394 0.00033729374990798533
86 0.086165085 0.0003035604313481599
87 0.086344495 0.0003197602345608175
88 0.08646924 0.0003035604313481599
89 0.08664642 0.0003035604313481599
90 0.086805105 0.0003035604313481599
91 0.086939305 0.0003035604313481599
92 0.08710596 0.00031557094189338386
93 0.08726247 0.0003035604313481599
94 0.08738602 0.0003035604313481599
95 0.08757089 0.0003035604313481599
96 0.087709084 0.0003048637881875038
97 0.08785117 0.0003172186843585223
98 0.08802833 0.0003197602345608175
99 0.08816219 0.0003035604313481599
100 0.08833459 0.0003359904221724719
101 0.0884886 0.0003035604313481599
102 0.08864398 0.0003048637881875038
103 0.08880227 0.0003035604313481599
104 0.08896902 0.0003048637881875038
105 0.08910107 0.0003035604313481599
106 0.08926667 0.0003359904221724719
107 0.0894378 0.0003035604313481599
108 0.089568794 0.0003048637881875038
109 0.08974953 0.0003172186843585223
110 0.08987595 0.0003048637881875038
111 0.09004665 0.0003035604313481599
112 0.090225294 0.0003035604313481599
113 0.090371795 0.00031557094189338386
114 0.09052053 0.0003035604313481599
115 0.09068331 0.0003035604313481599
116 0.0908356 0.0003259675286244601
117 0.09098149 0.0003172186843585223
118 0.091161326 0.0003035604313481599
119 0.09132437 0.0003035604313481599
120 0.09145064 0.00031426758505403996
121 0.09163647 0.0003049639635719359
122 0.09175947 0.000303660606732592
123 0.09195082 0.000303660606732592
124 0.09209989 0.00037339873961173
125 0.09226224 0.00033609167439863086
126 0.092403606 0.000303660606732592
127 0.092575684 0.0003232989402022213
128 0.092724964 0.0003113079583272338
129 0.0928749 0.000303660606732592
130 0.093041636 0.0003049639635719359
131 0.0932492 0.000548863725271076
132 0.093575545 0.000548863725271076
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133 0.09393424 0.000548863725271076
134 0.09426286 0.0005501671112142503
135 0.09457503 0.000548863725271076
136 0.0949109 0.0006987230153754354
137 0.095343046 0.0006967210792936385
138 0.095765874 0.0006967210792936385
139 0.09618598 0.0006980244070291519
140 0.09660856 0.0006967210792936385
141 0.09702786 0.0006980244070291519
142 0.09744506 0.0006967210792936385
143 0.09787216 0.0006964638596400619
144 0.098283805 0.0006977671873755753
145 0.09869732 0.0006964638596400619
146 0.09912459 0.0006964638596400619
147 0.09951783 0.0006964638596400619
148 0.09995559 0.0006964638596400619
149 0.10036949 0.0006977671873755753
150 0.10079682 0.0006964638596400619
151 0.10120723 0.0006964638596400619
152 0.10162692 0.0006964638596400619
153 0.102024704 0.0006964638596400619
154 0.10247612 0.0006964638596400619
155 0.10286892 0.0006964638596400619
156 0.10330826 0.0006964638596400619
157 0.10371728 0.0006977671873755753
158 0.10411946 0.0006964638596400619
159 0.104556054 0.0006964638596400619
160 0.10494343 0.0006964638596400619
161 0.105392754 0.0006964638596400619
162 0.1058107 0.0006977671873755753
163 0.10622219 0.0006964638596400619
164 0.10665828 0.0006964638596400619
165 0.107054524 0.0006964638596400619
166 0.10749701 0.0006964638596400619
167 0.107880875 0.0006977671873755753
168 0.108363695 0.0009242984815500677
169 0.108925685 0.0009242984815500677
170 0.10950871 0.0009242984815500677
171 0.11008029 0.0009256018092855811
172 0.110664986 0.0009242984815500677
173 0.11124636 0.0009242984815500677
174 0.1118204 0.0009242984815500677
175 0.11237122 0.0009242984815500677
176 0.112955004 0.0009256018092855811
177 0.11352999 0.0009242984815500677
178 0.11410865 0.0009242984815500677
179 0.11469558 0.0009242984815500677
180 0.115223646 0.0009256018092855811
181 0.11583601 0.0009242984815500677
182 0.116399184 0.0009242984815500677
183 0.11696331 0.0009242984815500677
184 0.11755805 0.0009256018092855811
185 0.11812425 0.0009242984815500677
186 0.11870559 0.0009242984815500677
187 0.11927338 0.0009256018092855811
188 0.11986539 0.0009256018092855811
189 0.12042022 0.0009242984815500677
190 0.12099801 0.0009152829879894853
191 0.121533066 0.0009165863157249987
192 0.12208147 0.0009152829879894853
193 0.12265298 0.0009165863157249987
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194 0.123206116 0.0009152829879894853
195 0.12377263 0.0009152829879894853
196 0.12432422 0.0009152829879894853
197 0.1248651 0.0009165863157249987
198 0.12543273 0.0009152829879894853
199 0.12598741 0.0009165863157249987
200 0.12649682 0.0009165863157249987
201 0.12707181 0.0009152829879894853
202 0.12763208 0.0009152829879894853
203 0.12818763 0.0009152829879894853
204 0.12873638 0.0009152829879894853
205 0.12930945 0.001039297436363995
206 0.13005458 0.0010406007058918476
207 0.13081264 0.001039297436363995
208 0.13159339 0.001039297436363995
209 0.13235143 0.001039297436363995
210 0.13312067 0.0010406007058918476
211 0.13388121 0.001039297436363995
212 0.13465029 0.001039297436363995
213 0.13540941 0.001039297436363995
214 0.13616672 0.001039297436363995
215 0.13694865 0.001039297436363995
216 0.13772929 0.001039297436363995
217 0.13847396 0.001039297436363995
218 0.13922313 0.0010406007058918476
219 0.14000468 0.001039297436363995
220 0.1407558 0.0010269630001857877
221 0.1414311 0.0010269630001857877
222 0.1421513 0.0010269630001857877
223 0.14284176 0.0010282662697136402
224 0.14353868 0.0010282662697136402
225 0.14421485 0.0010269630001857877
226 0.14493802 0.0010269630001857877
227 0.14563352 0.0010269630001857877
228 0.14630292 0.0010269630001857877
229 0.14701118 0.0010282662697136402
230 0.14767927 0.0010269630001857877
231 0.14838807 0.0010282662697136402
232 0.14909413 0.0010269630001857877
233 0.14977466 0.0010269630001857877
234 0.15044625 0.0010269630001857877
235 0.15116742 0.0010282662697136402
236 0.15185341 0.0010453721042722464
237 0.15255716 0.0010453721042722464
238 0.15326595 0.0010466754902154207
239 0.15398586 0.0010466754902154207
240 0.15467824 0.0010453721042722464
241 0.15538774 0.0010453721042722464
242 0.15609169 0.0010466754902154207
243 0.15681161 0.0010334550170227885
244 0.15749998 0.0010334550170227885
245 0.15817234 0.001034758286550641
246 0.1588495 0.0010334550170227885
247 0.15955731 0.001034758286550641
248 0.1602395 0.0010334550170227885
249 0.16091433 0.001034758286550641
250 0.16161926 0.0010334550170227885
251 0.16230682 0.0010334550170227885
252 0.16297057 0.0010334550170227885
253 0.16366643 0.001034758286550641
254 0.16435352 0.0010334550170227885
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255 0.16506052 0.0010422063060104847
256 0.1657235 0.0010422063060104847
257 0.16641217 0.0010409029200673103
258 0.16713175 0.0011633450631052256
259 0.16799636 0.0011633450631052256
260 0.16887681 0.0011633450631052256
261 0.16975336 0.0011633450631052256
262 0.17060798 0.0011633450631052256
263 0.1714916 0.0011633450631052256
264 0.1723558 0.0011633450631052256
265 0.17321947 0.0011633450631052256
266 0.17410064 0.0011633450631052256
267 0.17496765 0.0011646484490484
268 0.17584488 0.0011633450631052256
269 0.17672223 0.0011633450631052256
270 0.17758405 0.0011633450631052256
271 0.17844957 0.0011633450631052256
272 0.17929256 0.0011633450631052256
273 0.1801504 0.0011646484490484
274 0.1810208 0.0011633450631052256
275 0.18185535 0.0011633450631052256
276 0.18274412 0.0011633450631052256
277 0.1835914 0.0011633450631052256
278 0.18444327 0.0011633450631052256
279 0.18529923 0.0011646484490484
280 0.18615171 0.0011633450631052256
281 0.18702075 0.0011633450631052256
282 0.18789604 0.0011633450631052256
283 0.18873143 0.0011633450631052256
284 0.18964577 0.0011633450631052256
285 0.19048303 0.0011633450631052256
286 0.19135761 0.0011646484490484
287 0.1922316 0.0011633450631052256
288 0.19306631 0.0011633450631052256
289 0.19395226 0.0011633450631052256
290 0.19479892 0.0011646484490484
291 0.1956524 0.0011633450631052256
292 0.19652039 0.0011633450631052256
293 0.19735864 0.0011646484490484
294 0.1982168 0.0011633450631052256
295 0.19905323 0.0011633450631052256
296 0.19994366 0.0011633450631052256
297 0.20076564 0.0011646484490484
298 0.20162287 0.0011633450631052256
299 0.20249972 0.0011633450631052256
300 0.20334432 0.0011646484490484
301 0.20421043 0.0011633450631052256
302 0.20506933 0.0011633450631052256
303 0.20591384 0.0011633450631052256
304 0.2067788 0.0011633450631052256
305 0.2076214 0.0011630564695224166
306 0.20847076 0.001161753199994564
307 0.20930934 0.0011547609465196729
308 0.21017495 0.0011547609465196729
309 0.2110126 0.0011560643324628472
310 0.21185476 0.0011547609465196729
311 0.21270594 0.0011547609465196729
312 0.21352428 0.0011547609465196729
313 0.21437383 0.0011547609465196729
314 0.21522999 0.0011547609465196729
315 0.21606508 0.0011547609465196729
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316 0.21693018 0.0011547609465196729
317 0.21776438 0.0011547609465196729
318 0.21860445 0.0011547609465196729
319 0.21946377 0.0011547609465196729
320 0.22030687 0.0011547609465196729
321 0.22114545 0.0011547609465196729
322 0.22197145 0.0011547609465196729
323 0.22282624 0.0011547609465196729
324 0.22366986 0.0011547609465196729
325 0.22451457 0.0011547609465196729
326 0.22537518 0.0011547609465196729
327 0.22621363 0.0011547609465196729
328 0.22706088 0.0011547609465196729
329 0.22789448 0.0011547609465196729
330 0.22871679 0.0011547609465196729
331 0.2295802 0.0011547609465196729
332 0.23042527 0.0011547609465196729
333 0.23126474 0.0011547609465196729
334 0.23213267 0.0011547609465196729
335 0.23293126 0.0011547609465196729
336 0.23380387 0.00119047611951828
337 0.23467505 0.00119047611951828
338 0.23550901 0.00119047611951828
339 0.23637694 0.0011949328472837806
340 0.23720443 0.0011949328472837806
341 0.23803565 0.0011949328472837806
342 0.23889732 0.0011949328472837806
343 0.23972046 0.0011859633959829807
344 0.24053669 0.0011859633959829807
345 0.24140269 0.0011859633959829807
346 0.2422227 0.0011859633959829807
347 0.24304807 0.0011769563425332308
348 0.24385178 0.0011859633959829807
349 0.24469233 0.0011769563425332308
350 0.2455194 0.0011859633959829807
351 0.24634546 0.0011859633959829807
352 0.2471638 0.0011769563425332308
353 0.24799958 0.0011769563425332308
354 0.24882391 0.0011859633959829807
355 0.24963304 0.0011859633959829807
356 0.25048518 0.0011801046784967184
357 0.25129056 0.0011693075066432357
358 0.25210515 0.0011693075066432357
359 0.25294277 0.0011801046784967184
360 0.25376484 0.0011801046784967184
361 0.2546005 0.0011801046784967184
362 0.2554038 0.0011693075066432357
363 0.2562459 0.0011801046784967184
364 0.2570611 0.0011693075066432357
365 0.2578666 0.0011801046784967184
366 0.25872436 0.0011693075066432357
367 0.25952893 0.0011801046784967184
368 0.2603687 0.0011801046784967184
369 0.26117754 0.0011693075066432357
370 0.26200697 0.0011693075066432357
371 0.26280937 0.0011801046784967184
372 0.2636469 0.0011801046784967184
373 0.2644574 0.0011801046784967184
374 0.26530296 0.0011775860330089927
375 0.26613316 0.0011883832048624754
376 0.26697263 0.0011775860330089927
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377 0.26780468 0.0011883832048624754
378 0.26862416 0.0011775860330089927
379 0.26945022 0.0011883832048624754
380 0.27029875 0.0011775860330089927
381 0.27112618 0.0011883832048624754
382 0.2719626 0.0011883832048624754
383 0.27275893 0.0011775860330089927
384 0.27363223 0.0011883832048624754
385 0.27446464 0.0011883832048624754
386 0.27529076 0.0011775860330089927
387 0.2761158 0.0011775860330089927
388 0.27696207 0.0011883832048624754
389 0.2778019 0.0011730468831956387
390 0.27860922 0.001174796256236732
391 0.27945238 0.001174796256236732
392 0.28024793 0.001174796256236732
393 0.28105906 0.001174796256236732
394 0.2819235 0.001174796256236732
395 0.2827406 0.001174796256236732
396 0.2835723 0.001174796256236732
397 0.284405 0.001174796256236732
398 0.28518394 0.0011692551197484136
399 0.2860337 0.0011756159365177155
400 0.286859 0.0011756159365177155
401 0.2876567 0.0011756159365177155
402 0.2884748 0.0011756159365177155
403 0.28927705 0.0011756159365177155
404 0.2900658 0.0011756159365177155
405 0.29090843 0.0011756159365177155
406 0.29168615 0.0011756159365177155
407 0.29249954 0.0011756159365177155
408 0.29331246 0.0011756159365177155
409 0.29412633 0.0011756159365177155
410 0.29493684 0.0011756159365177155
411 0.29575172 0.0011756159365177155
412 0.29655385 0.0011670526582747698
413 0.2974703 0.0011670526582747698
414 0.29838023 0.0011670526582747698
415 0.29926324 0.0011670526582747698
416 0.30021134 0.0011670526582747698
417 0.30111364 0.0011670526582747698
418 0.3020156 0.0011670526582747698
419 0.30295184 0.0011670526582747698
420 0.3038516 0.0011670526582747698
421 0.30474448 0.0011670526582747698
422 0.3056714 0.0011670526582747698
423 0.30658302 0.0011670526582747698
424 0.307517 0.0011670526582747698
425 0.30842844 0.0011670526582747698
426 0.30931112 0.0011670526582747698
427 0.310214 0.0011670526582747698
428 0.31112623 0.0011670526582747698
429 0.3120542 0.0011670526582747698
430 0.31292132 0.0011670526582747698
431 0.31384367 0.0011670526582747698
432 0.31476337 0.0011670526582747698
433 0.31565458 0.0011670526582747698
434 0.3165592 0.0011670526582747698
435 0.3174939 0.0011670526582747698
436 0.31838903 0.0011670526582747698
437 0.31929648 0.0011670526582747698
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438 0.32019052 0.0011670526582747698
439 0.321099 0.0011670526582747698
440 0.32200316 0.0011670526582747698
441 0.32291114 0.0011670526582747698
442 0.32379955 0.0011670526582747698
443 0.32469973 0.0011670526582747698
444 0.32562268 0.0011670526582747698
445 0.32650757 0.0011670526582747698
446 0.32741365 0.0011670526582747698
447 0.3283232 0.0011670526582747698
448 0.3292402 0.0011670526582747698
449 0.330129 0.0011670526582747698
450 0.33103305 0.0011670526582747698
451 0.3319336 0.0011670526582747698
452 0.3328155 0.0011670526582747698
453 0.33374733 0.0011670526582747698
454 0.33464786 0.0011670526582747698
455 0.33553892 0.0011670526582747698
456 0.3364692 0.0011670526582747698
457 0.33737844 0.0011670526582747698
458 0.3382727 0.0011670526582747698
459 0.3391565 0.0011670526582747698
460 0.34008282 0.0011670526582747698
461 0.3409896 0.0011670526582747698
462 0.34186038 0.0011670526582747698
463 0.34278762 0.0011670526582747698
464 0.3436863 0.0011670526582747698
465 0.34458283 0.0011670526582747698
466 0.34549478 0.0010790652595460415
467 0.34631377 0.0010790652595460415
468 0.34719032 0.0010790652595460415
469 0.3480214 0.0010790652595460415
470 0.34890258 0.0010790652595460415
471 0.3497575 0.0010790652595460415
472 0.3505807 0.0010790652595460415
473 0.3514599 0.0010790652595460415
474 0.3522837 0.0010790652595460415
475 0.35314745 0.0010790652595460415
476 0.35401186 0.0010790652595460415
477 0.35486692 0.0010790652595460415
478 0.35568154 0.0010790652595460415
479 0.35657242 0.0010790652595460415
480 0.35737127 0.0010154407937079668
481 0.3581802 0.0010154407937079668
482 0.35896868 0.0010154407937079668
483 0.35978597 0.0010154407937079668
484 0.36058876 0.0010154407937079668
485 0.36137655 0.0010154407937079668
486 0.36217743 0.0010154407937079668
487 0.36296797 0.0010154407937079668
488 0.3637755 0.0010154407937079668
489 0.36456716 0.0010154407937079668
490 0.36538386 0.0010154407937079668
491 0.36614984 0.0010154407937079668
492 0.36697516 0.0010154407937079668
493 0.36775056 0.0010154407937079668
494 0.36854511 0.0010154407937079668
495 0.3693443 0.0010154407937079668
496 0.37014896 0.0010154407937079668
497 0.37095195 0.0010154407937079668
498 0.37172404 0.0010154407937079668
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499 0.37254268 0.0010154407937079668
500 0.37333837 0.0010154407937079668
501 0.37415114 0.0010154407937079668
502 0.37494037 0.0010154407937079668
503 0.3757527 0.0010154407937079668
504 0.3765402 0.0010154407937079668
505 0.37734315 0.0010154407937079668
506 0.37814957 0.0010154407937079668
507 0.3789367 0.0010154407937079668
508 0.3797198 0.0010154407937079668
509 0.38052315 0.0010154407937079668
510 0.3813415 0.0010154407937079668
511 0.38213024 0.0010154407937079668
512 0.38292485 0.0010154407937079668
513 0.38370124 0.0010154407937079668
514 0.3845234 0.0010154407937079668
515 0.38530743 0.0010154407937079668
516 0.38611794 0.0010154407937079668
517 0.3869216 0.0010154407937079668
518 0.3876673 0.0010154407937079668
519 0.38849553 0.0010154407937079668
520 0.3892975 0.0010154407937079668
521 0.39006588 0.0010154407937079668
522 0.39090362 0.0010154407937079668
523 0.39167362 0.0010154407937079668
524 0.39247113 0.0010154407937079668
525 0.3932494 0.0010154407937079668
526 0.3940714 0.0010154407937079668
527 0.394863 0.0010154407937079668
528 0.3956417 0.0010154407937079668
529 0.3964413 0.0010154407937079668
530 0.39725867 0.0010154407937079668
531 0.398041 0.0010154407937079668
532 0.39885044 0.0010154407937079668
533 0.3996294 0.0010154407937079668
534 0.40043512 0.0010154407937079668
535 0.40123594 0.0010154407937079668
536 0.40202937 0.0010154407937079668
537 0.402824 0.0010154407937079668
538 0.40364966 0.0010154407937079668
539 0.40445825 0.0010154407937079668
540 0.40526012 0.0010154407937079668
541 0.40606946 0.0010154407937079668
542 0.40684387 0.0010154407937079668
543 0.4076617 0.0010154407937079668
544 0.40847754 0.0010154407937079668
545 0.40928942 0.0010154407937079668
546 0.41008174 0.0010154407937079668
547 0.41090408 0.0010154407937079668
548 0.41169664 0.0010154407937079668
549 0.41249254 0.0010154407937079668
550 0.41331044 0.0010154407937079668
551 0.41412392 0.00101051339879632
552 0.41491395 0.00101051339879632
553 0.41570634 0.00101051339879632
554 0.4165171 0.00101051339879632
555 0.4173471 0.00101051339879632
556 0.41813064 0.00101051339879632
557 0.4189338 0.00101051339879632
558 0.41971493 0.00101051339879632
559 0.42053598 0.00101051339879632

(continues on next page)

8.6. What did the CNN learn? 293



Data Science and Artificial Intelligence for Undergraduates
Volume 2: Data Visualization, Supervised Learning

(continued from previous page)

560 0.4213166 0.00101051339879632
561 0.42214185 0.00101051339879632
562 0.42296207 0.00101051339879632
563 0.42373446 0.00101051339879632
564 0.4245199 0.00101051339879632
565 0.42533642 0.00101051339879632
566 0.4261579 0.00101051339879632
567 0.42693517 0.00101051339879632
568 0.42773804 0.0010139307705685496
569 0.42855272 0.0010139307705685496
570 0.42936152 0.0010139307705685496
571 0.43015447 0.0010139307705685496
572 0.4309811 0.0010139307705685496
573 0.43175057 0.0010139307705685496
574 0.43258232 0.0010139307705685496
575 0.43339017 0.0010139307705685496
576 0.4341939 0.0010139307705685496
577 0.43496978 0.0010139307705685496
578 0.4357804 0.0010139307705685496
579 0.4365905 0.0009832626674324274
580 0.4373628 0.0009832626674324274
581 0.43810424 0.0009832626674324274
582 0.4388808 0.0009832626674324274
583 0.4396517 0.0009832626674324274
584 0.44040602 0.0009832626674324274
585 0.441188 0.0009832626674324274
586 0.44193944 0.0009832626674324274
587 0.44268337 0.0009832626674324274
588 0.44346732 0.0009832626674324274
589 0.4442556 0.0009832626674324274
590 0.4449988 0.0009832626674324274
591 0.44578514 0.0009832626674324274
592 0.44653383 0.0009832626674324274
593 0.44730932 0.0009832626674324274
594 0.44806883 0.0009832626674324274
595 0.44879472 0.0009832626674324274
596 0.4495962 0.0009832626674324274
597 0.45036265 0.0009832626674324274
598 0.4511082 0.0009832626674324274
599 0.45191392 0.0009832626674324274
600 0.45263118 0.0009832626674324274
601 0.45340177 0.0009832626674324274
602 0.45418617 0.0009832626674324274
603 0.45495698 0.0009832626674324274
604 0.4556701 0.0009832626674324274
605 0.45644075 0.0009832626674324274
606 0.45722923 0.0009832626674324274
607 0.4580336 0.0010870908154174685
608 0.4589291 0.0010870908154174685
609 0.45981702 0.001059028902091086
610 0.46067777 0.001059028902091086
611 0.461596 0.001059028902091086
612 0.46244848 0.001059028902091086
613 0.46335196 0.001059028902091086
614 0.4642234 0.001059028902091086
615 0.4651056 0.001059028902091086
616 0.46600258 0.001059028902091086
617 0.46684855 0.001059028902091086
618 0.46774 0.001059028902091086
619 0.4686332 0.001059028902091086
620 0.46951178 0.001059028902091086
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621 0.47038 0.000985809019766748
622 0.47121063 0.0010329419746994972
623 0.47214574 0.0010329419746994972
624 0.47310114 0.0010329419746994972
625 0.47406873 0.0010329419746994972
626 0.47502652 0.0010329419746994972
627 0.47594658 0.0010326988995075226
628 0.47688997 0.0010326988995075226
629 0.47786474 0.0010326988995075226
630 0.4788167 0.0010326988995075226
631 0.4797461 0.0010326988995075226
632 0.48066002 0.0010326988995075226
633 0.4816415 0.0010326988995075226
634 0.4825965 0.0010326988995075226
635 0.4835614 0.0010326988995075226
636 0.4844857 0.0010326988995075226
637 0.48542342 0.0010326988995075226
638 0.48639002 0.0010326988995075226
639 0.4872793 0.0010326988995075226
640 0.48816916 0.0010326988995075226
641 0.4891415 0.0010326988995075226
642 0.4900629 0.0010326988995075226
643 0.4910013 0.0010326988995075226
644 0.49189064 0.0010326988995075226
645 0.49282485 0.0010326988995075226
646 0.49373966 0.0010326988995075226
647 0.49464673 0.0010326988995075226
648 0.49556008 0.0010326988995075226
649 0.49648935 0.0010326988995075226
650 0.49737707 0.0010326988995075226
651 0.49832752 0.0010326988995075226
652 0.49926782 0.0010326988995075226
653 0.5001807 0.0010326988995075226
654 0.5010698 0.0010326988995075226
655 0.5020299 0.0010326988995075226
656 0.5029193 0.0010326988995075226
657 0.5038766 0.0010326988995075226
658 0.50479966 0.0010326988995075226
659 0.5056684 0.0010326988995075226
660 0.50657624 0.0010326988995075226
661 0.5075078 0.0010326988995075226
662 0.50838625 0.0010326988995075226
663 0.5092764 0.0010326988995075226
664 0.51016474 0.0010326988995075226
665 0.51108813 0.0010326988995075226
666 0.51197284 0.0010326988995075226
667 0.51285535 0.0010326988995075226
668 0.51377314 0.0010326988995075226
669 0.5146683 0.0010326988995075226
670 0.51558805 0.0010326988995075226
671 0.5164205 0.0010326988995075226
672 0.51737213 0.0010326988995075226
673 0.5182538 0.0010326988995075226
674 0.51913476 0.0010326988995075226
675 0.52007437 0.0010326988995075226
676 0.5209829 0.0010326988995075226
677 0.52187335 0.0010326988995075226
678 0.5227336 0.0010326988995075226
679 0.5236664 0.0010326988995075226
680 0.52454185 0.0010326988995075226
681 0.52543604 0.0010326988995075226
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682 0.5263518 0.0010326988995075226
683 0.5271962 0.0010326988995075226
684 0.52804476 0.0010326988995075226
685 0.5289265 0.0010326988995075226
686 0.52977735 0.0010326988995075226
687 0.53062344 0.0010326988995075226
688 0.5314872 0.0010326988995075226
689 0.53233325 0.0010326988995075226
690 0.5331717 0.0010326988995075226
691 0.5340625 0.0010326988995075226
692 0.5349046 0.0010326988995075226
693 0.5357088 0.0010326988995075226
694 0.5365881 0.0010326988995075226
695 0.53747183 0.0010326988995075226
696 0.5382971 0.0010326988995075226
697 0.5391491 0.0010307517368346453
698 0.5400001 0.0010307517368346453
699 0.54090506 0.0010307517368346453
700 0.5417581 0.0010307517368346453
701 0.5425821 0.0010307517368346453
702 0.5434768 0.0010307517368346453
703 0.5442994 0.0010307517368346453
704 0.545164 0.0010307517368346453
705 0.5460554 0.0010307517368346453
706 0.54692215 0.0010307517368346453
707 0.5477654 0.0010307517368346453
708 0.54859924 0.0010307517368346453
709 0.5495042 0.0010307517368346453
710 0.5503597 0.0010307517368346453
711 0.55117035 0.0010307517368346453
712 0.55207765 0.0010307517368346453
713 0.5529067 0.0010238096583634615
714 0.5537985 0.0010238096583634615
715 0.5546446 0.0009919860167428851
716 0.55550605 0.0009919860167428851
717 0.5563586 0.0009919860167428851
718 0.55718243 0.0009919860167428851
719 0.55800784 0.0010421713814139366
720 0.5589189 0.0010421713814139366
721 0.559784 0.001022367156110704
722 0.560643 0.001022367156110704
723 0.5615605 0.001022367156110704
724 0.5624156 0.001022367156110704
725 0.5632752 0.001022367156110704
726 0.5641829 0.001022367156110704
727 0.56504005 0.001022367156110704
728 0.5659065 0.0010457722237333655
729 0.5667304 0.000956058909650892
730 0.5675022 0.000956058909650892
731 0.5683356 0.000956058909650892
732 0.56912684 0.000956058909650892
733 0.5699113 0.0009668168495409191
734 0.5706983 0.0009668168495409191
735 0.5714856 0.0009668168495409191
736 0.57226485 0.0009668168495409191
737 0.5730624 0.0009668168495409191
738 0.57386065 0.0009668168495409191
739 0.57462347 0.0009668168495409191
740 0.57542187 0.0009668168495409191
741 0.57620674 0.0009668168495409191
742 0.5769996 0.0009668168495409191
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743 0.57778823 0.0009668168495409191
744 0.5785791 0.0009668168495409191
745 0.5793726 0.0009668168495409191
746 0.5801276 0.0009668168495409191
747 0.58092684 0.0009668168495409191
748 0.5817179 0.0009668168495409191
749 0.5825163 0.0009668168495409191
750 0.5832929 0.0009668168495409191
751 0.5840812 0.0009668168495409191
752 0.5848595 0.0009668168495409191
753 0.58565956 0.0009668168495409191
754 0.5864584 0.0009668168495409191
755 0.58722854 0.0009668168495409191
756 0.5880059 0.0009668168495409191
757 0.58879775 0.0009668168495409191
758 0.5895954 0.0009668168495409191
759 0.59037656 0.0009668168495409191
760 0.5911552 0.0009668168495409191
761 0.59193975 0.0009668168495409191
762 0.5927428 0.0009668168495409191
763 0.59353584 0.0009668168495409191
764 0.5942976 0.0009668168495409191
765 0.5951029 0.0009668168495409191
766 0.5958876 0.0009668168495409191
767 0.59666055 0.0009668168495409191
768 0.5974607 0.0009668168495409191
769 0.5982454 0.0009668168495409191
770 0.599039 0.0009668168495409191
771 0.59982723 0.0009668168495409191
772 0.6006173 0.0009668168495409191
773 0.60140604 0.0009668168495409191
774 0.60219723 0.0009668168495409191
775 0.6029881 0.0009668168495409191
776 0.6037439 0.0009668168495409191
777 0.60455 0.0009668168495409191
778 0.6053583 0.0009668168495409191
779 0.60611725 0.0009668168495409191
780 0.6069193 0.0009668168495409191
781 0.6077134 0.0009668168495409191
782 0.6084981 0.0009668168495409191
783 0.6092804 0.0009668168495409191
784 0.61007494 0.0009668168495409191
785 0.61085117 0.0009668168495409191
786 0.6116433 0.0009668168495409191
787 0.61245275 0.0009668168495409191
788 0.6132225 0.0009668168495409191
789 0.61400676 0.0009886898333206773
790 0.61478317 0.0009886898333206773
791 0.6155784 0.0009886898333206773
792 0.6163532 0.0009886898333206773
793 0.6171217 0.0009886898333206773
794 0.6179187 0.0009886898333206773
795 0.61868626 0.0009886898333206773
796 0.6194822 0.0009886898333206773
797 0.6202694 0.0009886898333206773
798 0.62104636 0.0009886898333206773
799 0.6218326 0.0009886898333206773
800 0.6226178 0.0009886898333206773
801 0.62339514 0.0009886898333206773
802 0.6241851 0.0009886898333206773
803 0.62495697 0.0009886898333206773
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804 0.6257293 0.0009886898333206773
805 0.6264954 0.0009886898333206773
806 0.62730217 0.0009886898333206773
807 0.62808347 0.0009886898333206773
808 0.628863 0.0009886898333206773
809 0.6296295 0.0009886898333206773
810 0.6304254 0.0009886898333206773
811 0.6312075 0.0009886898333206773
812 0.6320016 0.0009886898333206773
813 0.63276213 0.0009979268070310354
814 0.633546 0.0009979268070310354
815 0.6343409 0.0009979268070310354
816 0.63511616 0.0009979268070310354
817 0.63590056 0.0009979268070310354
818 0.63669586 0.0009979268070310354
819 0.6374912 0.001023309538140893
820 0.6383158 0.001023309538140893
821 0.6391846 0.001023309538140893
822 0.6400445 0.001023309538140893
823 0.6408873 0.001023309538140893
824 0.6417466 0.001023309538140893
825 0.6425912 0.001023309538140893
826 0.643449 0.001023309538140893
827 0.6442834 0.0009945675265043974
828 0.6451267 0.0009945675265043974
829 0.64594156 0.0009945675265043974
830 0.6467531 0.0009945675265043974
831 0.6476129 0.0009945675265043974
832 0.6484228 0.0009945675265043974
833 0.6492394 0.0009945675265043974
834 0.65007967 0.0009945675265043974
835 0.6508905 0.0009945675265043974
836 0.6517256 0.0009945675265043974
837 0.6525289 0.0009945675265043974
838 0.65336 0.0009945675265043974
839 0.65417266 0.0009945675265043974
840 0.6549925 0.0009945675265043974
841 0.6558189 0.0009945675265043974
842 0.6566242 0.0009945675265043974
843 0.6574596 0.0009945675265043974
844 0.6582777 0.0009945675265043974
845 0.6590987 0.0009945675265043974
846 0.65990216 0.0009945675265043974
847 0.66071415 0.0009945675265043974
848 0.6615644 0.0009945675265043974
849 0.6623605 0.0009945675265043974
850 0.6631765 0.0009945675265043974
851 0.66401565 0.0009945675265043974
852 0.6648319 0.0009945675265043974
853 0.665637 0.0009945675265043974
854 0.66644573 0.0009945675265043974
855 0.6672871 0.0009945675265043974
856 0.66809356 0.0009945675265043974
857 0.66891545 0.0009945675265043974
858 0.6697405 0.0009945675265043974
859 0.6705429 0.0009945675265043974
860 0.6713725 0.0009945675265043974
861 0.6721709 0.0009945675265043974
862 0.67298466 0.0009945675265043974
863 0.67382187 0.0009945675265043974
864 0.6746325 0.0009945675265043974
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865 0.6754544 0.0009945675265043974
866 0.67626846 0.0009945675265043974
867 0.67705846 0.0009945675265043974
868 0.67789626 0.0009945675265043974
869 0.67871684 0.0009945675265043974
870 0.6795344 0.0009945675265043974
871 0.6803413 0.0009945675265043974
872 0.6811339 0.0009945675265043974
873 0.6819754 0.0009945675265043974
874 0.6827903 0.0009903388563543558
875 0.6835876 0.0009903388563543558
876 0.6843899 0.0009995902655646205
877 0.68519706 0.0009995902655646205
878 0.6860052 0.0009995902655646205
879 0.68679684 0.0009995902655646205
880 0.68760914 0.0009995902655646205
881 0.6884222 0.0009995902655646205
882 0.6892284 0.0009995902655646205
883 0.6900231 0.0009995902655646205
884 0.6908194 0.0009995902655646205
885 0.6916016 0.0009995902655646205
886 0.6924194 0.0009995902655646205
887 0.693211 0.0009995902655646205
888 0.6940029 0.0009995902655646205
889 0.6947848 0.0009995902655646205
890 0.6955754 0.0009995902655646205
891 0.69638306 0.0009995902655646205
892 0.69717735 0.0009995902655646205
893 0.697969 0.0009995902655646205
894 0.69876575 0.0009995902655646205
895 0.6995406 0.0009995902655646205
896 0.7003432 0.0009995902655646205
897 0.70114625 0.0009995902655646205
898 0.70194095 0.0009995902655646205
899 0.70272666 0.0009995902655646205
900 0.7035292 0.0009995902655646205
901 0.7043215 0.0009995902655646205
902 0.7050826 0.0009995902655646205
903 0.70590913 0.0009995902655646205
904 0.7066984 0.0009995902655646205
905 0.7074973 0.0009995902655646205
906 0.7082788 0.0009995902655646205
907 0.7090724 0.0009995902655646205
908 0.7098745 0.0009995902655646205
909 0.710666 0.0009995902655646205
910 0.7114511 0.0009995902655646205
911 0.7122621 0.0009995902655646205
912 0.7130417 0.0009995902655646205
913 0.71384054 0.0009995902655646205
914 0.7146361 0.0009995902655646205
915 0.7154125 0.0009995902655646205
916 0.7162201 0.0009995902655646205
917 0.7170155 0.0010522683151066303
918 0.71787304 0.0010522683151066303
919 0.7187354 0.0010522683151066303
920 0.7195928 0.0010522683151066303
921 0.72045165 0.0010522683151066303
922 0.7212997 0.0010522683151066303
923 0.7221617 0.0010522683151066303
924 0.72301835 0.0010522683151066303
925 0.72386307 0.0010522683151066303
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926 0.7247229 0.0010522683151066303
927 0.7255807 0.0010522683151066303
928 0.7264381 0.0010522683151066303
929 0.7272903 0.0010522683151066303
930 0.7281472 0.0010522683151066303
931 0.7290011 0.0010522683151066303
932 0.72984874 0.0010522683151066303
933 0.7307101 0.0010522683151066303
934 0.7315547 0.0010522683151066303
935 0.73242086 0.0010522683151066303
936 0.73327273 0.0010522683151066303
937 0.7341252 0.0010522683151066303
938 0.7349861 0.0010522683151066303
939 0.7358517 0.0010522683151066303
940 0.73670053 0.0010522683151066303
941 0.73756105 0.0010522683151066303
942 0.7384129 0.0010522683151066303
943 0.73925865 0.0010522683151066303
944 0.74012375 0.0010522683151066303
945 0.74095243 0.0009738617809489369
946 0.74173504 0.0009738617809489369
947 0.7424955 0.0009738617809489369
948 0.7432958 0.0009738617809489369
949 0.7440823 0.0009738617809489369
950 0.74485135 0.0009738617809489369
951 0.7456361 0.0009738617809489369
952 0.7464003 0.0009509164374321699
953 0.74717706 0.0009738617809489369
954 0.74796754 0.0009738617809489369
955 0.7487558 0.0009738617809489369
956 0.7495361 0.0009738617809489369
957 0.7503084 0.0009738617809489369
958 0.75110865 0.0009738617809489369
959 0.7518831 0.0009738617809489369
960 0.7526496 0.0009509164374321699
961 0.7534354 0.0009738617809489369
962 0.7542203 0.0009738617809489369
963 0.7550154 0.0009738617809489369
964 0.7557916 0.0009738617809489369
965 0.7565614 0.0009738617809489369
966 0.7573651 0.0009738617809489369
967 0.75814277 0.0009738617809489369
968 0.75891125 0.0009509164374321699
969 0.7597001 0.0009738617809489369
970 0.76046485 0.0009738617809489369
971 0.761245 0.0009738617809489369
972 0.76204234 0.0009672498563304543
973 0.7628137 0.0009672498563304543
974 0.7635646 0.0009460232686251402
975 0.7643449 0.0009460232686251402
976 0.76511234 0.0009460232686251402
977 0.7658671 0.0009460232686251402
978 0.7666363 0.0009460232686251402
979 0.76740277 0.0009460232686251402
980 0.7681641 0.0009460232686251402
981 0.768928 0.0009455836843699217
982 0.76968527 0.0009460232686251402
983 0.77044827 0.0009460232686251402
984 0.77121806 0.0009460232686251402
985 0.771972 0.0009067181963473558
986 0.77267444 0.0009067181963473558
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987 0.7733834 0.0009067181963473558
988 0.7740967 0.0009067181963473558
989 0.7748062 0.0009067181963473558
990 0.7755114 0.0009067181963473558
991 0.77621996 0.0009067181963473558
992 0.7769272 0.0009067181963473558
993 0.77763164 0.0009067181963473558
994 0.7783504 0.0009067181963473558
995 0.7790618 0.0009067181963473558
996 0.77976304 0.0009067181963473558
997 0.78046834 0.0009067181963473558
998 0.7811791 0.0009067181963473558
999 0.7818845 0.0009067181963473558

If we maximize the output of a neuron in a convolutional layer, then the result will differ from the initial guess only in
the region the neuron is connected to. All other pixels have no influence on the neuron’s output. Thus, corresponding
components of the gradient are zero in each iteration. To see the details we crop the image. For neurons in the first
convolution layer, the maximizing input is the corresponding filter.

# mask pixels to keep when cropping
mask_r = np.abs(img_to_show[:, :, 0] - img_to_show[-1, -1, 0]) > 0.09
mask_g = np.abs(img_to_show[:, :, 1] - img_to_show[-1, -1, 1]) > 0.09
mask_b = np.abs(img_to_show[:, :, 2] - img_to_show[-1, -1, 2]) > 0.09
mask = np.logical_or(mask_r, np.logical_or(mask_g, mask_b))

# get active columns
col_mask = mask.any(0)
bb_col_start = col_mask.argmax()
bb_col_end = img_to_show.shape[1] - 1 - col_mask[::-1].argmax()

# get active rows
row_mask = mask.any(1)

(continues on next page)
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bb_row_start = row_mask.argmax()
bb_row_end = img_to_show.shape[0] - 1 - row_mask[::-1].argmax()

# crop image to bounding box
bb_img = img_to_show[bb_row_start:(bb_row_end + 1), bb_col_start:(bb_col_end + 1)]

# show cropped image
fig, ax = plt.subplots()
ax.imshow(bb_img, cmap='gray')
plt.show()

Maximizing the output of the first output neuron modifies the initial guess to yield output 1 (the maximum value of
sigmoid activation function). That is, we obtain an image the net regards as a cat. Starting with a plain image we get
some artistic images. Starting with a photo of a dog we get a slightly blurred dog, which the net labels as cat. By
modifying images that way CNNs can be fooled. The CNN ‘sees’ a very different thing than a human.

pred = model.predict(img.reshape(1, *img.shape))[0]
print('cat: {:.4f}, dog: {:.4f}'.format(pred[0], pred[1]))

1/1 [==============================] - 0s 24ms/step
cat: 0.9065, dog: 0.2174

The idea of searching for output maximizing inputs is known as dreaming. Google’s DeepDream249 from 2015 uses
the techniques discussed above. A similar application of dreaming CNNs is neural style transfer250, also appearing
in 2015.
249 https://en.wikipedia.org/wiki/DeepDream
250 https://en.wikipedia.org/wiki/Neural_Style_Transfer
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8.6.4 Maximizing Feature Maps

Instead of maximizing single neuron outputs we could look for feature maps having high values in all components or
at least high mean (the latter is easier to differentiate). An input image that maximizes a feature map would show a
pattern that is tightly connected to the corresponding filter.

layer = model.get_layer('conv4')
fmap_index = 2

submodel = keras.models.Model(inputs=model.inputs,
outputs=tf.math.reduce_mean(layer.output[0, :, :,␣

↪fmap_index]))

img = 255 * np.random.default_rng(0).normal(0.5, 0.2, size=(img_size, img_size,␣
↪3))

# parameters for gradient ascent
img = gradient_ascent(submodel, img, 1000, 1000000)

# show result
img_to_show = 1 / (img.max() - img.min()) * (img - img.min())
fig, ax = plt.subplots()
ax.imshow(img_to_show)
plt.show()

0 0.010571016 2.397079242655309e-06
1 0.012987887 2.784569460345665e-06
2 0.01555704 2.6928230454359436e-06
3 0.018290414 2.2864280708745355e-06
4 0.021174435 2.192614147134009e-06
5 0.024220329 2.4407656837865943e-06
6 0.027513845 2.4178386865969514e-06
7 0.03095166 2.223908268206287e-06
8 0.03454724 2.0893653527309652e-06
9 0.038174365 2.028772314588423e-06
10 0.041862242 2.097629021591274e-06
11 0.045696992 2.3129020974010928e-06
12 0.049698126 2.385100970059284e-06
13 0.05387558 2.3095196866051992e-06
14 0.058383714 2.396672925897292e-06
15 0.063163 2.3852505819377257e-06
16 0.068157524 2.510322474336135e-06
17 0.07321679 2.4331638996955007e-06
18 0.07840866 2.3761479042150313e-06
19 0.08379156 2.492263092790381e-06
20 0.089350894 2.4447754185530357e-06
21 0.09505746 2.397075149929151e-06
22 0.10108615 2.545427378208842e-06
23 0.10727019 2.3443969894287875e-06
24 0.11355108 2.2837014057586202e-06
25 0.11987263 2.431382426948403e-06
26 0.12621516 2.6055895432364196e-06
27 0.13275892 2.548260454204865e-06
28 0.13940799 2.536550937293214e-06
29 0.14614432 2.5595429633540334e-06
30 0.15306608 2.4765708985796664e-06
31 0.1601255 2.4590774501120904e-06
32 0.16713977 2.3455713744624518e-06
33 0.17422041 2.3978557237569476e-06
34 0.18140693 2.474193479429232e-06
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35 0.1886376 2.5417300548724597e-06
36 0.19593534 2.533454107833677e-06
37 0.20329633 2.704197186176316e-06
38 0.21070997 2.6751181394502055e-06
39 0.21831936 2.7035023322241614e-06
40 0.2259554 2.7090159164799843e-06
41 0.23365016 2.4669375306984875e-06
42 0.24140108 2.3419049739459297e-06
43 0.24929094 2.5573299353709444e-06
44 0.25731435 2.5564454517734703e-06
45 0.26534614 2.4323860543518094e-06
46 0.2732757 2.296659886269481e-06
47 0.28120157 2.4815644792397507e-06
48 0.28913957 2.3013376448943745e-06
49 0.29706028 2.140596961908159e-06
50 0.30498374 1.9981957848358434e-06
51 0.3129182 2.2039150735508883e-06
52 0.32090297 2.156832579203183e-06
53 0.32904193 2.1195842236920726e-06
54 0.33714753 2.443357743686647e-06
55 0.34530818 2.8032877708028536e-06
56 0.3534469 2.4665589535288746e-06
57 0.36151606 2.3440138647856656e-06
58 0.3696367 2.518916517146863e-06
59 0.37779084 2.2818105662736343e-06
60 0.38606593 2.8909905722684925e-06
61 0.39434585 2.2529472971655196e-06
62 0.4026392 2.309225692442851e-06
63 0.4110172 2.1857999854546506e-06
64 0.41925484 2.1461057713167975e-06
65 0.42749077 2.2192639335116837e-06
66 0.4357061 2.193360160163138e-06
67 0.44399276 2.109282604578766e-06
68 0.45219928 2.2869414806336863e-06
69 0.46037853 2.239397417724831e-06
70 0.4686118 2.8001759346807376e-06
71 0.47689474 2.122434580087429e-06
72 0.48513776 2.1441801436594687e-06
73 0.4933584 2.334981900276034e-06
74 0.5015519 2.120641738656559e-06
75 0.50966257 2.1056046080047963e-06
76 0.5177873 2.0936017790518235e-06
77 0.525847 2.438975798213505e-06
78 0.53396064 2.3880647859186865e-06
79 0.5421345 2.4256362394226016e-06
80 0.5503483 2.482177706042421e-06
81 0.55855685 2.787142193483305e-06
82 0.56671786 3.04928016703343e-06
83 0.5748916 2.9708369311265415e-06
84 0.5830835 2.8886945528938668e-06
85 0.5912361 2.8094241315557156e-06
86 0.59929144 2.7368155315343756e-06
87 0.60734797 2.5096640001720516e-06
88 0.6153681 2.514457037250395e-06
89 0.6233643 2.5291581096098525e-06
90 0.6313867 2.600254674689495e-06
91 0.6394314 2.527786591599579e-06
92 0.64746135 2.4455698621750344e-06
93 0.6554675 2.67075483861845e-06
94 0.6634189 2.3975730982783716e-06
95 0.67137367 2.2373308183887275e-06
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96 0.6793155 2.5580250166967744e-06
97 0.68721086 2.279660520798643e-06
98 0.69512206 2.402846348559251e-06
99 0.7030043 2.3763377612340264e-06
100 0.7108531 2.5845868094620528e-06
101 0.71870077 2.334294322281494e-06
102 0.7265177 2.280145736222039e-06
103 0.73432523 2.3041966414893977e-06
104 0.7420898 2.303242581547238e-06
105 0.74978316 2.1794035092170816e-06
106 0.7574304 2.0365685031720204e-06
107 0.76501596 2.0377319742692634e-06
108 0.77257127 2.194588660131558e-06
109 0.78012925 2.131105247826781e-06
110 0.7877227 1.955324023583671e-06
111 0.7952557 2.091439228024683e-06
112 0.80278605 2.1004384507250506e-06
113 0.810318 2.441367769279168e-06
114 0.8178436 2.139418256774661e-06
115 0.825362 2.3440695713361492e-06
116 0.8328828 2.318167616977007e-06
117 0.84033525 2.320716703252401e-06
118 0.8478031 2.3263285129360156e-06
119 0.85527384 2.0725783542729914e-06
120 0.8627522 2.3086456621967955e-06
121 0.8702377 2.137223191311932e-06
122 0.87767583 2.0074051008123206e-06
123 0.88507175 2.003750751100597e-06
124 0.89243096 2.084359493892407e-06
125 0.8997858 2.1222529085207498e-06
126 0.9070997 2.1319103780115256e-06
127 0.9144078 2.0067941477464046e-06
128 0.92168254 2.066610932160984e-06
129 0.9289937 2.0197871890559327e-06
130 0.93623686 2.020472265940043e-06
131 0.9434584 2.035428451563348e-06
132 0.9507076 2.061598024738487e-06
133 0.95796466 2.0523373223113595e-06
134 0.96518636 2.0212710296618752e-06
135 0.97236973 2.0048980786668835e-06
136 0.9794895 2.0497568584687542e-06
137 0.986583 2.0535619569272967e-06
138 0.9936203 2.0658633275161264e-06
139 1.000673 2.0821651105507044e-06
140 1.007712 2.084585275952122e-06
141 1.014711 2.0824995772272814e-06
142 1.0216967 2.0984755337849492e-06
143 1.0286314 1.8881830783357145e-06
144 1.0355525 1.9895196601282805e-06
145 1.0424492 1.8702750139709678e-06
146 1.0493333 2.0059178496012464e-06
147 1.0561991 1.966285481103114e-06
148 1.0630286 1.821309638216917e-06
149 1.0698861 1.9129713564325357e-06
150 1.076735 1.7878787730296608e-06
151 1.0835289 1.8801962369252578e-06
152 1.0903178 1.8124344478565035e-06
153 1.0970829 1.948431417986285e-06
154 1.1038616 1.7839453221313306e-06
155 1.1105878 2.1282348825479858e-06
156 1.1173223 1.8473035652277758e-06
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157 1.124048 1.9240574147261214e-06
158 1.1307495 1.90238677078014e-06
159 1.1374056 1.964408056664979e-06
160 1.144039 1.807362195904716e-06
161 1.1506593 1.8224728819404845e-06
162 1.1572381 1.8059943158732494e-06
163 1.1638066 1.8310357745576766e-06
164 1.1703814 1.8234918570669834e-06
165 1.176913 1.7533444633954787e-06
166 1.183428 1.8026402130999486e-06
167 1.1899256 1.757058157636493e-06
168 1.1964225 1.7007130281854188e-06
169 1.2028683 1.8384580471320078e-06
170 1.2093241 1.7406479173587286e-06
171 1.2157739 1.8171124338550726e-06
172 1.2222054 1.7633992683840916e-06
173 1.2286144 1.758349867486686e-06
174 1.2350003 1.7779620975488797e-06
175 1.2413809 1.8715239775701775e-06
176 1.2477415 1.7879774532048032e-06
177 1.2541293 1.7896188637678279e-06
178 1.2604756 1.7246613879251527e-06
179 1.266821 1.7677963342066505e-06
180 1.2731405 1.768632500898093e-06
181 1.2794458 1.7839678321251995e-06
182 1.2857305 1.773675194272073e-06
183 1.2919948 1.7608682583158952e-06
184 1.2982318 1.7746033336152323e-06
185 1.3044622 1.7512152226117905e-06
186 1.3106936 1.7233068092536996e-06
187 1.316934 1.7201651871801005e-06
188 1.3231684 1.742623908285168e-06
189 1.3293878 2.024584318860434e-06
190 1.3355787 1.7420566109649371e-06
191 1.3417751 1.9152628283336526e-06
192 1.3479532 1.7532282754473272e-06
193 1.3541085 1.9044773580390029e-06
194 1.3602808 1.7041833189068711e-06
195 1.366442 1.7418759625797975e-06
196 1.3725847 1.6856592992553487e-06
197 1.3787143 1.696750814517145e-06
198 1.3848201 1.7385125374858035e-06
199 1.3909066 1.6674932794558117e-06
200 1.3969783 1.6927473325267783e-06
201 1.4030663 1.6610508737358032e-06
202 1.4091588 1.7703822550174664e-06
203 1.4152539 1.6312409343299805e-06
204 1.4213343 1.8443898852638085e-06
205 1.4274035 1.7495285646873526e-06
206 1.433469 1.8178127447754377e-06
207 1.4395151 1.7495285646873526e-06
208 1.4455491 1.7731418893163209e-06
209 1.4515649 1.8737998743745266e-06
210 1.4575803 1.6517809626748203e-06
211 1.4635949 1.8592620563140372e-06
212 1.4695919 1.6185745153052267e-06
213 1.4755827 1.761304929459584e-06
214 1.4815725 1.738357582325989e-06
215 1.487561 1.6811599152788403e-06
216 1.4935583 1.715796543066972e-06
217 1.4995418 1.7122054032370215e-06

(continues on next page)

306 Chapter 8. Artificial Neural Networks



Data Science and Artificial Intelligence for Undergraduates
Volume 2: Data Visualization, Supervised Learning

(continued from previous page)

218 1.5055261 1.7736508652888006e-06
219 1.5115044 1.7891200059239054e-06
220 1.5174745 1.746884549902461e-06
221 1.5234437 1.7592467429494718e-06
222 1.5294116 1.6930725905694999e-06
223 1.5353682 1.746011434988759e-06
224 1.5413431 1.7534750895720208e-06
225 1.547309 1.7895562223202433e-06
226 1.5532707 1.6966677094387705e-06
227 1.5592226 1.7026038676704047e-06
228 1.5651724 1.7099637261708267e-06
229 1.571117 1.7223369468410965e-06
230 1.5770563 1.7227149555765209e-06
231 1.5829679 1.7147704056696966e-06
232 1.5889034 1.7099637261708267e-06
233 1.594825 1.7354402643832145e-06
234 1.6007354 1.7176122355522239e-06
235 1.6066363 1.7144874391306075e-06
236 1.6125311 1.7581785414222395e-06
237 1.6184242 1.7484341015006066e-06
238 1.6243143 1.7495514157417347e-06
239 1.6301879 1.7149026234619669e-06
240 1.6360868 1.6524779766768916e-06
241 1.6419692 1.7078756400223938e-06
242 1.6478531 1.6397100353060523e-06
243 1.6537348 1.7243577303815982e-06
244 1.6596344 1.6890739971131552e-06
245 1.6655271 1.7073930393962655e-06
246 1.6714175 1.7070633475668728e-06
247 1.6773007 1.645634938540752e-06
248 1.6831809 1.619958425180812e-06
249 1.6890433 1.728237066345173e-06
250 1.6949303 1.6089852579170838e-06
251 1.7008134 1.7228853721462656e-06
252 1.7066984 1.6063656858023023e-06
253 1.7125757 1.6878447013368714e-06
254 1.7184291 1.6039915635701618e-06
255 1.7243074 1.6913855915845488e-06
256 1.7301677 1.6213464277825551e-06
257 1.7360325 1.6034778127504978e-06
258 1.7418728 1.6607069710516953e-06
259 1.747716 1.6025653621909441e-06
260 1.7535695 1.586839061928913e-06
261 1.759432 1.7798387261791504e-06
262 1.7653024 1.654791276450851e-06
263 1.771161 1.6225779972955934e-06
264 1.7770302 1.7413586874681641e-06
265 1.782881 1.7419246205463423e-06
266 1.7887278 1.7413586874681641e-06
267 1.7945843 1.7193692656292114e-06
268 1.8004186 1.6063656858023023e-06
269 1.8062667 1.6225779972955934e-06
270 1.8121052 1.7510262750874972e-06
271 1.8179452 1.6642696891722153e-06
272 1.8237971 1.6239438309639809e-06
273 1.8296481 1.6642696891722153e-06
274 1.8354741 1.6678801557645784e-06
275 1.8413198 1.620687726244796e-06
276 1.8471508 1.6626680690023932e-06
277 1.8529727 1.5862756299611647e-06
278 1.8588016 1.5581568959532888e-06
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279 1.8646201 1.6088408756331773e-06
280 1.8704267 1.588329268997768e-06
281 1.8762422 1.547453166494961e-06
282 1.8820443 1.6431011999884504e-06
283 1.8878525 1.5395630725834053e-06
284 1.8936607 1.7182350120492629e-06
285 1.8994606 1.5625425930920755e-06
286 1.9052788 1.6618981817373424e-06
287 1.9110817 1.6484990510434727e-06
288 1.9168767 1.5724858712928835e-06
289 1.922693 1.7047034361894475e-06
290 1.9284917 1.714845780043106e-06
291 1.9343079 1.7263245126741822e-06
292 1.940104 1.5685726566516678e-06
293 1.9459344 1.5873513348196866e-06
294 1.9517435 1.6013855201890692e-06
295 1.9575598 1.6020694602048025e-06
296 1.9633615 1.7158174614451127e-06
297 1.9691645 1.7601339550310513e-06
298 1.9749548 1.6021722331061028e-06
299 1.9807627 1.6033654901548289e-06
300 1.986553 1.6478585393997491e-06
301 1.9923509 1.6066078387666494e-06
302 1.9981462 1.5969324067555135e-06
303 2.003934 1.716640213089704e-06
304 2.0097232 1.6126494983836892e-06
305 2.0155315 1.6188232621061616e-06
306 2.0213351 1.6428897424702882e-06
307 2.0271363 1.6122189663292374e-06
308 2.0329351 1.6568342289247084e-06
309 2.0387275 1.6917849734454649e-06
310 2.044552 1.6539599982934305e-06
311 2.0503466 1.6400422282458749e-06
312 2.0561657 1.6703975234122481e-06
313 2.0619702 1.642959659875487e-06
314 2.06779 1.6539599982934305e-06
315 2.0735984 1.6016140307328897e-06
316 2.0794022 1.5999531797206146e-06
317 2.085221 1.6428463140982785e-06
318 2.0910168 1.709260345705843e-06
319 2.096826 1.6943026821536478e-06
320 2.1026254 1.8266432562086266e-06
321 2.1084294 1.7157017282443121e-06
322 2.1142511 1.709772050162428e-06
323 2.1200469 1.614865482224559e-06
324 2.125849 1.6451700730613084e-06
325 2.131642 1.7358287323077093e-06
326 2.1374488 1.7870889905680087e-06
327 2.14325 1.789030761756294e-06
328 2.1490548 1.789030761756294e-06
329 2.154855 1.8155537873099092e-06
330 2.1606586 1.8311978919882677e-06
331 2.166473 1.8155537873099092e-06
332 2.172281 1.8155537873099092e-06
333 2.178079 1.8155537873099092e-06
334 2.183883 1.812017671909416e-06
335 2.1896703 1.8203036233899184e-06
336 2.1954832 1.7114438151111244e-06
337 2.2012768 1.7114438151111244e-06
338 2.2070882 1.748037789184309e-06
339 2.212884 1.7485351690993411e-06
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340 2.218683 1.7728050352161517e-06
341 2.2244797 1.7535410279378993e-06
342 2.230282 1.7556739067003946e-06
343 2.2360845 1.7250074506591773e-06
344 2.241873 1.7556739067003946e-06
345 2.2476814 1.7623950725464965e-06
346 2.2534804 1.73460819041793e-06
347 2.2592962 1.737128286549705e-06
348 2.2651088 1.73460819041793e-06
349 2.2709193 1.7476054381404538e-06
350 2.2767446 1.7422609062123229e-06
351 2.2825718 1.7539147165734903e-06
352 2.2883985 1.7437025690014707e-06
353 2.294224 1.7143889863291406e-06
354 2.3000553 1.7928193756233668e-06
355 2.305869 1.7338508087050286e-06
356 2.311704 1.7166065617857384e-06
357 2.3175263 1.7014000377457705e-06
358 2.3233387 1.7084613546103355e-06
359 2.3291824 1.6873108279469307e-06
360 2.3350034 1.7359732282784535e-06
361 2.34083 1.7815876844906597e-06
362 2.3466506 1.6766136923251906e-06
363 2.3524632 1.6829019386932487e-06
364 2.3582797 1.721587750580511e-06
365 2.3641138 1.684452399786096e-06
366 2.369927 1.8488865407562116e-06
367 2.375744 1.789150815056928e-06
368 2.381565 1.813656581362011e-06
369 2.3874013 1.8092271147907013e-06
370 2.3932395 1.8679544382393942e-06
371 2.399063 1.8159023511543637e-06
372 2.404899 1.8193944697486586e-06
373 2.4107351 1.8106647985405289e-06
374 2.4165576 1.8255827853863593e-06
375 2.4223917 1.8103193042406929e-06
376 2.4282436 1.8615978660818655e-06
377 2.4340796 1.7979589301830856e-06
378 2.4399252 1.8405683022137964e-06
379 2.4457798 1.8159023511543637e-06
380 2.4516253 1.8072145167025155e-06
381 2.457479 1.837138029259222e-06
382 2.4633346 1.8013893168244977e-06
383 2.4691906 1.8369254348726827e-06
384 2.4750426 1.8137498045689426e-06
385 2.4808903 1.7914175032274215e-06
386 2.4867392 1.6816944707898074e-06
387 2.4925807 1.8200786371380673e-06
388 2.4984374 1.6695898921170738e-06
389 2.5042825 1.8162896822104813e-06
390 2.510125 1.6782643115220708e-06
391 2.515974 1.8200786371380673e-06
392 2.52181 1.7966257246371242e-06
393 2.527664 1.8048295942207915e-06
394 2.533502 1.8313425016458496e-06
395 2.5393505 1.7238245391126839e-06
396 2.5451915 1.7825421991801704e-06
397 2.5510437 1.8361664615440532e-06
398 2.556896 1.7741521105563152e-06
399 2.562738 1.7606042774787056e-06
400 2.5685985 1.7003198991005775e-06
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401 2.5744686 1.7891816241899505e-06
402 2.5803156 1.8211824226455064e-06
403 2.5861924 1.703745624581643e-06
404 2.5920415 1.8082954511555727e-06
405 2.5979273 1.6503026927239262e-06
406 2.6037896 1.8172761429013917e-06
407 2.6096485 1.7681799135971232e-06
408 2.6155293 1.6457153151350212e-06
409 2.6214068 1.777228476385062e-06
410 2.62728 1.6804528968350496e-06
411 2.6331532 1.7856614249467384e-06
412 2.6390297 1.7129739262600197e-06
413 2.644907 1.6397831359427073e-06
414 2.6507964 1.7460699837101856e-06
415 2.6566744 1.73190471741691e-06
416 2.6625571 1.7189885284096817e-06
417 2.6684518 1.725313836686837e-06
418 2.6743395 1.6665145494698663e-06
419 2.6802287 1.7390160564900725e-06
420 2.686115 1.8027202486337046e-06
421 2.6920135 1.7086223351725494e-06
422 2.6979165 1.7450466884838534e-06
423 2.7038124 1.681463118075044e-06
424 2.7097096 1.588900545357319e-06
425 2.7156024 1.7194050769830937e-06
426 2.7214992 1.689453029030119e-06
427 2.72739 1.7903746538650012e-06
428 2.7332873 1.7283655324717984e-06
429 2.739193 1.6751293969718972e-06
430 2.7450848 1.6778164990682853e-06
431 2.7509806 1.6357305412384449e-06
432 2.7568893 1.6976675851765322e-06
433 2.7627888 1.6230202390943305e-06
434 2.7686825 1.6719586710678414e-06
435 2.774582 1.6784836134320358e-06
436 2.7804813 1.6762437553552445e-06
437 2.7863734 1.7071191678041941e-06
438 2.792264 1.6391867347920197e-06
439 2.798154 1.7005889958454645e-06
440 2.804056 1.6307027408402064e-06
441 2.809946 1.7031997003869037e-06
442 2.8158476 1.6785926391094108e-06
443 2.8217416 1.6883423086255789e-06
444 2.8276358 1.6752669580455404e-06
445 2.8335352 1.6647729808028089e-06
446 2.839438 1.7077062466341886e-06
447 2.8453295 1.7174426147903432e-06
448 2.8512273 1.6801551510070567e-06
449 2.8571374 1.8201924376626266e-06
450 2.8630302 1.672326789048384e-06
451 2.868934 1.6624579757262836e-06
452 2.8748403 1.7368059843647643e-06
453 2.8807316 1.7102281617553672e-06
454 2.8866398 1.7216825654031709e-06
455 2.8925488 1.7064105577446753e-06
456 2.8984416 1.6882175941645983e-06
457 2.9043498 1.6590736322541488e-06
458 2.9102578 1.6737456007831497e-06
459 2.9161575 1.6651905525577604e-06
460 2.9220626 1.6969248690656968e-06
461 2.9279609 1.6696956208761549e-06
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462 2.933869 1.7771179727787967e-06
463 2.9397695 1.674076656854595e-06
464 2.945677 1.7163570191769395e-06
465 2.951589 1.6731877394704497e-06
466 2.9575086 1.7139578858405002e-06
467 2.963423 1.661029273236636e-06
468 2.9693468 1.7322533949482022e-06
469 2.975268 1.6756764580350136e-06
470 2.9812174 1.6987077060548472e-06
471 2.9871242 1.7214939589393907e-06
472 2.9930735 1.7048627114490955e-06
473 2.9990044 1.669786229285819e-06
474 3.0049403 1.7561002323418506e-06
475 3.010886 1.6786905234766891e-06
476 3.0168402 1.7134439076471608e-06
477 3.0227835 1.8284858924744185e-06
478 3.0287352 1.6514883327545249e-06
479 3.0346859 1.6616103266642313e-06
480 3.0406318 1.7071628235498792e-06
481 3.0465846 1.7420715039406787e-06
482 3.0525298 1.64506320743385e-06
483 3.058484 1.6777397604528232e-06
484 3.064436 1.6965221902864869e-06
485 3.0704076 1.6948403072092333e-06
486 3.0763555 1.7142388060165104e-06
487 3.0823278 1.6574963410675991e-06
488 3.0882726 1.7402866205884493e-06
489 3.0942423 1.6537692317797337e-06
490 3.1002085 1.7189370282721939e-06
491 3.106177 1.703623070170579e-06
492 3.112145 1.641988546907669e-06
493 3.1181276 1.6608723854005802e-06
494 3.1241035 1.6886179992070538e-06
495 3.1300848 1.80542645011883e-06
496 3.1360772 1.6668717535139876e-06
497 3.1420631 1.7484957197666517e-06
498 3.1480522 1.667902779445285e-06
499 3.1540456 1.6968116369753261e-06
500 3.1600385 1.6713271406842978e-06
501 3.166042 1.6710120007701335e-06
502 3.1720457 1.8380768551651272e-06
503 3.1780443 1.6790278323242092e-06
504 3.184061 1.6918279470701236e-06
505 3.1900814 1.6624138652332476e-06
506 3.1960917 1.6688819641785813e-06
507 3.2021148 1.676875285738788e-06
508 3.2081254 1.6905082702578511e-06
509 3.2141535 1.6573727634749957e-06
510 3.220169 1.698192818366806e-06
511 3.2261899 1.7021875464706682e-06
512 3.232219 1.668042045821494e-06
513 3.2382464 1.6760531025283854e-06
514 3.2442691 1.6632249071335536e-06
515 3.250313 1.7215471643794444e-06
516 3.256336 1.6828076923047774e-06
517 3.2623727 1.6920608914006152e-06
518 3.2684093 1.7298826833211933e-06
519 3.274449 1.7009809880619287e-06
520 3.280478 1.6754269154262147e-06
521 3.286532 1.6854327213877696e-06
522 3.2925699 1.708270474409801e-06
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523 3.2986016 1.6272686025331495e-06
524 3.3046494 1.6486686718053534e-06
525 3.310684 1.7615728893360938e-06
526 3.3167267 1.6852378621479147e-06
527 3.3227637 1.7030619119395851e-06
528 3.328809 1.6097968682515784e-06
529 3.3348544 1.670290544097952e-06
530 3.340892 1.6916332015171065e-06
531 3.3469334 1.6749883116062847e-06
532 3.352978 1.721573880786309e-06
533 3.3590178 1.7256733144677128e-06
534 3.3650823 1.6826103319544927e-06
535 3.3711236 1.6640146895952057e-06
536 3.3771732 1.6377612155338284e-06
537 3.3832316 1.6585408957325853e-06
538 3.3892872 1.7635908307056525e-06
539 3.3953278 1.5998950857465388e-06
540 3.4013922 1.6487526863784296e-06
541 3.4074502 1.6773368542999378e-06
542 3.4135115 1.8254601172884577e-06
543 3.4195817 1.7112763543991605e-06
544 3.4256518 1.6451551800855668e-06
545 3.4317117 1.7143267996289069e-06
546 3.437784 1.694193542789435e-06
547 3.443861 1.6784805438874173e-06
548 3.449934 1.7635908307056525e-06
549 3.4560049 1.7452287011110457e-06
550 3.4620864 1.5816675613677944e-06
551 3.4681492 1.6864200915733818e-06
552 3.474223 1.7116740309575107e-06
553 3.480306 1.6506276097061345e-06
554 3.4863844 1.6905745496842428e-06
555 3.4924586 1.7918794128490845e-06
556 3.498539 1.7131752656496246e-06
557 3.5046186 1.6392875750170788e-06
558 3.510706 1.6861249605426565e-06
559 3.516794 1.7711198552206042e-06
560 3.5228853 1.6755483329689014e-06
561 3.5289695 1.6604211623416631e-06
562 3.5350573 1.5914338291622698e-06
563 3.541166 1.7293054952460807e-06
564 3.5472608 1.7280317479162477e-06
565 3.5533526 1.71656506608997e-06
566 3.5594554 1.6032978464863845e-06
567 3.5655522 1.6928891000134172e-06
568 3.5716484 1.627438336981868e-06
569 3.577751 1.8018662331087398e-06
570 3.5838428 1.755718699314457e-06
571 3.5899494 1.6494269630129565e-06
572 3.596051 1.7617962839722168e-06
573 3.6021695 1.7485892840340966e-06
574 3.6082754 1.6284676576105994e-06
575 3.6143827 1.6298188256769208e-06
576 3.6204987 1.6975056951196166e-06
577 3.626606 1.7488928278908134e-06
578 3.6327133 1.6309453485519043e-06
579 3.638844 1.7182813962790533e-06
580 3.6449485 1.6578959503021906e-06
581 3.6510751 1.6714745925128227e-06
582 3.6571927 1.6831987750265398e-06
583 3.6633105 1.6187074152185232e-06
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584 3.6694348 1.7194745396409417e-06
585 3.6755514 1.7071603224394494e-06
586 3.681671 1.8047642242891015e-06
587 3.687788 1.7210505802722764e-06
588 3.6939116 1.6983469777187565e-06
589 3.7000415 1.636445517760876e-06
590 3.706157 1.6957121715677204e-06
591 3.7122867 1.7668204463916481e-06
592 3.7184098 1.734637976369413e-06
593 3.724531 1.6203589439101052e-06
594 3.7306647 1.7357579054078087e-06
595 3.7367845 1.7006499319904833e-06
596 3.7429194 1.9755648281716276e-06
597 3.749042 1.6935819076024927e-06
598 3.7551737 1.618860665075772e-06
599 3.7613108 1.7006159396260045e-06
600 3.767444 1.7253556734431186e-06
601 3.773571 1.6727385627746116e-06
602 3.779703 1.7998248722506105e-06
603 3.7858403 1.6769959074736107e-06
604 3.7919753 1.631628720133449e-06
605 3.7981172 1.6779396219135378e-06
606 3.804259 1.675853582128184e-06
607 3.810389 1.6736714769649552e-06
608 3.816542 1.8809955690812785e-06
609 3.8226871 1.6862687743923743e-06
610 3.8288317 1.6732579979361617e-06
611 3.8349714 1.7302587593803764e-06
612 3.841117 1.6666998590153526e-06
613 3.8472602 1.6034911141105113e-06
614 3.8534007 1.740515017445432e-06
615 3.8595514 1.764596504472138e-06
616 3.865693 1.6709847159290803e-06
617 3.8718433 1.6161435496542254e-06
618 3.877986 1.8330010789213702e-06
619 3.884143 1.6563634517297032e-06
620 3.890289 1.7164430801130948e-06
621 3.8964326 1.8467457039150759e-06
622 3.90259 1.9118274394713808e-06
623 3.9087365 1.806626642064657e-06
624 3.9148822 1.6197426475628163e-06
625 3.9210389 1.7004207393256365e-06
626 3.92719 1.6171619563465356e-06
627 3.9333296 1.7012167745633633e-06
628 3.939485 1.6737743635530933e-06
629 3.9456491 1.6502413018315565e-06
630 3.9518042 1.7604070308152586e-06
631 3.957956 1.6484343632328091e-06
632 3.9641092 1.842885239966563e-06
633 3.9702735 1.6041195749494364e-06
634 3.9764354 1.7223239865415962e-06
635 3.9825883 1.6795503370303777e-06
636 3.9887533 1.7361360278300708e-06
637 3.994913 1.695530613687879e-06
638 4.001069 1.651663524171454e-06
639 4.0072265 1.624738047212304e-06
640 4.0134077 1.6882809177332092e-06
641 4.0195637 1.7647918184593436e-06
642 4.02574 1.5934554085106356e-06
643 4.0319204 1.7163232541861362e-06
644 4.038089 1.628685936339025e-06
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645 4.0442743 1.6988828974717762e-06
646 4.050464 1.6111703189380933e-06
647 4.056641 1.8734641571427346e-06
648 4.0628304 1.6050108797571738e-06
649 4.069009 1.7011698218993843e-06
650 4.0751905 1.6797209809737979e-06
651 4.081372 1.632559360587038e-06
652 4.087567 1.7163202983283554e-06
653 4.09374 1.6684649608578184e-06
654 4.099928 1.6832823348522652e-06
655 4.1061044 1.6589945062150946e-06
656 4.1122856 1.6490472489749664e-06
657 4.118484 1.725449465084239e-06
658 4.124662 1.6525050341442693e-06
659 4.1308465 1.7104114249377744e-06
660 4.1370444 1.5741793504275847e-06
661 4.143232 1.7449405049774214e-06
662 4.149425 1.550896627122711e-06
663 4.1556153 1.8236502228319296e-06
664 4.1618085 1.7070160538423806e-06
665 4.1679993 1.7178124380734516e-06
666 4.174194 1.6629330730211223e-06
667 4.1803927 1.8105811250279658e-06
668 4.186591 1.7740534303811728e-06
669 4.1927905 1.7804288745537633e-06
670 4.198987 1.6653951888656593e-06
671 4.2051773 1.88624676411564e-06
672 4.211372 1.7927103499459918e-06
673 4.21757 1.741463279358868e-06
674 4.2237678 1.7786034050004673e-06
675 4.229956 1.8284563338966109e-06
676 4.236158 1.6502409607710433e-06
677 4.242359 1.7456526393289096e-06
678 4.248543 1.7897558564072824e-06
679 4.2547474 1.7170327737403568e-06
680 4.2609386 1.60837669227476e-06
681 4.2671447 1.7002779486574582e-06
682 4.273341 1.7003785615088418e-06
683 4.2795444 1.6132710243255133e-06
684 4.28574 1.6683542298778775e-06
685 4.2919436 1.6401078255512402e-06
686 4.2981515 1.7814900274970569e-06
687 4.3043685 1.6978412986645708e-06
688 4.310569 1.6302261656164774e-06
689 4.316775 1.766163791216968e-06
690 4.3229656 1.772887003426149e-06
691 4.3291874 1.805934857657121e-06
692 4.3354044 1.6795447663753293e-06
693 4.3416104 1.6885235254449071e-06
694 4.3478255 1.7699204590826412e-06
695 4.354029 1.7617926459934097e-06
696 4.360256 1.7122670215030666e-06
697 4.3664637 1.7800831528802519e-06
698 4.3726835 1.6175806649698643e-06
699 4.378895 1.645407905925822e-06
700 4.385107 1.97333974938374e-06
701 4.39134 1.7292912843913655e-06
702 4.397546 1.6468771946165361e-06
703 4.4037657 1.6599730088273645e-06
704 4.409991 1.7150166513602016e-06
705 4.4162073 1.7266902432311326e-06
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706 4.4224424 1.8328626083530253e-06
707 4.4286623 1.6524694501640624e-06
708 4.4348845 1.6990726408039336e-06
709 4.4411087 1.6110396927615511e-06
710 4.447324 1.777778606992797e-06
711 4.4535575 1.980507704502088e-06
712 4.4597797 1.675831072134315e-06
713 4.4660063 1.7191332517541014e-06
714 4.4722314 1.73876469489187e-06
715 4.478453 1.8104384480466251e-06
716 4.4846807 1.8196443534179707e-06
717 4.490916 1.6171507013496011e-06
718 4.4971414 1.8607137235449045e-06
719 4.503376 1.7222489532287e-06
720 4.509608 1.7009537032208755e-06
721 4.515831 1.6891222003323492e-06
722 4.522068 1.7695875840217923e-06
723 4.528312 1.808035563044541e-06
724 4.5345435 1.7160188008347177e-06
725 4.540775 1.6616450011497363e-06
726 4.547013 1.6634945723126293e-06
727 4.5532475 1.655758751439862e-06
728 4.559491 1.6850452766448143e-06
729 4.5657253 1.572742917232972e-06
730 4.5719643 1.7430047591915354e-06
731 4.5782022 1.7566829910720116e-06
732 4.584439 1.7316807543465984e-06
733 4.590691 1.6235982229773072e-06
734 4.596923 1.823119191612932e-06
735 4.603169 1.6479848454764578e-06
736 4.6094174 1.7051301028914168e-06
737 4.61565 1.805746592253854e-06
738 4.621894 1.7050143696906161e-06
739 4.6281376 1.6618547533653327e-06
740 4.634396 1.7940695897777914e-06
741 4.640645 1.822428544073773e-06
742 4.6468854 1.644363237573998e-06
743 4.6531396 1.6407803968832013e-06
744 4.659387 1.7317855736109777e-06
745 4.6656394 1.7253956912099966e-06
746 4.6718917 1.7928567785929772e-06
747 4.6781487 1.732252258079825e-06
748 4.6844163 1.7266588656639215e-06
749 4.690659 1.7194546444443404e-06
750 4.6969137 1.7269716181544936e-06
751 4.7031803 1.7441326463085716e-06
752 4.7094336 1.7580592839294695e-06
753 4.7156887 1.7437578208046034e-06
754 4.721974 1.6934529867285164e-06
755 4.728212 1.764227704370569e-06
756 4.7344856 1.770920221133565e-06
757 4.74074 1.7886527530208696e-06
758 4.747015 1.645152678975137e-06
759 4.7532816 1.686193741079478e-06
760 4.759547 1.8361829461355228e-06
761 4.7658143 1.7834132677307935e-06
762 4.772084 1.8147169384974404e-06
763 4.778359 1.6451288047392154e-06
764 4.7846365 1.7195129657920916e-06
765 4.7909126 1.7350421330775134e-06
766 4.7971773 1.7551217297295807e-06
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767 4.803445 1.7297710428465507e-06
768 4.809731 1.720574573482736e-06
769 4.816003 1.7493496216047788e-06
770 4.8222837 1.727334961287852e-06
771 4.8285623 1.6459425751236267e-06
772 4.8348346 1.7159388789877994e-06
773 4.8411174 1.8683374491956783e-06
774 4.847401 1.6251543684120406e-06
775 4.853673 1.6988705056064646e-06
776 4.859957 1.6846032622197527e-06
777 4.866243 1.7799635543269687e-06
778 4.8725348 1.7368907947457046e-06
779 4.8788166 1.573215854477894e-06
780 4.885112 1.7900595139508368e-06
781 4.891404 1.6394740214309422e-06
782 4.8976965 1.6818598851386923e-06
783 4.9039927 1.6216988569794921e-06
784 4.9102807 1.842824758568895e-06
785 4.916579 1.664713295213005e-06
786 4.9228773 1.6767688748586806e-06
787 4.9291778 1.7131501408584882e-06
788 4.935464 1.6453772104796371e-06
789 4.941762 1.6528427977391402e-06
790 4.948056 1.6644481775074382e-06
791 4.954363 1.8117095805791905e-06
792 4.9606543 1.640500386201893e-06
793 4.9669495 1.6357402046196512e-06
794 4.9732513 1.7153088265331462e-06
795 4.9795537 1.693157855697791e-06
796 4.985849 1.6430649338872172e-06
797 4.992156 1.6320084341714391e-06
798 4.9984574 1.697559468993859e-06
799 5.0047445 1.6592917972957366e-06
800 5.0110483 1.6623159808659693e-06
801 5.017361 1.7724245253702975e-06
802 5.023653 1.6340566162398318e-06
803 5.029963 1.7970033923120354e-06
804 5.036264 1.7759978163667256e-06
805 5.042574 1.7013944670907222e-06
806 5.0488806 1.6543017409276217e-06
807 5.05519 1.8300238480151165e-06
808 5.0615 1.6380139413740835e-06
809 5.0678115 1.6407725524913985e-06
810 5.074121 1.656165864005743e-06
811 5.0804253 1.7543821968502016e-06
812 5.086738 1.642948177504877e-06
813 5.093045 1.651580191719404e-06
814 5.0993586 1.7746024241205305e-06
815 5.1056824 1.7024489125105902e-06
816 5.111981 1.639034280742635e-06
817 5.1182985 1.6255378341156757e-06
818 5.12461 1.761962835189479e-06
819 5.130929 1.6022416957639507e-06
820 5.1372495 1.8234849221698823e-06
821 5.1435556 1.7080334373531514e-06
822 5.1498723 1.8549034166426281e-06
823 5.1561894 1.6324186162819387e-06
824 5.162512 1.7546200297147152e-06
825 5.168831 1.763626528372697e-06
826 5.175143 1.8991477190866135e-06
827 5.1814575 1.7334813264824334e-06
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828 5.1877775 1.6132496512000216e-06
829 5.1941004 1.6302150243063807e-06
830 5.200423 1.7489427364125731e-06
831 5.2067413 1.636852744013595e-06
832 5.2130594 1.724720505080768e-06
833 5.219387 1.6810116676424514e-06
834 5.2257137 1.6008250440791016e-06
835 5.2320414 1.7502334230812266e-06
836 5.238367 1.6377963447666843e-06
837 5.244691 1.6773300330896745e-06
838 5.251017 1.6209320392590598e-06
839 5.2573433 1.7680218888926902e-06
840 5.263673 1.637284412936424e-06
841 5.270005 1.8438696542943944e-06
842 5.27634 1.6766979342719424e-06
843 5.282678 1.736919671202486e-06
844 5.289015 1.6591635585427866e-06
845 5.2953405 1.7078185692298575e-06
846 5.3016806 1.655257278798672e-06
847 5.3080063 1.7163685015475494e-06
848 5.3143487 1.7763649111657287e-06
849 5.3206854 1.6711087482690345e-06
850 5.3270345 1.6502870039403206e-06
851 5.333374 1.7075091136575793e-06
852 5.3397136 1.6468693502247334e-06
853 5.34606 1.7454465250921203e-06
854 5.3524003 1.579881086399837e-06
855 5.358747 1.77857532435155e-06
856 5.3650904 1.6221921441683662e-06
857 5.371433 1.6678801557645784e-06
858 5.3777833 1.7296210899075959e-06
859 5.3841195 1.8131132719645393e-06
860 5.390481 1.633234433029429e-06
861 5.396835 1.7384630837113946e-06
862 5.403186 1.6590410041317227e-06
863 5.4095407 1.635640614949807e-06
864 5.415895 1.7211859812960029e-06
865 5.4222507 1.5508245496675954e-06
866 5.4286013 1.9029386066904408e-06
867 5.4349575 1.7718562048685271e-06
868 5.441319 1.7395070699421922e-06
869 5.4476905 1.6992609062072006e-06
870 5.454049 1.7201507489517098e-06
871 5.460402 1.7075091136575793e-06
872 5.46676 1.6576551615798962e-06
873 5.473131 1.760751956680906e-06
874 5.479487 1.6266823195110192e-06
875 5.485844 1.6503728375028004e-06
876 5.492205 1.7671486602921505e-06
877 5.498563 1.7708632640278665e-06
878 5.504928 1.7089939774450613e-06
879 5.5112777 1.6250041880994104e-06
880 5.517655 1.6548065104871057e-06
881 5.5240183 1.7017023310472723e-06
882 5.5303836 1.6224463479375117e-06
883 5.5367413 1.7235940958926221e-06
884 5.543112 1.62195044595137e-06
885 5.5494895 1.6322679812219576e-06
886 5.555859 1.7500346984888893e-06
887 5.562226 1.7096535884775221e-06
888 5.568587 1.604781687092327e-06
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889 5.574962 1.6294660554194706e-06
890 5.581338 1.780065531420405e-06
891 5.587704 1.8804458932208945e-06
892 5.594076 1.7026867453751038e-06
893 5.6004515 1.6619214875390753e-06
894 5.6068215 1.6469680303998757e-06
895 5.613177 1.6184942523977952e-06
896 5.619562 1.6599205991951749e-06
897 5.625937 1.7797709688238683e-06
898 5.632298 1.891331521619577e-06
899 5.638677 1.7176524806927773e-06
900 5.6450505 1.723349100757332e-06
901 5.6514096 1.6731536334191333e-06
902 5.6577888 1.6086880805232795e-06
903 5.664159 1.8455691588314949e-06
904 5.670536 1.6383276033593575e-06
905 5.6769075 1.7095630937546957e-06
906 5.6832795 1.6461182212879066e-06
907 5.689653 1.654504558246117e-06
908 5.6960125 1.7337039253106923e-06
909 5.7024026 1.778723230927426e-06
910 5.70878 1.8618028434502776e-06
911 5.715159 1.7076870335586136e-06
912 5.7215366 1.754103891471459e-06
913 5.7279105 1.7281404325331096e-06
914 5.7342978 1.8664819663172239e-06
915 5.7406793 1.7003835637297016e-06
916 5.747051 1.7714909290589276e-06
917 5.753442 1.694864067758317e-06
918 5.759825 1.764663466019556e-06
919 5.76621 1.718317435006611e-06
920 5.7725987 1.6749115729908226e-06
921 5.7789946 1.6792032511148136e-06
922 5.7853804 1.6587167692705407e-06
923 5.7917705 1.671293148319819e-06
924 5.7981577 1.6653403918098775e-06
925 5.8045535 1.7507753682366456e-06
926 5.8109474 1.6899822412597132e-06
927 5.817342 1.7267226439798833e-06
928 5.823733 1.7247328969460796e-06
929 5.830119 1.71208273513912e-06
930 5.836513 1.5968960269674426e-06
931 5.842914 1.8610041934152832e-06
932 5.8493123 1.7507753682366456e-06
933 5.8557 1.7530488776174025e-06
934 5.8621154 1.7467413044869318e-06
935 5.868517 1.8935936623165617e-06
936 5.8749228 1.6666591591274482e-06
937 5.881329 1.7613148202144657e-06
938 5.8877196 1.7071403135560104e-06
939 5.8941364 1.708106651676644e-06
940 5.9005475 1.6474068615934812e-06
941 5.906949 1.7909155758388806e-06
942 5.913348 1.8553491827333346e-06
943 5.919756 1.6858411981957033e-06
944 5.9261665 1.7536426639708225e-06
945 5.932576 1.6733692973502912e-06
946 5.938983 1.7633853985898895e-06
947 5.9453936 1.7010621604640619e-06
948 5.9518075 1.670299525358132e-06
949 5.958211 1.6554276953684166e-06
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950 5.964619 1.7164958308057976e-06
951 5.9710383 1.719412352940708e-06
952 5.9774466 1.6592796328041004e-06
953 5.9838567 1.8132978993889992e-06
954 5.990267 1.7923658788276953e-06
955 5.9966774 1.7282524140682654e-06
956 6.0030828 1.7527827367302962e-06
957 6.0094995 1.848863917075505e-06
958 6.015902 1.6764336123742396e-06
959 6.022327 1.6923114571909537e-06
960 6.028728 1.723529635455634e-06
961 6.0351386 1.6817120922496542e-06
962 6.0415545 1.7283176703131176e-06
963 6.0479617 1.7984257283387706e-06
964 6.054376 1.7307843336311635e-06
965 6.0607986 1.6838952205944224e-06
966 6.0672064 1.6693428506187047e-06
967 6.0736256 1.7929770592672867e-06
968 6.080048 1.7184443095175084e-06
969 6.086478 1.7510076304461109e-06
970 6.092886 1.686983182480617e-06
971 6.09931 1.775976784301747e-06
972 6.1057267 1.7042441413650522e-06
973 6.112159 1.8057138504445902e-06
974 6.118568 1.749461034705746e-06
975 6.124989 1.737494244480331e-06
976 6.131411 1.697133484412916e-06
977 6.1378384 1.6054913203333854e-06
978 6.144261 1.7779842664822354e-06
979 6.1506705 1.7613322143006371e-06
980 6.1570954 1.735858290885517e-06
981 6.1635146 1.7273670209760894e-06
982 6.1699443 1.8016651210928103e-06
983 6.176364 1.6577887436142191e-06
984 6.182785 1.7000637626551907e-06
985 6.189211 1.6098349533422152e-06
986 6.1956363 1.6708280554666999e-06
987 6.202062 1.6812678040878382e-06
988 6.20849 1.675260136835277e-06
989 6.2149096 1.6073533970484277e-06
990 6.221336 1.7308377664448926e-06
991 6.2277627 1.7490103800810175e-06
992 6.2341957 1.73156490745896e-06
993 6.2406282 1.7092773987315013e-06
994 6.247062 1.7839250858742162e-06
995 6.253493 1.768219590303488e-06
996 6.2599254 1.6105500435514841e-06
997 6.2663507 1.867201490313164e-06
998 6.2727757 1.5852081105549587e-06
999 6.2792096 1.7314188198724878e-06
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8.6.5 Class Activation Maps

We may ask what regions of an image make the CNN ‘think’ that there is a cat or a dog. A simple approach is to
pass an image through the CNN and then look at the gradient of the last convolution layer’s output with respect to an
output neuron (cat or dog). By the principle of local connectivity spatial regions of a feature map are strongly related
to the same spatial regions of the input image. High positive components in the gradient tell us that increasing the
presence of the corresponding feature in the corresponding region would increase the chosen output neuron’s output.
Very negative components tell us that the feature in this region lowers output.
To get the gradient of an output neuron with respect to the outputs of a hidden layer we have to remember what Ten-
sorFlow’s automatic differentiation routines can do and what they cannot do. What TensorFlow can do is calculating
the gradient of some function with respect to a concrete tensor flowing through the graph. But derivatives with respect
to some abstract tensor (a kind of placeholder) are not accessible. So we may formulate more precisely: we want to
have the gradient of a neuron’s output with respect to the tensor flowing out of a hidden layer when some tensor is
pushed through the CNN. The problem is that Keras does not implement accessing interim results. The solution is to
create a new model with two outpus. One output is the usual output layer, the other is the hidden convolution layer of
interest. This does not change the CNN’s structure, but forces Keras to provide access to the concrete tensor object
coming out of the hidden layer and moving on to the next layer.

layer = model.get_layer('conv4')

submodel = keras.models.Model(inputs=model.inputs,
outputs=[layer.output, model.output])

Now we load an image and preprocess it as usual.

img = keras.preprocessing.image.load_img(data_path + 'unlabeled/1696.jpg', # 318,␣
↪786, 907, 1696

target_size=(img_size, img_size))
img = np.asarray(img, dtype=np.float32)
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Wewant to have two gradients: the gradient of the cat output neuron and the gradient of the dog output neuron. Since
we have two outputs in our model, predictions yield a list of two tensors.

img_tensor = tf.convert_to_tensor(img.reshape(1, img_size, img_size, 3))

with tf.GradientTape() as tape:
tape.watch(img_tensor)
pred = submodel(img_tensor)
cat_grad = tape.gradient(pred[1][0, 0], pred[0])

with tf.GradientTape() as tape:
tape.watch(img_tensor)
pred = submodel(img_tensor)
dog_grad = tape.gradient(pred[1][0, 1], pred[0])

fmaps = pred[0].numpy()[0, :, :, :]
cat_grad = cat_grad.numpy()[0, :, :, :]
dog_grad = dog_grad.numpy()[0, :, :, :]

print(fmaps.shape, cat_grad.shape, dog_grad.shape)

(58, 58, 32) (58, 58, 32) (58, 58, 32)

Now we are ready to compute the class activation map (CAM). The CAM has same shape as a feature map in the
last convolutional layer (same width and height, depth is 1). The CAM is a weighted sum of all feature maps of the
last convolutional layer. The weights are calculated from the gradient by spacial averaging. Thus, for each feature
map the weight is something like a mean partial derivative. If the weight is positive, then the feature represented by
the corresponding feature map potentially increases class activation. If the weight is negative, then class activation is
decreased the more nonzero values in the feature map.
Multiplying mean gradients by the feature map values yields high positive numbers in regions where a class activation
increasing feature is present in the input image, but negative values in regions where features are present which
potentially decrease class activation.
We scale the CAM to [0, 1] such that 0.5 corresponds to 0 in the original CAM.

cat_weights = np.mean(cat_grad, axis=(0, 1)).reshape(1, 1, -1)
cat_cam = np.sum(fmaps * cat_weights, axis=2)
dog_weights = np.mean(dog_grad, axis=(0, 1)).reshape(1, 1, -1)
dog_cam = np.sum(fmaps * dog_weights, axis=2)

fac = np.maximum(np.max(np.abs(cat_cam)), np.max(np.abs(dog_cam)))
cat_cam = 0.5 * (1 + cat_cam / fac)
dog_cam = 0.5 * (1 + dog_cam / fac)

print('cat: {:.2f}, dog: {:.2f}'.format(pred[1][0, 0], pred[1][0, 1]))

fig, [ax1, ax2, ax3] = plt.subplots(1, 3, figsize=(12, 6))
ax1.imshow(cat_cam, cmap='gray', vmin=0, vmax=1)
ax2.imshow(img / 255)
ax3.imshow(dog_cam, cmap='gray', vmin=0, vmax=1)
ax1.set_title('cat activation map')
ax3.set_title('dog activation map')
plt.show()

cat: 0.12, dog: 1.00
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For better visual interpretation we overlay the original image with the CAM. Many people do this in a very sloppy
way by simply resizing the CAM to image size. But we take the hard and correct one. The difficult part is to find the
region associated with a value in the CAM. Going backwards through the CNN’s layers we have to calculate size and
position of the region of interest (ROI) for each component of the CAM.
A pixel in the feature map results from a convolution with a 3x3 filter. Thus a 3x3 region is the preimage of the pixel.
One layer up we have a 5x5 region (convolution with 3x3 filter again). Then there is a pooling layer. So the ROI’s
size before pooling is 10x10. Then again two 3x3 convolutions, yielding a 14x14 ROI.
The CAM is 58x58. The original image is 128x128. Centers of all ROIs have to be placed equally spaced in the
128x128 image such that there is a 7 pixel boundary. Else some ROIs would partially lie outside the image. Distance
between ROI centers is (128 − 14)/57 = 2 pixels.
With this knowledge we create a stack of images. One image per CAM component. Each containing the CAM
component’s value in all pixels belonging to the component’s ROI. Then we merge all images in the stack by taking
the pixelwise mean. Here we have to take into account that pixels near the boundary belong to fewer ROIs than pixels
in the image center.
To overlay CAM image and original image we use a color map with blue for negative CAM values, gray for zero and
red for positive CAM values.

def cam_to_img(cam):

cam_size = cam.shape[0]
roi_size = 14
roi_gap = 2
roi = np.zeros((img_size, img_size, cam_size * cam_size))
mask = np.full(roi.shape, 0)
for i in range(0, cam_size):

for j in range(0, cam_size):
first_i = roi_gap * i
last_i = first_i + roi_size
first_j = roi_gap * j
last_j = first_j + roi_size
roi[first_i:last_i, first_j:last_j, i * cam_size + j] = cam[i, j]
mask[first_i:last_i, first_j:last_j, i * cam_size + j] = 1

return roi.sum(axis=2) / mask.sum(axis=2)

def mix_images(gray, color):

result = np.empty((img_size, img_size, 3))
result[:, :, 0] = 0.1 * color.mean(axis=2)
result[:, :, 1] = result[:, :, 0]
result[:, :, 2] = result[:, :, 0]
result[:, :, 0] = result[:, :, 0] + 0.89 * gray
result[:, :, 1] = result[:, :, 1] + 0.89 * (0.5 - np.abs(gray - 0.5))
result[:, :, 2] = result[:, :, 2] + 0.89 * (1 - gray)

(continues on next page)
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return result

cat_img = cam_to_img(cat_cam)
dog_img = cam_to_img(dog_cam)

cat_mix = mix_images(cat_img, img / 255)
dog_mix = mix_images(dog_img, img / 255)

fig, [[ax1, ax2], [ax3, ax4]] = plt.subplots(2, 2, figsize=(12, 12))
ax1.imshow(cat_img, cmap='gray', vmin=0, vmax=1)
ax2.imshow(dog_img, cmap='gray', vmin=0, vmax=1)
ax3.imshow(cat_mix)
ax4.imshow(dog_mix)
ax1.set_title('cat activation map')
ax2.set_title('dog activation map')
plt.show()
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8.7 Improving CNN performance

So far we only considered the basics of CNNs. Now we discuss techniques for improving prediction quality and for
decreasing training times. First we introduce the ideas, then we implement all techniques for better cats and dogs
classification.

8.7.1 Data Augmentation

Prediction accuracy heavily depends on amount and variety of data available for training. Collecting more data is
expensive. Thus, we could generate synthetic data from existing data. In case of image data we may rotate, scale,
translate or distort the images to get new images showing identical objects in slightly different ways. This idea is
known as data augmentation and increases the amount of data as well as the variety.
Kera provides several types of data augmentation (rotation, zoom, pan, brightness, flip, and some more). Activating
this feature yields a stream of augmented images. Augmentation steps have to be incorporated to the model via
preprocessing layers, see Image augmentation layers251.

8.7.2 Pre-trained CNNs

CNNs have two major components: the feature extraction stack (convolutional and pooling layers) and the decision
stack (dense layers for classification or regression). The task of the feature extraction stack is to automatically pre-
process images resulting in a set of feature maps containing higher level information than just colored pixels. Based
on this higher level information the decision stack predicts the targets.
With this two-step approach inmind wemay usemore powerful feature extraction. The feature extraction part is more
or less the same for all object classification problems in image processing. Thus, we might use a feature extraction
stack trained on much larger training data and with much more computational resources. Such pre-trained CNNs are
available in the internet and Keras ships with some, too. See Keras Applications252 for a list of pre-trained CNNs in
Keras.
In Keras’ documentation the feature extraction stack is called convolutional base and the decision stack is the head of
the CNN.When loading a pre-trained model we have to decide wether to load the full model or only the convolutional
base. If we do not use the pre-trained head, we have to specify the input shape for the network. This sounds a bit
strange, but the convolutional base works for arbitrary input shapes and specifing a concrete shape fixes the output
shape of the convolutional base. If we use the pre-trained head, then the output shape of the convolutional base has
to fit the input shape of the head. Thus, the head determines the input shape of the CNN.

8.7.3 Other Minimization Algorithms

Up to now we only considered simple gradient descent. But there are much better algorithms for minimizing loss
functions. Keras implements some of them and we should use them although at the moment we do not know what
those algorithms do in detail. Advanced minimization techniques are not covered in this book.
251 https://keras.io/api/layers/preprocessing_layers/image_augmentation/
252 https://keras.io/api/applications/
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8.7.4 Faster Preprocessing

Loading images from the disk and preprocessing them during training might slow down training. One solution is to
load all images (including augmentation) to memory before training, but large memory is required. Another solution
is to asynchronously load and preprocess data. That is, while the GPU does some calculations the CPU loads and
preprocesses images. Keras and TensorFlow support such advanced techniques, but we will not cover them here.

8.7.5 Example

We consider object detection with cats and dogs again.

import numpy as np
import matplotlib.pyplot as plt

import tensorflow.keras as keras

data_path = '/home/jef19jdw/myfiles/datasets_teaching/ds2/catsdogs/data/'

2023-05-08 07:12:32.560037: I tensorflow/core/platform/cpu_feature_guard.
↪cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network␣
↪Library (oneDNN) to use the following CPU instructions in performance-
↪critical operations: SSE4.1 SSE4.2 AVX AVX2 FMA

To enable them in other operations, rebuild TensorFlow with the appropriate␣
↪compiler flags.

To speed up training we would like to have all data in memory. Images have 1282 = 16384 pixels, each taking 3
bytes for the colors (one byte per channel) if color values are integers. For colors scaled to [0, 1] we need 4 bytes
per channel with np.float32 as data type. Thus, we need 196608 bytes per image, say 200 kB. These are 5
images per MB or 5000 images per GB. Our data set has 25000 images and we could increase it to arbitrary size by
data augmentation. Note that data augmentation is only useful for training data. Validation and test data should not
be augmented. To save memory we do augmentation in real-time, that is, we only keep original training images in
memory and generate batches of augmented images as needed.
To load all images we use Keras’ methods for loading images from directories and inferring labels. Then we extract
images and labels from the resulting data structure to ensure they are in memory (TensorFlow Dataset objects do
not necessarily read all data to memory).

img_size = 128

train_data = keras.preprocessing.image_dataset_from_directory(
data_path + 'labeled/train',
label_mode = 'categorical', # one-hot encoding with two columns
batch_size=15000, # load all images in one batch
image_size=(img_size, img_size),
validation_split=0.25,
subset='training',
seed=0

)
val_data = keras.preprocessing.image_dataset_from_directory(

data_path + 'labeled/train',
label_mode = 'categorical',
batch_size=5000,
image_size=(img_size, img_size),
validation_split=0.25,
subset='validation',
seed=0 # same seed as for training

)
test_data = keras.preprocessing.image_dataset_from_directory(

(continues on next page)
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data_path + 'labeled/test',
label_mode = 'categorical',
batch_size=5000,
image_size=(img_size, img_size),

)

# extract images and labels from TensorFlow Dataset
train_images, train_labels = next(iter(train_data))
val_images, val_labels = next(iter(val_data))
test_images, test_labels = next(iter(test_data))

Found 20000 files belonging to 2 classes.
Using 15000 files for training.

2023-05-08 07:12:34.818592: E tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪driver.cc:267] failed call to cuInit: CUDA_ERROR_UNKNOWN: unknown error

2023-05-08 07:12:34.818623: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪diagnostics.cc:169] retrieving CUDA diagnostic information for host: WHZ-46349

2023-05-08 07:12:34.818631: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪diagnostics.cc:176] hostname: WHZ-46349

2023-05-08 07:12:34.818725: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪diagnostics.cc:200] libcuda reported version is: 470.161.3

2023-05-08 07:12:34.818746: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪diagnostics.cc:204] kernel reported version is: 470.161.3

2023-05-08 07:12:34.818752: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪diagnostics.cc:310] kernel version seems to match DSO: 470.161.3

2023-05-08 07:12:34.818982: I tensorflow/core/platform/cpu_feature_guard.
↪cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network␣
↪Library (oneDNN) to use the following CPU instructions in performance-
↪critical operations: SSE4.1 SSE4.2 AVX AVX2 FMA

To enable them in other operations, rebuild TensorFlow with the appropriate␣
↪compiler flags.

Found 20000 files belonging to 2 classes.
Using 5000 files for validation.
Found 5000 files belonging to 2 classes.

2023-05-08 07:12:45.792236: I tensorflow/core/kernels/data/shuffle_dataset_op.
↪cc:392] Filling up shuffle buffer (this may take a while): 14408 of 120000

2023-05-08 07:12:46.293722: I tensorflow/core/kernels/data/shuffle_dataset_op.
↪cc:417] Shuffle buffer filled.

2023-05-08 07:12:46.304312: W tensorflow/tsl/framework/cpu_allocator_impl.
↪cc:82] Allocation of 2949120000 exceeds 10% of free system memory.

2023-05-08 07:12:51.302941: W tensorflow/tsl/framework/cpu_allocator_impl.
↪cc:82] Allocation of 983040000 exceeds 10% of free system memory.

2023-05-08 07:12:56.156447: W tensorflow/tsl/framework/cpu_allocator_impl.
↪cc:82] Allocation of 983040000 exceeds 10% of free system memory.

Now we start to build the model. As mentioned above, data augmentation has to be implemented via preprocessing
layers in the model.

Important: Due to a bug in TensorFlow 2.9 and above training of Keras models with preprocessing layers is
extremely slow. See TensorFlow issue253 for current discussion.

253 https://github.com/tensorflow/tensorflow/issues/55639
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model = keras.models.Sequential()
model.add(keras.Input(shape=(img_size, img_size, 3)))

#model.add(keras.layers.RandomFlip())
#model.add(keras.layers.RandomRotation(0.5))
#model.add(keras.layers.RandomZoom(0.2))
#model.add(keras.layers.RandomContrast(0.2))
#model.add(keras.layers.RandomBrightness(0.2, value_range=(0, 1)))

Note that preprocessing layers in Keras only are active during training. In evaluation and prediction phases they are
skipped.
Next, we load a pre-trained convolutional base.

conv_base = keras.applications.Xception(
include_top=False,
input_shape=(img_size, img_size, 3)

)

conv_base.summary()

Model: "xception"
________________________________________________________________________________

↪__________________
Layer (type) Output Shape Param # Connected to

==================================================================================================
input_2 (InputLayer) [(None, 128, 128, 3 0 []

)]

block1_conv1 (Conv2D) (None, 63, 63, 32) 864 ['input_2[0][0]
↪']

block1_conv1_bn (BatchNormaliz (None, 63, 63, 32) 128 ['block1_
↪conv1[0][0]']
ation)

block1_conv1_act (Activation) (None, 63, 63, 32) 0 ['block1_conv1_
↪bn[0][0]']

block1_conv2 (Conv2D) (None, 61, 61, 64) 18432 ['block1_conv1_
↪act[0][0]']

block1_conv2_bn (BatchNormaliz (None, 61, 61, 64) 256 ['block1_
↪conv2[0][0]']
ation)

block1_conv2_act (Activation) (None, 61, 61, 64) 0 ['block1_conv2_
↪bn[0][0]']

block2_sepconv1 (SeparableConv (None, 61, 61, 128) 8768 ['block1_conv2_
↪act[0][0]']
2D)

block2_sepconv1_bn (BatchNorma (None, 61, 61, 128) 512 ['block2_
↪sepconv1[0][0]']
lization)

block2_sepconv2_act (Activatio (None, 61, 61, 128) 0 ['block2_
↪sepconv1_bn[0][0]']
n)

(continues on next page)
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block2_sepconv2 (SeparableConv (None, 61, 61, 128) 17536 ['block2_
↪sepconv2_act[0][0]']
2D)

block2_sepconv2_bn (BatchNorma (None, 61, 61, 128) 512 ['block2_
↪sepconv2[0][0]']
lization)

conv2d (Conv2D) (None, 31, 31, 128) 8192 ['block1_conv2_
↪act[0][0]']

block2_pool (MaxPooling2D) (None, 31, 31, 128) 0 ['block2_
↪sepconv2_bn[0][0]']

batch_normalization (BatchNorm (None, 31, 31, 128) 512 ['conv2d[0][0]
↪']
alization)

add (Add) (None, 31, 31, 128) 0 ['block2_
↪pool[0][0]',

'batch_
↪normalization[0][0]']

block3_sepconv1_act (Activatio (None, 31, 31, 128) 0 ['add[0][0]']
n)

block3_sepconv1 (SeparableConv (None, 31, 31, 256) 33920 ['block3_
↪sepconv1_act[0][0]']
2D)

block3_sepconv1_bn (BatchNorma (None, 31, 31, 256) 1024 ['block3_
↪sepconv1[0][0]']
lization)

block3_sepconv2_act (Activatio (None, 31, 31, 256) 0 ['block3_
↪sepconv1_bn[0][0]']
n)

block3_sepconv2 (SeparableConv (None, 31, 31, 256) 67840 ['block3_
↪sepconv2_act[0][0]']
2D)

block3_sepconv2_bn (BatchNorma (None, 31, 31, 256) 1024 ['block3_
↪sepconv2[0][0]']
lization)

conv2d_1 (Conv2D) (None, 16, 16, 256) 32768 ['add[0][0]']

block3_pool (MaxPooling2D) (None, 16, 16, 256) 0 ['block3_
↪sepconv2_bn[0][0]']

batch_normalization_1 (BatchNo (None, 16, 16, 256) 1024 ['conv2d_
↪1[0][0]']
rmalization)

add_1 (Add) (None, 16, 16, 256) 0 ['block3_
↪pool[0][0]',

'batch_
↪normalization_1[0][0]']

block4_sepconv1_act (Activatio (None, 16, 16, 256) 0 ['add_1[0][0]']
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n)

block4_sepconv1 (SeparableConv (None, 16, 16, 728) 188672 ['block4_
↪sepconv1_act[0][0]']
2D)

block4_sepconv1_bn (BatchNorma (None, 16, 16, 728) 2912 ['block4_
↪sepconv1[0][0]']
lization)

block4_sepconv2_act (Activatio (None, 16, 16, 728) 0 ['block4_
↪sepconv1_bn[0][0]']
n)

block4_sepconv2 (SeparableConv (None, 16, 16, 728) 536536 ['block4_
↪sepconv2_act[0][0]']
2D)

block4_sepconv2_bn (BatchNorma (None, 16, 16, 728) 2912 ['block4_
↪sepconv2[0][0]']
lization)

conv2d_2 (Conv2D) (None, 8, 8, 728) 186368 ['add_1[0][0]']

block4_pool (MaxPooling2D) (None, 8, 8, 728) 0 ['block4_
↪sepconv2_bn[0][0]']

batch_normalization_2 (BatchNo (None, 8, 8, 728) 2912 ['conv2d_
↪2[0][0]']
rmalization)

add_2 (Add) (None, 8, 8, 728) 0 ['block4_
↪pool[0][0]',

'batch_
↪normalization_2[0][0]']

block5_sepconv1_act (Activatio (None, 8, 8, 728) 0 ['add_2[0][0]']
n)

block5_sepconv1 (SeparableConv (None, 8, 8, 728) 536536 ['block5_
↪sepconv1_act[0][0]']
2D)

block5_sepconv1_bn (BatchNorma (None, 8, 8, 728) 2912 ['block5_
↪sepconv1[0][0]']
lization)

block5_sepconv2_act (Activatio (None, 8, 8, 728) 0 ['block5_
↪sepconv1_bn[0][0]']
n)

block5_sepconv2 (SeparableConv (None, 8, 8, 728) 536536 ['block5_
↪sepconv2_act[0][0]']
2D)

block5_sepconv2_bn (BatchNorma (None, 8, 8, 728) 2912 ['block5_
↪sepconv2[0][0]']
lization)

block5_sepconv3_act (Activatio (None, 8, 8, 728) 0 ['block5_
↪sepconv2_bn[0][0]']
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n)

block5_sepconv3 (SeparableConv (None, 8, 8, 728) 536536 ['block5_
↪sepconv3_act[0][0]']
2D)

block5_sepconv3_bn (BatchNorma (None, 8, 8, 728) 2912 ['block5_
↪sepconv3[0][0]']
lization)

add_3 (Add) (None, 8, 8, 728) 0 ['block5_
↪sepconv3_bn[0][0]',

'add_2[0][0]']

block6_sepconv1_act (Activatio (None, 8, 8, 728) 0 ['add_3[0][0]']
n)

block6_sepconv1 (SeparableConv (None, 8, 8, 728) 536536 ['block6_
↪sepconv1_act[0][0]']
2D)

block6_sepconv1_bn (BatchNorma (None, 8, 8, 728) 2912 ['block6_
↪sepconv1[0][0]']
lization)

block6_sepconv2_act (Activatio (None, 8, 8, 728) 0 ['block6_
↪sepconv1_bn[0][0]']
n)

block6_sepconv2 (SeparableConv (None, 8, 8, 728) 536536 ['block6_
↪sepconv2_act[0][0]']
2D)

block6_sepconv2_bn (BatchNorma (None, 8, 8, 728) 2912 ['block6_
↪sepconv2[0][0]']
lization)

block6_sepconv3_act (Activatio (None, 8, 8, 728) 0 ['block6_
↪sepconv2_bn[0][0]']
n)

block6_sepconv3 (SeparableConv (None, 8, 8, 728) 536536 ['block6_
↪sepconv3_act[0][0]']
2D)

block6_sepconv3_bn (BatchNorma (None, 8, 8, 728) 2912 ['block6_
↪sepconv3[0][0]']
lization)

add_4 (Add) (None, 8, 8, 728) 0 ['block6_
↪sepconv3_bn[0][0]',

'add_3[0][0]']

block7_sepconv1_act (Activatio (None, 8, 8, 728) 0 ['add_4[0][0]']
n)

block7_sepconv1 (SeparableConv (None, 8, 8, 728) 536536 ['block7_
↪sepconv1_act[0][0]']
2D)

block7_sepconv1_bn (BatchNorma (None, 8, 8, 728) 2912 ['block7_
↪sepconv1[0][0]'] (continues on next page)
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lization)

block7_sepconv2_act (Activatio (None, 8, 8, 728) 0 ['block7_
↪sepconv1_bn[0][0]']
n)

block7_sepconv2 (SeparableConv (None, 8, 8, 728) 536536 ['block7_
↪sepconv2_act[0][0]']
2D)

block7_sepconv2_bn (BatchNorma (None, 8, 8, 728) 2912 ['block7_
↪sepconv2[0][0]']
lization)

block7_sepconv3_act (Activatio (None, 8, 8, 728) 0 ['block7_
↪sepconv2_bn[0][0]']
n)

block7_sepconv3 (SeparableConv (None, 8, 8, 728) 536536 ['block7_
↪sepconv3_act[0][0]']
2D)

block7_sepconv3_bn (BatchNorma (None, 8, 8, 728) 2912 ['block7_
↪sepconv3[0][0]']
lization)

add_5 (Add) (None, 8, 8, 728) 0 ['block7_
↪sepconv3_bn[0][0]',

'add_4[0][0]']

block8_sepconv1_act (Activatio (None, 8, 8, 728) 0 ['add_5[0][0]']
n)

block8_sepconv1 (SeparableConv (None, 8, 8, 728) 536536 ['block8_
↪sepconv1_act[0][0]']
2D)

block8_sepconv1_bn (BatchNorma (None, 8, 8, 728) 2912 ['block8_
↪sepconv1[0][0]']
lization)

block8_sepconv2_act (Activatio (None, 8, 8, 728) 0 ['block8_
↪sepconv1_bn[0][0]']
n)

block8_sepconv2 (SeparableConv (None, 8, 8, 728) 536536 ['block8_
↪sepconv2_act[0][0]']
2D)

block8_sepconv2_bn (BatchNorma (None, 8, 8, 728) 2912 ['block8_
↪sepconv2[0][0]']
lization)

block8_sepconv3_act (Activatio (None, 8, 8, 728) 0 ['block8_
↪sepconv2_bn[0][0]']
n)

block8_sepconv3 (SeparableConv (None, 8, 8, 728) 536536 ['block8_
↪sepconv3_act[0][0]']
2D)
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block8_sepconv3_bn (BatchNorma (None, 8, 8, 728) 2912 ['block8_
↪sepconv3[0][0]']
lization)

add_6 (Add) (None, 8, 8, 728) 0 ['block8_
↪sepconv3_bn[0][0]',

'add_5[0][0]']

block9_sepconv1_act (Activatio (None, 8, 8, 728) 0 ['add_6[0][0]']
n)

block9_sepconv1 (SeparableConv (None, 8, 8, 728) 536536 ['block9_
↪sepconv1_act[0][0]']
2D)

block9_sepconv1_bn (BatchNorma (None, 8, 8, 728) 2912 ['block9_
↪sepconv1[0][0]']
lization)

block9_sepconv2_act (Activatio (None, 8, 8, 728) 0 ['block9_
↪sepconv1_bn[0][0]']
n)

block9_sepconv2 (SeparableConv (None, 8, 8, 728) 536536 ['block9_
↪sepconv2_act[0][0]']
2D)

block9_sepconv2_bn (BatchNorma (None, 8, 8, 728) 2912 ['block9_
↪sepconv2[0][0]']
lization)

block9_sepconv3_act (Activatio (None, 8, 8, 728) 0 ['block9_
↪sepconv2_bn[0][0]']
n)

block9_sepconv3 (SeparableConv (None, 8, 8, 728) 536536 ['block9_
↪sepconv3_act[0][0]']
2D)

block9_sepconv3_bn (BatchNorma (None, 8, 8, 728) 2912 ['block9_
↪sepconv3[0][0]']
lization)

add_7 (Add) (None, 8, 8, 728) 0 ['block9_
↪sepconv3_bn[0][0]',

'add_6[0][0]']

block10_sepconv1_act (Activati (None, 8, 8, 728) 0 ['add_7[0][0]']
on)

block10_sepconv1 (SeparableCon (None, 8, 8, 728) 536536 ['block10_
↪sepconv1_act[0][0]']
v2D)

block10_sepconv1_bn (BatchNorm (None, 8, 8, 728) 2912 ['block10_
↪sepconv1[0][0]']
alization)

block10_sepconv2_act (Activati (None, 8, 8, 728) 0 ['block10_
↪sepconv1_bn[0][0]']
on)
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block10_sepconv2 (SeparableCon (None, 8, 8, 728) 536536 ['block10_
↪sepconv2_act[0][0]']
v2D)

block10_sepconv2_bn (BatchNorm (None, 8, 8, 728) 2912 ['block10_
↪sepconv2[0][0]']
alization)

block10_sepconv3_act (Activati (None, 8, 8, 728) 0 ['block10_
↪sepconv2_bn[0][0]']
on)

block10_sepconv3 (SeparableCon (None, 8, 8, 728) 536536 ['block10_
↪sepconv3_act[0][0]']
v2D)

block10_sepconv3_bn (BatchNorm (None, 8, 8, 728) 2912 ['block10_
↪sepconv3[0][0]']
alization)

add_8 (Add) (None, 8, 8, 728) 0 ['block10_
↪sepconv3_bn[0][0]',

'add_7[0][0]']

block11_sepconv1_act (Activati (None, 8, 8, 728) 0 ['add_8[0][0]']
on)

block11_sepconv1 (SeparableCon (None, 8, 8, 728) 536536 ['block11_
↪sepconv1_act[0][0]']
v2D)

block11_sepconv1_bn (BatchNorm (None, 8, 8, 728) 2912 ['block11_
↪sepconv1[0][0]']
alization)

block11_sepconv2_act (Activati (None, 8, 8, 728) 0 ['block11_
↪sepconv1_bn[0][0]']
on)

block11_sepconv2 (SeparableCon (None, 8, 8, 728) 536536 ['block11_
↪sepconv2_act[0][0]']
v2D)

block11_sepconv2_bn (BatchNorm (None, 8, 8, 728) 2912 ['block11_
↪sepconv2[0][0]']
alization)

block11_sepconv3_act (Activati (None, 8, 8, 728) 0 ['block11_
↪sepconv2_bn[0][0]']
on)

block11_sepconv3 (SeparableCon (None, 8, 8, 728) 536536 ['block11_
↪sepconv3_act[0][0]']
v2D)

block11_sepconv3_bn (BatchNorm (None, 8, 8, 728) 2912 ['block11_
↪sepconv3[0][0]']
alization)

add_9 (Add) (None, 8, 8, 728) 0 ['block11_
↪sepconv3_bn[0][0]', (continues on next page)
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'add_8[0][0]']

block12_sepconv1_act (Activati (None, 8, 8, 728) 0 ['add_9[0][0]']
on)

block12_sepconv1 (SeparableCon (None, 8, 8, 728) 536536 ['block12_
↪sepconv1_act[0][0]']
v2D)

block12_sepconv1_bn (BatchNorm (None, 8, 8, 728) 2912 ['block12_
↪sepconv1[0][0]']
alization)

block12_sepconv2_act (Activati (None, 8, 8, 728) 0 ['block12_
↪sepconv1_bn[0][0]']
on)

block12_sepconv2 (SeparableCon (None, 8, 8, 728) 536536 ['block12_
↪sepconv2_act[0][0]']
v2D)

block12_sepconv2_bn (BatchNorm (None, 8, 8, 728) 2912 ['block12_
↪sepconv2[0][0]']
alization)

block12_sepconv3_act (Activati (None, 8, 8, 728) 0 ['block12_
↪sepconv2_bn[0][0]']
on)

block12_sepconv3 (SeparableCon (None, 8, 8, 728) 536536 ['block12_
↪sepconv3_act[0][0]']
v2D)

block12_sepconv3_bn (BatchNorm (None, 8, 8, 728) 2912 ['block12_
↪sepconv3[0][0]']
alization)

add_10 (Add) (None, 8, 8, 728) 0 ['block12_
↪sepconv3_bn[0][0]',

'add_9[0][0]']

block13_sepconv1_act (Activati (None, 8, 8, 728) 0 ['add_10[0][0]
↪']
on)

block13_sepconv1 (SeparableCon (None, 8, 8, 728) 536536 ['block13_
↪sepconv1_act[0][0]']
v2D)

block13_sepconv1_bn (BatchNorm (None, 8, 8, 728) 2912 ['block13_
↪sepconv1[0][0]']
alization)

block13_sepconv2_act (Activati (None, 8, 8, 728) 0 ['block13_
↪sepconv1_bn[0][0]']
on)

block13_sepconv2 (SeparableCon (None, 8, 8, 1024) 752024 ['block13_
↪sepconv2_act[0][0]']
v2D)

(continues on next page)
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block13_sepconv2_bn (BatchNorm (None, 8, 8, 1024) 4096 ['block13_
↪sepconv2[0][0]']
alization)

conv2d_3 (Conv2D) (None, 4, 4, 1024) 745472 ['add_10[0][0]
↪']

block13_pool (MaxPooling2D) (None, 4, 4, 1024) 0 ['block13_
↪sepconv2_bn[0][0]']

batch_normalization_3 (BatchNo (None, 4, 4, 1024) 4096 ['conv2d_
↪3[0][0]']
rmalization)

add_11 (Add) (None, 4, 4, 1024) 0 ['block13_
↪pool[0][0]',

'batch_
↪normalization_3[0][0]']

block14_sepconv1 (SeparableCon (None, 4, 4, 1536) 1582080 ['add_11[0][0]
↪']
v2D)

block14_sepconv1_bn (BatchNorm (None, 4, 4, 1536) 6144 ['block14_
↪sepconv1[0][0]']
alization)

block14_sepconv1_act (Activati (None, 4, 4, 1536) 0 ['block14_
↪sepconv1_bn[0][0]']
on)

block14_sepconv2 (SeparableCon (None, 4, 4, 2048) 3159552 ['block14_
↪sepconv1_act[0][0]']
v2D)

block14_sepconv2_bn (BatchNorm (None, 4, 4, 2048) 8192 ['block14_
↪sepconv2[0][0]']
alization)

block14_sepconv2_act (Activati (None, 4, 4, 2048) 0 ['block14_
↪sepconv2_bn[0][0]']
on)

==================================================================================================
Total params: 20,861,480
Trainable params: 20,806,952
Non-trainable params: 54,528
________________________________________________________________________________

↪__________________

We see that there are new layer types: separable convolutions and batch normalization. Separable convolutions
are a special case of usual convolution allowing for more efficient computation by restricting to specially structured
filters. Batch normalization is a kind of rescaling layer outputs. The more important observation is the output shape:
4x4x2048. That is, we obtain 2048 feature maps each of size 4x4. This is where we connect our decision stack.
Models in Keras behave like layers (the Model class inherits from Layer). Thus, we may add the pre-trained
convolutional base as layer to our model.
When using pre-trainedmodels, data preprocessing has to be done in exactly the sameway as has been done in training.
For each pre-trained model in Keras there is a preprocess_input254 function doing necessary preprocessing.
254 https://www.tensorflow.org/api_docs/python/tf/keras/applications/xception/preprocess_input
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To apply this function to all data flowing through our model we use a Lambda layer255.

model.add(keras.layers.Lambda(keras.applications.xception.preprocess_input))
model.add(conv_base)

To complete the model we add dense layers.

model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(10, activation='relu', name='dense1'))
model.add(keras.layers.Dense(10, activation='relu', name='dense2'))
model.add(keras.layers.Dense(2, activation='sigmoid', name='out'))

model.summary()

Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #

=================================================================
lambda (Lambda) (None, 128, 128, 3) 0

xception (Functional) (None, 4, 4, 2048) 20861480

flatten (Flatten) (None, 32768) 0

dense1 (Dense) (None, 10) 327690

dense2 (Dense) (None, 10) 110

out (Dense) (None, 2) 22

=================================================================
Total params: 21,189,302
Trainable params: 21,134,774
Non-trainable params: 54,528
_________________________________________________________________

Before we start training we have to tell Keras to keep the weights of the convolutional base constant. We simply have
to set the layer’s trainable attribute to False:

model.get_layer('xception').trainable = False
model.summary()

Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #

=================================================================
lambda (Lambda) (None, 128, 128, 3) 0

xception (Functional) (None, 4, 4, 2048) 20861480

flatten (Flatten) (None, 32768) 0

dense1 (Dense) (None, 10) 327690

dense2 (Dense) (None, 10) 110

out (Dense) (None, 2) 22

(continues on next page)

255 https://keras.io/api/layers/core_layers/lambda/
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=================================================================
Total params: 21,189,302
Trainable params: 327,822
Non-trainable params: 20,861,480
_________________________________________________________________

model.compile(loss='categorical_crossentropy', metrics=['categorical_accuracy'])

Now training can be started.

loss = []
val_loss = []
acc = []
val_acc = []

history = model.fit(
train_images, train_labels,
epochs=5,
validation_data=(val_images, val_labels),
batch_size=100

)

loss.extend(history.history['loss'])
val_loss.extend(history.history['val_loss'])
acc.extend(history.history['categorical_accuracy'])
val_acc.extend(history.history['val_categorical_accuracy'])

Epoch 1/5
150/150 [==============================] - 594s 4s/step - loss: 0.2113 -␣

↪categorical_accuracy: 0.9325 - val_loss: 0.1298 - val_categorical_accuracy: 0.
↪9496

Epoch 2/5
150/150 [==============================] - 577s 4s/step - loss: 0.1285 -␣

↪categorical_accuracy: 0.9529 - val_loss: 0.1015 - val_categorical_accuracy: 0.
↪9592

Epoch 3/5
150/150 [==============================] - 571s 4s/step - loss: 0.1036 -␣

↪categorical_accuracy: 0.9629 - val_loss: 0.1071 - val_categorical_accuracy: 0.
↪9580

Epoch 4/5
150/150 [==============================] - 587s 4s/step - loss: 0.0906 -␣

↪categorical_accuracy: 0.9661 - val_loss: 0.1296 - val_categorical_accuracy: 0.
↪9604

Epoch 5/5
150/150 [==============================] - 556s 4s/step - loss: 0.0838 -␣

↪categorical_accuracy: 0.9673 - val_loss: 0.1161 - val_categorical_accuracy: 0.
↪9592

fig, ax = plt.subplots()
ax.plot(loss, '-b', label='training loss')
ax.plot(val_loss, '-r', label='validation loss')
ax.legend()
plt.show()

fig, ax = plt.subplots()
ax.plot(acc, '-b', label='training accuracy')
ax.plot(val_acc, '-r', label='validation accuracy')

(continues on next page)
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ax.legend()
plt.show()

model.save('cnnmodelimproved')
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WARNING:absl:Found untraced functions such as _update_step_xla, _jit_compiled_
↪convolution_op, _jit_compiled_convolution_op, _jit_compiled_convolution_op, _
↪jit_compiled_convolution_op while saving (showing 5 of 41). These functions␣
↪will not be directly callable after loading.

INFO:tensorflow:Assets written to: cnnmodelimproved/assets

INFO:tensorflow:Assets written to: cnnmodelimproved/assets

test_loss, test_metric = model.evaluate(x=test_images, y=test_labels)
print(test_metric)

157/157 [==============================] - 136s 860ms/step - loss: 0.1460 -␣
↪categorical_accuracy: 0.9516

0.9516000151634216
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CHAPTER

NINE

DECISION TREES

Decision trees are a class of relatively simple yet powerful machine learning methods suited for both regression and
classification.

• Basics (page 341)
• Regression Trees (page 343)
• Classification Trees (page 349)

Related projects:
• Forged Banknotes (page 475)

– Decision Tree (page 479) (project)

9.1 Basics

Decision trees, also known as classification and regression trees (CART), are a class of machine learning techniques
based on tree data structures.

9.1.1 Decision Tree Structure

A tree is an abstract structure made of nodes and edges. Nodes are connected by edges. Each node has exactly one
parent node and may have several child nodes. There is one node without parent node, called the root node. Nodes
without children are leaves. A subtree is a node together with all its descendants (children, grandchildren and so on).

Fig. 9.1: A tree consists of nodes and edges. Some nodes are special, like the root node and the leaves.
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In a decision tree each node represents a condition on a feature in a learning task. A feature vector is passed through
the tree starting at the root and finally arriving at one of the tree’s leaves, representing the predictions. At each node
corresponding condition is evaluated for the concrete feature vector. Based on the result the feature vector is passed
on to one of the node’s child. Evaluating a node may have several possible outcomes, but often conditions are either
satisfied or not, yielding a binary tree (two children per node).

Fig. 9.2: Each node in a decision tree, which is not a leaf, represents a condition on the samples passed down the
tree.

The training phase consists of building a decision tree and the prediction phase consists of passing feature vectors
through the tree. Prediction is fast and simple, but for training we have to answer difficult questions:

• Which features should we consider in the nodes? Which one first?
• Which conditions should we check on the features?
• How large should the tree be?

Major advantages of decision trees:
• They can be applied for arbitrary data types including categorical data.
• They not only yield predictions but also a list of human readable decisions leading to that prediction.

9.1.2 Training

Training a decision tree is a relatively complex task. We start general remarks and then provide concrete algorithms
in subsequent sections.

Growing a Tree

There exist many techniques to grow decision trees. The overall procedure is as follows:
1. Start with a tree containing only the root node.
2. Select one of the features and a condition involving only the selected feature.
3. Split the training data set according to the condition into disjoint subsets.
4. For each subset create a child node.
5. Process each child node in the same way as the root node (that is, go to 2), but with the full data set replaced

by the subset corresponding to the child node.
This splitting procedure is repeated until all leaves satisfy some stopping criterion. Common stopping criteria are:

• variance in the leaf is small,
• only few samples correspond to leaf,
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• predefined depth of tree reached,
• maximum number of leaves reached.

After stopping the growth process, each leave corresponds to a small set of training samples (the ones satisfiying all
conditions on the path to the leaf). The prediction corresponding to a leave is

• the mean of all targets of the samples in that set in case of regression,
• the class most samples in that st belong to in case of classification.

For numerical features conditions are formulated as a single inequality, so the feature’s range is splitted into two
disjoint intervals. Since we only have finitely many samples, there are at most as many sensible splitting points as we
have samples.
For categorical features with few categories splitting into as many child nodes as there are categories is feasible. Else
some condition with binary result should be considered. There are at most 2number of categories different conditions with
binary result for a categorical feature.
Choosing features and conditions is the hard part. There exist many techniques to do this. Some prominent ones will
be considered below.

Pruning

Small trees aren’t able to represent complex hypotheses. Large trees tend to overfit training data. Thus, growth of
trees has to be stopped at the right moment by some stopping criterion (see above). A more complex regularization
technique is pruning. Here we grow a very complex tree, which overfits training data, and then remove some nodes
together with all descendants. Removing a node means that we replace it by a leaf as if splitting had never happend.
We try to remove nodes which can be removed without effecting prediction accuracy on a validation data set too
much. Conrete pruning algorithms will be considered below.

9.2 Regression Trees

Here we consider a concrete splitting (variance reduction) for growing regression trees as well as a concrete pruning
algorithm (cost-complexity pruning) for regression trees.

9.2.1 Variance reduction

Variance reduction aims at splitting nodes in a way yielding children with small variance. Nodes with small variance
yield more precise predictions than nodes with large variance (remember: prediction = mean of targets of all training
samples corresponding to the node).
Consider one node and the corresponding subset 𝑆 of the training data set {(𝑥1, 𝑦1, … , (𝑥𝑛, 𝑦𝑛)}. Let

𝐼𝑆 ∶= {𝑘 ∈ {1, … , 𝑛} ∶ (𝑥𝑘, 𝑦𝑘) ∈ 𝑆}

be the index set holding all indices of samples in 𝑆 and denote mean and variance of targets in 𝑆 by

𝑚(𝑆) ∶= 1
|𝑆| ∑

𝑘∈𝐼𝑆

𝑦𝑘

and
𝑣(𝑆) ∶= 1

|𝑆| ∑
𝑘∈𝐼𝑆

(𝑦𝑘 − 𝑚(𝑆))2,

respectively.
Given a split 𝑆 = 𝐿 ∪ 𝑅 into disjoint subsets 𝐿 and 𝑅 we look at the variances 𝑣(𝐿) and 𝑣(𝑅). For an arbitrary split
it’s not clear whether 𝑣(𝐿) and 𝑣(𝑅) are lower or higher than the original 𝑣(𝑆).
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Example
Let 𝑦1 = 1, 𝑦2 = 5, 𝑦3 = 2, 𝑦4 = 4. Calculate 𝑣(𝑆) for 𝑆 = {1, 2, 3, 4} and then 𝑣(𝐿) and 𝑣(𝑅) for following
splits:

• 𝐿 = {1, 3}, 𝑅 = {2, 4},
• 𝐿 = {1, 2}, 𝑅 = {3, 4}.

Since we aim at low variance in the tree’s leaves we would like to choose a split which minimizes both variances
𝑣(𝐿) and 𝑣(𝑅) at once. Optimization problems with multiple objective functions are hard to handle. So we look
for an objective combining both variances. We simply could use the sum 𝑣(𝐿) + 𝑣(𝑅), but then small subsets with
low variance have the same weight as large subsets with low variance. Leafs corresponding to large subsets with low
variance are good because they yield good predictions on many training samples, whereas leaves corresponding to
small subsets do not matter so much. A better idea for a joint objective is a weighted sum of variances with weights
representing subset sizes:

|𝐿|
|𝑆| 𝑣(𝐿) + |𝑅|

|𝑆| 𝑣(𝑅).

Here is a script for comparing splits resulting from joint variance without and with weights:

import numpy as np
import matplotlib.pyplot as plt

# targets of samples in set S
y = np.array([0.03, 0.5, 0, 0, 0, 1, 0, 0.6, 0, -0.01, 0, 0, 0, 0, 0, 0.02])

# all splitting points
splits = np.sort(np.unique(y))

# empty arrays to be filled with v(L), v(R), joint variance without/with weights
vL = np.empty(splits.size - 1)
vR = np.empty(splits.size - 1)
jv = np.empty(splits.size - 1)
jvw = np.empty(splits.size - 1)

# calculate joint variances
for k in range(0, splits.size - 1):

yL = y[y <= splits[k]] # targets in subset L
yR = y[y > splits[k]] # targets in subset R
vL[k] = np.var(yL)
vR[k] = np.var(yR)
jv[k] = vL[k] + vR[k]
jvw[k] = yL.size / y.size * vL[k] + yR.size / y.size * vR[k]

# splitting points for both variants
jv_split = splits[jv.argmin()]
jvw_split = splits[jvw.argmin()]

# plot targets and splitting points
fig, ax = plt.subplots()
ax.plot(y, 'ob', label='samples')
ax.plot([-1, y.size], [jv_split, jv_split], '-r', label='split without weights')
ax.plot([-1, y.size], [jvw_split, jvw_split], '-g', label='split with weights')
ax.legend()
ax.set_xticks(range(y.size))
ax.set_xlabel('index')
ax.set_ylabel('target')
plt.show()
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Note, that the formula for joint variance can be reduced to

|𝐿|
|𝑆| 𝑣(𝐿) + |𝑅|

|𝑆| 𝑣(𝑅) = 1
|𝑆| ( ∑

𝑘∈𝐼𝐿

(𝑦𝑘 − 𝑚(𝐿))2 + ∑
𝑘∈𝐼𝑅

(𝑦𝑘 − 𝑚(𝑅))2) .

If we take into account that the mean is the best constant approximation to the targets of a set of samples, we
immediately see

∑
𝑘∈𝐼𝐿

(𝑦𝑘 − 𝑚(𝐿))2 ≤ ∑
𝑘∈𝐼𝐿

(𝑦𝑘 − 𝑚(𝑆))2 and ∑
𝑘∈𝐼𝑅

(𝑦𝑘 − 𝑚(𝑅))2 ≤ ∑
𝑘∈𝐼𝑅

(𝑦𝑘 − 𝑚(𝑆))2.

Thus,
|𝐿|
|𝑆| 𝑣(𝐿) + |𝑅|

|𝑆| 𝑣(𝑅) ≤ 𝑣(𝑆),

that is, the joint variance of the child nodes is smaller than the parent node’s variance. This justifies calling the
splitting rule variance reduction.

9.2.2 Cost-Complexity Pruning

Hint: There exist several variants of cost-complexity pruning. Here we describe the variant implemented in Scikit-
Learn.

In a trained tree each leaf corresponds to a subset S of training samples. For each leaf (or corresponding subset 𝑆)
we may compute the variance 𝑣(leaf) in the same way as 𝑣(𝑆) above. For non-leaf nodes we may compute the joint
variance of all leafs of the nodes subtree:

𝑣(subtree) ∶= ∑
leaves of
subtree

|leaf|
|subtree| 𝑣(leaf),

where | ⋯ | denotes the number of training samples corresponding to a leaf or to all leafs of subtree, respectively.
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Joint variance of a tree is closely related to prediction quality. More precisely, joint variance is the tree’s prediction
error (MSE) on the training data.
Above we already met the important inequality

𝑣(subtree) ≤ 𝑣(subtree replaced by corresponding leaf).
If we remove a node (and all its descendants) from the tree, joint variance of the whole tree increases or remains
unchanged. If it remains unchanged, the now smaller tree has same prediction quality as the larger one. If joint
variance increases, we have to decide if increase is not too large compared to decrease of complexity. Complexity
of a tree can be expressed as the total number of leaves. The trade-off between joint variance and complexity can be
expressed by the cost-complexity measure (CCM):

𝐶𝐶𝑀(subtree) ∶= 𝑣(subtree) + 𝛼 ⋅ leaves in subtree.
The first summand expresses the prediction error, the second the complexity of the subtree. The regularization
parameter 𝛼 controls the trade-off between error and complexity. CCM of a leaf (a subtree containing only one
node) is

𝐶𝐶𝑀(leaf) = 𝑣(leaf) + 𝛼.
If we replace a subtree by a leaf the first summand (error) in CCM increases and the second (complexity) decreases
to one. For 𝛼 = 0 we have𝐶𝐶𝑀(subtree) ≤ 𝐶𝑀𝑀(subtree replaced by leaf), because prediction error dominates
CCM. For very large 𝛼 we have 𝐶𝐶𝑀(subtree) > 𝐶𝐶𝑀(subtree replaced by leaf), because complexity dominates
CCM.
Cost-complexity pruning for each non-leaf node replaces the corresponding subtree by a leaf if 𝐶𝐶𝑀(subtree) >
𝐶𝐶𝑀(subtree replaced by leaf), that is, if the leaf will have smaller cost-complexity measure than the subtree. For
𝛼 = 0 nothing will be pruned. The larger 𝛼 the smaller the resulting tree will be. The hyperparameter 𝛼 has to
be chosen carefully like every other hyperparameter, for instance by comparing prediction quality on training and
validation data sets.
Cost-complexity pruning sometimes is described by the following equivalent formulation:
For each non-leaf node look for 𝛼 such that

𝐶𝐶𝑀(subtree) = 𝐶𝐶𝑀(subtree replaced by leaf).
Such an 𝛼 is called effective 𝛼. The formula is

𝛼 = 𝑣(subtree replaced by leaf) − 𝑣(subtree)
leaves in subtree − 1

For the effective 𝛼 CCM does not change if we replace a subtree by a leaf. Small effective 𝛼 indicates that prediction
error changes only slightly while complexity is changed much more when replacing the subtree. Based on that ob-
servation we compute effective 𝛼 for all subtrees and remove subtrees with effective 𝛼 below some predefined upper
bound. That upper bound is identical to the hyperparameter 𝛼 above.

9.2.3 Pruning versus Penalization

Formula for CCM are very similar to formula for regularizing loss function based learning methods (linear regression,
ANNs). For loss function based methods we looked for minimizers of

loss(model(inputs), targets) + 𝛼 ⋅ penalty(inputs) → min
model

,

over a certain class of models. Following this idea, in regression tree learning we could ask for a tree minimizing

loss(model(inputs), targets) + 𝛼 ⋅ number of leaves → min
model

over the set of all regression trees. Formulating such an optimization problem is not hard, but how to solve it? The
objective is not differentiable and the search space (set of all trees) is extremely large.
Cost-complexity pruning solves this optimization problem for a much smaller search space. The pruned tree min-
imizes the objective over the set of all trees which can be obtained from the unpruned tree by removing nodes.
The regularization parameter 𝛼 in the objective is the lower bound for effective 𝛼 values to keep. In this sense
cost-complexity pruning fits well into the usual regularization framework.
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9.2.4 Regression Trees with Scikit-Learn

Scikit-Learn implements regression trees in DecisionTreeRegressor256.

import numpy as np
import matplotlib.pyplot as plt

import sklearn.tree as tree

rng = np.random.default_rng(0)

def truth(x):
return x + np.cos(2 * np.pi * x)

xmin = 0
xmax = 1
x = np.linspace(xmin, xmax, 200)

n = 100 # number of data points to generate
noise_level = 0.3 # standard deviation of artificial noise

# simulate data
X = (xmax - xmin) * rng.random((n, 1)) + xmin
y = truth(X).reshape(-1) + noise_level * rng.standard_normal(n)

# plot truth and data
fig, ax = plt.subplots()
ax.plot(x, truth(x), '-b', label='truth')
ax.plot(X.reshape(-1), y, 'or', markersize=3, label='data')
ax.legend()
plt.show()

256 https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
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DecisionTreeRegressor takes several parameters for stopping growth of the tree and also supports cost-
complexity pruning. For the latter the ccp_alpha parameter has to be specified. Nodes with smaller effective 𝛼
will be removed. Scikit-Learn’s default values for stopping criteria lead to trees with one training sample per leaf,
that is, to maximum complexity.
To find good splits, Scikit-Learn uses variance reduction by default, but other techniques are available (parameter
criterion). Further, instead of considering all possible splits, we may reduce computation time by considering
fewer features or fewer splitting points (parameters splitter and max_features).

# regression
reg = tree.DecisionTreeRegressor(ccp_alpha=0.004)
reg.fit(X, y)

# get hypothesis for plotting
y_reg = reg.predict(x.reshape(-1, 1))

# plot truth, data, hypothesis
fig, ax = plt.subplots()
ax.plot(x, truth(x), '-b', label='truth')
ax.plot(X.reshape(-1), y, 'or', markersize=3, label='data')
ax.step(x, y_reg, '-g', label='model')
ax.legend()
plt.show()

Regression trees always yield piecewise constant hypotheses. The number of plateaus corresponds to the number of
leaves.
Scikit-Learn provides the plot_tree257 function to visualize decision trees.

fig, ax = plt.subplots(figsize=(12, 12))
tree.plot_tree(reg, ax=ax, filled=True, rounded=True)
plt.show()

257 https://scikit-learn.org/stable/modules/generated/sklearn.tree.plot_tree.html
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9.3 Classification Trees

Classification trees work much the same like regression trees, but there are some more standard splitting rules for
growing a tree.
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9.3.1 Splitting Strategies

All splitting rules described here define some error measure and choose the split which minimizes the error.

Splitting by Missclassification Rate

For each possible split we determine the number of missclassified samples in each resulting leaf. That is, we count all
samples not belonging to their leaf’s majority class (the leaf’s prediction). The lower the resulting number the better
the split.
Note that sometimes different splits have identical missclassification rate, but frommanual inspection wewould clearly
favor one of them.

Example
Consider 200 samples, 100 belonging to class A, 100 belonging to class B, and two splits

25 A / 75 B and 75 A / 25 B, 50 A / 100 B and 50 A / 0 B.

Both splits missclassify 50 samples, but the second one has a pure leaf and, thus, should be preferred. For the first
split we would need at least two further splitting steps to make all leaves pure. For the second split one further split
might suffice.

Another issue splitting by missclassifications is that there might be no split that decreases missclassifiction, suggesting
to stop the growth process to avoid overfitting. But other measures (see below) justify further splitting.

Example
Consider three samples with feature values 𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 3 belonging to classes A, B, A, respectively. Then
the original node and the two possible splits

A and BA, AB and A

have exactly one missclassified sample. Thus, splitting does not reduce missclassification.

Splitting by Gini Impurity

Gini impurity of a leaf is the probability that two samples randomly chosen from the subset corresponding to the leaf
belong to different classes. Gini impurity of a split is the weighted sum of all new leaves’ Gini impurities with weights
relative to leaf size (samples in leaf divided by samples in parent).
Given 𝐶 classes consider a leaf with 𝑛 samples, 𝑛1 samples from class 1, 𝑛2 samples from class 2, and so on. Then
Gini impurity of the leaf is

𝐶
∑
𝑖=1

𝑛𝑖
𝑛 (1 − 𝑛𝑖

𝑛 ) =
𝐶

∑
𝑖=1

(𝑛𝑖
𝑛 − (𝑛𝑖

𝑛 )
2
) =

𝐶
∑
𝑖=1

𝑛𝑖
𝑛 −

𝐶
∑
𝑖=1

(𝑛𝑖
𝑛 )

2
= 1 −

𝐶
∑
𝑖=1

(𝑛𝑖
𝑛 )

2
.

Gini impurity of a pure leaf is 0. Gini impurity of a leaf with same number of samples from all classes is 1 − 1
𝐶 . In

particular, Gini impurity is always below one. The lower the Gini impurity the better the split.

Example
Consider the 200 samples from above again, 100 belonging to class A, 100 belonging to class B, and two splits

25 A / 75 B and 75 A / 25 B 50 A / 100 B and 50 A / 0 B.
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Gini impurity of first split is

100
200 (1 − ( 25

100)
2

− ( 75
100)

2
) + 100

200 (1 − ( 75
100)

2
− ( 25

100)
2
) = 0.3750.

For the second split we have

150
200 (1 − ( 50

150)
2

− (100
150)

2
) + 50

200 (1 − (50
50)

2
− ( 0

50)
2
) = 0.3333.

Looking at Gini impurity we would choose the second split.

Example
Consider the three samples from above again belonging to classes A, B, A. Then the original node has Gini impurity

1 − (1
3)

2
− (2

3)
2

= 4
9

and the two possible splits
A and BA, AB and A

each have Gini impurity
1
3 ⋅ 0 + 2

3 (1 − (1
2)

2
− (1

2)
2
) = 1

3.

Thus, both splits reduce Gini impurity whereas number of missclassifications remains the same.

Splitting by entropy

Entropy is an alternative to and very similar to Gini impurity. The formula for entropy of a leaf is

−
𝐶

∑
𝑖=1

𝑛𝑖
𝑛 log 𝑛𝑖

𝑛 with 0 ⋅ log 0 ∶= 0.

Entropy is a concept from information theory motivated by entropy in physics. Entropy is a way to quantify infor-
mation. Most data scientists use the term, but only few understand it. So we spend some time to explain the ideas
behind.
Probabilities versus information: Consider a bag of colored balls. We do not know the exact number of balls of
each color, but we know that on average (of many bags with colored balls) 50 per cent of the balls are red, 30 percent
are green, 15 per cent are blue and 5 per cent are yellow. If we randomly take one ball out of the bag we may ask:
What do we learn from this one ball about the contents of the bag? If the ball is red, then we know that there are
red balls in the bag. That’s not surprising since we knew that on average half the balls are red. We did not learn
something really new about the contents of the bag. But if the ball is yellow, then we know, that there was at least one
yellow ball in the bag. Probability for yellow was 5 per cent. Thus, it’s not unlikely that there is no yellow ball in the
bag. So from finding a yellow ball we obtain much more new information about the bag’s contents than from finding
a red ball. We may state our observation as follows: The less likely an event we observe is the more information it
contains.
Measuring information: To express the information content of an event we may transform the events’ probabilities
to satisfy the following criteria.

• Information is nonnegative.
• Information is 0 if and only if probability is 1.
• The higher the probability, the lower the information obtained from observing the event (monotonicity).

9.3. Classification Trees 351



Data Science and Artificial Intelligence for Undergraduates
Volume 2: Data Visualization, Supervised Learning

• Information obtained from observing two independent events is the sum of information obtained from each of
the two events.

The only function satisfying all four requirements is the negative logarithm (to an arbitrary base). So we define
the amount of information obtained from observing an event as the logarithm of the event’s probability. If 𝑝 is a
probability, then corresponding information is

− log 𝑝.
Choosing a concrete base just scales the measure, because

log𝑎 𝑝 = (log𝑎 𝑏) log𝑏 𝑝.

For base 2 the unit for information is bits, for base e it’s nats, for base 10 it’s dits or bans.
In the above example finding a red ball has information 0.69 nats, finding a yellow ball has information 3.00 nats.
Entropy: Entropy is defined as mean information content. It’s the weighted sum of information for all events with
probabilities as weights. So more likely events have heigher weight. In the above example the bag’s entropy is

−0.5 log 0.5 − 0.3 log 0.3 − 0.15 log 0.15 − 0.05 log 0.05 = 1.14.

Entropy measures disorder. The highest form of order is that only one event can occur (with probability 1). Then
entropy is 0. The highest form of disorder is that all events are equally likely. With 𝑛 events, entropy then is log𝑛.
The more equally likely events, the higher the disorder.
Entropy for classification: In classification contexts we have one event per class. Analogously to the colored balls
example above we randomly pick one sample out of a leaf and look at its label. Probabilities are the relative class
counts. We choose the split with the lowest entropy. Or the other way round, we choose the split with the highest
decrease in information obtainable from looking at concrete samples. Lowest information is reached if all samples
in a leaf have the same label. So we cannot learn something from looking at a specific example.

9.3.2 Pruning

Fully grown trees should be pruned to avoid overfitting. Reduced error pruning is a simple and fast pruning technique
for classification trees. One by one, beginning from the leaves, subtrees are replaced by leaves and resulting missclas-
sification rate on validation data is calculated. If missclassification rate does not increase, the change is kept. This
way we obtain a tree which cannot be improved by removing further subtrees.
An alternative is cost-complexity pruning based on some classification error measure (missclassification rate, Gini
impurity, entropy,…). See Regression Trees (page 343) for details.

9.3.3 Classification Trees with Scikit-Learn

Scikit-Learn provides the DecisionTreeClassifier258 class.

258 https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
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ENSEMBLE METHODS

To increase overall prediction quality we could train several different models and somehow aggregate their prediction
results. There are many different ways to realize this idea. Machine learning methods exploiting more than one
trained model are called ensemble methods. Here we consider three classes of ensemble methods: stacking, bootstrap
aggregation (bagging), boosting.

• The Idea (page 353)
• Stacking (page 354)
• Bagging (page 354)
• Boosting (page 355)

Related projects:
• Forged Banknotes (page 475)

– Random Forest (page 480)
• House Prices (page 483)

– A Random Forest for House Prices (page 485)

10.1 The Idea

Imagine you have a difficult problem and ask an expert for advice. Why not ask several experts? One expert could
tell you something wrong, but you do not realize that he or she is wrong, because you aren’t an expert. If we have a
list of experts at our disposal, what can we do with their advice?

• We could ask all experts and then find a ‘meta-expert’ who knows how to combine all the answers to a final
answer. This is known as stacking.

• We could ask them independently and apply some simple aggregation function to their answers to obtain a final
answer. If we ask for numerical values, we could take the mean. If we ask for categories, we could take the
one appearing most often in the list of answers. That’s the basic idea of bagging.

• We could ask one expert, think about his answer and identify possible weak points in her or his answer. Then
we go to the second expert, ask the same question but tell her or him to look at certain aspects more closely.
Then we go to the third expert and add information about weak points in the second expert’s answer. We do
this as long as we feel uncomfortable with the answers or as long as our list of experts isn’t exhausted. This
strategy is known as boosting. Each expert boosts the answer of the previous one.

All three strategies have in common that each expert could be rather weak (not really an expert), but the final answer
will be quite accurate.
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10.2 Stacking

Given a list of models trained on the same task we train a ‘meta-model’ to combine predictions of all models. The
meta-model usually is an ANN.
Training data should be split:

• either one subset for training the weak models and one for training the meta-model
• or individual subsets for all models.

Stacking is typically used with heterogenous weak models. For instance we could combine results from an ANN,
from a decision tree, and from 𝑘-NN.
Stacking is not widely used, but may become more important in future, because stacking allows to combine small
specialized models trained an very different tasks (e.g., speech recognition and object detection in images) to one
large model (e.g., detection of humans in combined video/audio signals). See, for instance, Google Pathways259

Scikit-Learn supports stacking with StackingRegressor260 from the ensemble module.

10.3 Bagging

Bagging (short for bootstrap aggregation) averages predictions of many simple models to obtain a more accurate
prediction than each single simple model can provide. The aim of bagging is to reduce variance (that is, prediction
error due to overfitting) by averaging results from many high variance models.
Although bagging in principle can be applied to a set of very different machine learning models, usually it is used
with a set of identical models.

10.3.1 Bootstrapping

If we train identical models on identical training data, models will yield more or less identical predictions. Thus,
we have to train each model on a different data set. We could divide the data set into as many subsets as we have
models, but then each subset would be rather small. Instead we use a method known as bootstrapping in statistics.
We sample new data sets from the original data set with replacement. Thus, samples may occur several times in the
new sets. The advantage of replacement is that distributions of samples in the new sets are independent from each
other making the trained models independent from each other. Bootstrapping yields a list of data sets which on the
one hand follow more or less the same distribution as the original data set and on the other hand can be (at least in
principle) arbitrarily large.

10.3.2 Bagging with Scikit-Learn

Scikit-Learn supports bagging for regression tasks with BaggingRegressor261 and BaggingClassifier262 from Scikit-
Learn’s ensemble module. Corresponding estimator objects have the usual fit and predict interface. When
creating the estimator we may pass the following arguments:

• estimator: a Scikit-Learn estimator object (linear regression, ANN, decision tree aso.) to be trained several
times,

• n_estimators: how many models to train,
• max_samples: size of training subsets.

259 https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/
260 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingRegressor.html
261 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html
262 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html
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There is also a max_features argument to restrict the number of features to consider in each model. Instead
of training each model on a different data set we might train models on different sets of features (random subspace
method).
Note that BaggingRegressor and BaggingClassifier also supports some bagging-like techniques we do
not introduce here.

10.3.3 Random Forests

If bagging is used with decision trees as base model, then we have a random forest (a forest is a collection of trees).
Scikit-Learn has some specialized routines for training random forests: RandomForestRegressor263 and Random-
ForestClassifier264.
Standard behavior is to grow trees to their maximum size. For complex data sets growing a forest of maximum size
trees may result in memory exhaustion.

10.3.4 Random Forests for Feature Selection

Random forests can be exploited for feature selection. Having a trained random forest at hand, to calculate the
importance of a feature do the following:

1. For all trees find all nodes splitting with respect to the feature.
2. For all nodes from 1. calculate the decrease in the impurity measure (variance, missclassification rate,…)

caused by the split.
3. Calculate the weighted sum of all decreases. Weights are the number of samples in each node.

This procedure ensures that
• features decreasing impurity more than others have higher importance.
• features corresponding to nodes close to a root (more samples in node) have higher importance.

In Scikit-Learn we have access to random forest based feature importances via the feature_importances_265
attribute of the RandomForestRegressor or RandomForestClassifier object after training the forest.

10.4 Boosting

The fundamental idea of boosting is to use information about prediction quality of a trained model to improve training
of new model. Information about prediction quality of the second model then is used to train a third model, and so
on. This process yields a sequence of models, each making up for weaknesses of the previous one. Finally, either
predictions of the last model in the sequence are used or some averaging is done.
Although there is no restriction of the chosen models, one typically uses identical models for boosting. Boosting tends
to reduce bias (prediction error due to lacking model complexity). Thus, we may use very weak models like decision
stumps (trees with only two leaves). Note that this is in contrast to bagging, which tends to reduce variance.
There exist many different implementations of boosting. Here we consider three boosting algorithms in more detail:
AdaBoost, gradient boosting, and XGBoost.
263 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
264 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
265 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html?highlight=randomforest#sklearn.

ensemble.RandomForestRegressor.feature_importances_
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10.4.1 Adaptive Boosting for Regression (AdaBoost.R2)

AdaBoost originally has been developed for binary classification. Later an adaption to regression appeared (Ad-
aBoost.R) and someday a modified regression version has been published (AdaBoost.R2). Scikit-Learn implements
AdaBoost.R2. Thus, we restrict attention to that version. AdaBoost.R2 was introduced in Improving Regressors
using Boosting Techniques266 by Harris Drucker.
In adaptive boosting we associate a weight to each training sample. A small weight marks the sample as unimportant,
high weight means ‘very important’. We may use such weights in two ways:

• train a model only on samples with high weight or
• include weights into the training procedure (weighted mean squared error as loss function).

The first variant is always applicable. The second variant works for models trained by minimizing some loss function.
AdaBoost.R2 only uses the first variant. But a weighted loss function is used for updating the weights.
Step 1 (initialization): Assign weights 𝑤1, … , 𝑤𝑛 to the training samples (𝑥1, 𝑦1, ), … , (𝑥𝑛, 𝑦𝑛) and initialize all
weights to 1

𝑛 .
Step 2 (subset selection): Calculate probabilities

𝑝𝑙 ∶= 𝑤𝑙
𝑛

∑
𝜆=1

𝑤𝜆

, 𝑙 = 1, … , 𝑛,

and choose 𝑁 < 𝑛 training samples according to the probabilities 𝑝1, … , 𝑝𝑛 with replacement.
Step 3 (training): Train a model on the 𝑁 samples.
Step 4 (stopping criteria): Get predictions 𝑦pred,1, … , 𝑦pred,𝑛 for all (!) samples and calculate normalized squared
errors

𝑒𝑙 ∶= (𝑦pred,𝑙 − 𝑦𝑙)
2

𝑛
∑
𝜆=1

(𝑦pred,𝜆 − 𝑦𝜆)2
∈ [0, 1].

Normalization simplyfies formulas below. If the denominator is zero we have perfect fitting (overfitting) and should
stop the procedure, because there is no more need for improvement. But that’s rarely seen in practice. Else calulate
the weighted loss

𝐿 ∶=
𝑛

∑
𝑙=1

𝑝𝑙 𝑒𝑙 ∈ [0, 1].

Stop if 𝐿 ≥ 1
2 . Without weighting we would have 𝐿 = 1. With weighting 𝐿 expresses the average loss on the more

important samples. Thus, 𝐿 close to 1 (for instance𝐿 ≥ 1
2 ) indicates that the current model is not able to fit important

samples much better than less important ones. So we stop the boosting procedure because no more improvement can
be expected.
Step 5 (weight update): Multiply weight 𝑤𝑙 by

( 𝐿
1 − 𝐿)

1−𝑒𝑙

for 𝑙 = 1, … , 𝑛 and go to step 2. The function 𝐿 ↦ 𝐿
1−𝐿 is monotonically increasing and maps [0, 1

2 ) to [0, 1). Small
𝐿 decreases weights more than 𝐿 close to 1

2 . With 𝐿 = 1
2 weights would remain unchanged. The closer an individual

error 𝑒𝑙 is to zero the closer the corresponding update factor is to 𝐿
1−𝐿 . The larger 𝑒𝑙 the closer the update factor is

to 1 (weight remains almost unchanged). Thus, weights of well fitted samples are decreased whereas weights of less
well fitted ones remain almost unchanged.
After stopping (aggregation): After stopping the iteration we have a list of trained hypotheses 𝑓approx,1, … , 𝑓approx,𝑞,
where we exclude the last one, which satisfied the stopping criterion. Based on this list we define the final hypothesis
𝑓approx as follows:
266 https://www.researchgate.net/publication/2424244_Improving_Regressors_Using_Boosting_Techniques/link/

0deec51ae736538cec000000/download
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• For a feature vector 𝑥 get predictions 𝑓approx,1(𝑥), … , 𝑓approx,𝑞(𝑥) from all models.
• For each model calculate

ln( 1
𝐿 − 1)

with modeldependent 𝐿 as introduced in step 4. Denote these numbers by 𝑎1, … , 𝑎𝑞. They will be used as
weights for the models. The function 𝐿 ↦ 1

𝐿 − 1 is monotonically decreasing and maps 0 and 1
2 to +∞ and

1, respectively. The logarithm maps [1, ∞] monotonically to [0, ∞]. Thus, 𝐿 close to zero yields a high weight
for the model, 𝐿 close to 1

2 yields a small weight.
• Calculate the weighted median of 𝑓approx,1(𝑥), … , 𝑓approx,𝑞(𝑥) with weights 𝑎1, … , 𝑎𝑞:

𝑓approx(𝑥) ∶= inf
⎧{
⎨{⎩

𝑦 ∈ ℝ ∶
𝑞

∑
𝜇=1

𝑓approx,𝜇(𝑥)≤𝑦

𝑎𝜇 ≥ 1
2

𝑞
∑
𝜇=1

𝑎𝜇

⎫}
⎬}⎭

.

Rules for weight update, stopping and aggregation are somewhat arbitrary, but yield good results in practice.
Scikit-Learn implements adaptive boosting in AdaBoostRegressor267 in the ensemble module.

10.4.2 Adaptive Boosting for Classification (AdaBoost-SAMME)

Above we considered AdaBoost for regression tasks. For classification problems AdaBoost originated in 1995 fo-
cussing on binary classification. In 2009 the now standard AdaBoost algorithm for multiclass problems has been
proposed (see Multi-class AdaBoost268 by Zhu, Zou, Rosset, Hastie), known as AdaBoost-SAMME. An AdaBoost
model outputs class labels (not probabilities) and base models are required to yield class labels, too.
Like for regression each training sample is assigned a weight. Depending on the prediction qualitiy of the model
weights are modified to control fitting of the next model. The better the previous fit the smaller the weight. Thus,
fitting concentrates on difficult samples. The detailed procedure for 𝐶 classes is as follows:
Step 1 (initialization): Set all weights 𝑤1, … , 𝑤𝑛 to 1

𝑛 .
Step 2 (training): Train a model on the weighted samples.
Step 3 (weighted classification error): Calculate

𝑒 ∶= sum of weights of missclassified samples
sum of all weights .

Step 4 (stopping criteria): Typically AdaBoost is stopped after a fixed number of iterations (100, for instance) or
if 𝑒 = 0 (early stopping). Alternatively one may stop AdaBoost if 𝑒 ≥ 𝐶−1

𝐶 , that is, if the error is not better than the
error of random guessing.
Step 5 (weight update): Multiply all weights of missclassified samples by

(𝐶 − 1) 1 − 𝑒
𝑒

and go to step 2. The update factor is greater than 1 if and only if the error 𝑒 is smaller than the error for randomly
assigned classes 𝐶−1

𝐶 .
After stoppping (aggregation): After stopping the iterationwe have a list of trained hypotheses 𝑓approx,1, … , 𝑓approx,𝑞
(step 2) and a list of weighted errors 𝑒1, … , 𝑒𝑞 (step 3). We define the final hypothesis 𝑓approx as follows:

• Given a sample 𝑥 for each model 𝑓approx,𝜇 define a vector 𝑎𝜇 ∈ {0, 1}𝐶 with components

𝑎(𝑖)
𝜇 ∶= {0, if 𝑓approx,𝜇(𝑥) ≠ 𝑖,

1, if 𝑓approx,𝜇(𝑥) = 𝑖, 𝑖 = 1, … , 𝐶.

Vector 𝑎1, … , 𝑎𝑞 can be regarded as one-hot encoded predictions of corresponding models.
267 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html
268 http://ww.web.stanford.edu/~hastie/Papers/SII-2-3-A8-Zhu.pdf
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• Calculate the weighted sum

𝑎 ∶=
𝑞

∑
𝜇=1

log((𝐶 − 1) 1 − 𝑒𝜇
𝑒𝜇

) 𝑎𝜇.

Components of the vector 𝑎 can be regarded as scores for each class. Coefficients are 0 if the error 𝑒𝜇 equals
the error from random guessing. The smaller the error the larger the coefficient.

• Predict class 𝑖 for 𝑥, where 𝑖 is the index of the largest component of 𝑎.

10.4.3 Gradient Boosting

Gradient boosting is an approximate gradient descent for a loss function. Approximations of the gradients are chosen
to be predictions of (simple) models on the training set. Thus, we minimize a loss by improving an initial model. In
each step a new model is added, yielding a weighted sum of models. Prediction performance of the overall model will
be much better than for each single model. The procedure is repeated until some stopping criterion (performance on
validation set, for instance) is satisfied. That’s the basic idea. Now we have to fill the details.
Denote training samples by (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) and let 𝐿 ∶ ℝ𝑛 → ℝ be the loss with respect to the true labels
𝑦1, … , 𝑦𝑛. For mean squared error loss we have

𝐿(𝑧1, … , 𝑧𝑛) = 1
𝑛

𝑛
∑
𝑙=1

(𝑧𝑙 − 𝑦𝑙)2,

but we stick to the general case here.
Denote the initial hypothesis by 𝑓approx,1 (some trained model). Given a hypothesis 𝑓approx,𝑗 we denote the vector of
predictions by

𝑦pred,𝑗 ∶= (𝑓approx,𝑗(𝑥1), … , 𝑓approx,𝑗(𝑥𝑛)).
We want to improve the training loss 𝐿(𝑦pred,𝑗) by doing a gradient step. In other words, how to modify predictions
𝑦pred,𝑗 to make 𝐿 smaller? Step direction is −∇𝐿(𝑦pred,𝑗) and with step length 𝑠 we obtain the updated predictions

𝑦pred,𝑗 − 𝑠 ∇𝐿(𝑦pred,𝑗).

The problem is that in general this is not a prediction of some model of interest. Thus, we fit a new model to samples

(𝑥1, 𝜕𝐿
𝜕𝑧1

(𝑦pred,𝑗)) , … , (𝑥𝑛, 𝜕𝐿
𝜕𝑧𝑛

(𝑦pred,𝑗))

and set
𝑓approx,𝑗+1 ∶= 𝑓approx,𝑗 − 𝑠 𝑓grad,

where 𝑓grad denotes the hypothesis fitted to the gradient.
The described iterative procedure finally yields a weighted sum ofmanymodels. Eachmodel approximates a gradient.
Samples very well fitted by a model will have small gradient. Thus, the next model will not modify corresponding
prediction too much. The other way round, the next model will concentrate on samples with large prediction error
with the previous model.
For mean squared error loss we have

∇𝐿(𝑦pred,𝑗) = 2
𝑛(𝑦pred,𝑗 − 𝑦),

the difference between predicted and true labels, also known as residual vector (neglecting the factor 2
𝑛 ). Conse-

quently, the gradient approximation model is fit to the residual vector of the previous model. For a perfect fit model
𝑓grad and step length 𝑠 = 𝑛

2 we would have

𝑓approx,𝑗+1(𝑥𝑙) = 𝑓approx,𝑗(𝑥𝑙) − 𝑠 𝑓grad(𝑥𝑙) = 𝑓approx,𝑗(𝑥𝑙) − (𝑓approx,𝑗(𝑥𝑙) − 𝑦𝑙) = 𝑦𝑙

for 𝑙 = 1, … , 𝑛. In other words, the next model would perfectly fit the training data.
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Scikit-Learn implements gradient boosting in GradientBoostingRegressor269 and GradientBoostingClassifier270 in
the ensemble module.
Note that the the output of a gradient boosted model is some real number due to its additive nature. To solve binary
classification tasks with gradient boosted models sigmoid or some similare function has to be applied to the outputs.
Multiclass classification task usually are solved in a one-versus-rest manner if boosting shall be applied. If we have
𝐶 classes, then gradient boosting for binary classification is done 𝐶 times in parallel. If the final model’s output shall
be probabilities softmax is applied to the predictions.
In principle, gradient boosting can be applied directly to a multiclass problem (no one-versus-all). But this is less
efficient because a more complex model with C outputs has to be trained in each step. Moreover each gradient step
yields smaller decrease of the loss function than with a one-versus-all approach. The reason for the latter observation
is the structure of most loss functions. Loss is calculated for each class individually based on class probabilities and
then summed up. Summands are mutually independent. Minimizing each summand individually typically yields
faster descent than minimizing the whole sum as one function.

10.4.4 AdaBoost versus Gradient Boosting

AdaBoost-SAMME is a special case of gradient boosting. This relation has been discovered in 2000, five years after
invention of the original AdaBoost algorithm. With 𝐶 being the number of classes, class labels 𝑦 have to be encoded
in a one-hot-like manner

̃𝑦 ∶= ( ̃𝑦(1), … , ̃𝑦(𝐶)), ̃𝑦(𝑖) ∶= {1, if 𝑦 = 𝑖,
− 1

𝐶−1 , if 𝑦 ≠ 𝑖,
and the loss function for gradient boosting is

𝐿(𝑧1, … , 𝑧𝑛) ∶= 1
𝑛

𝑛
∑
𝑙=1

e− 1
𝐶 ( ̃𝑦(1)

𝑙 ̃𝑧(1)
𝑙 +⋯+ ̃𝑦(𝐶)

𝑙 ̃𝑧(𝐶)
𝑙 ).

The full proof that AdaBoost-SAMME is equivalent to gradient boosting is provided by the authors of AdaBoost-
SAMME in the above mentioned article.

10.4.5 XGBoost

XGBoost orignated in 2016 and became very popular due its success in several machine learning contests. XGBoost
uses decision trees to boost an intial model and aims at large-scale high-performance computing.
The basic boosting idea is similar to gradient boosting, but instead of gradient descent for the loss function XGBoost
uses second order minimization methods involving second partial derivatives (Newton method).
See XGBoost: A Scalable Tree Boosting System271 for details on the algorithm and XGBoost Python Package272 for
a Python package.

269 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
270 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
271 https://arxiv.org/abs/1603.02754
272 https://xgboost.readthedocs.io/en/latest/python/index.html
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CHAPTER

ELEVEN

SUPPORT-VECTOR MACHINES

The term support-vector machine (SVM) is used for a combination of certain machine learning models and corre-
sponding training algorithms. SVMs are restricted to binary classification tasks, but can be applied to multiclass tasks
via one-versus-rest or one-versus-one approach.
SVMs yield a separating hyperplane with maximum distance to both classes. Extensions to nonlinear separation will
be discussed, too (kernel SVMs). Linear SVMs come in two flavors: hard margin SVMs and soft margin SVMs.
SVMs are state-of-art techniques for classification. Necessary computations can be implemented very efficiently and
resulting models are very robust to changes in the training data. SVMs are well suited for very high dimensional data
sets. A trained SVM model requires only very few memory (in constrast to ANNs) and predictions can be computed
very efficiently.

• Hard Margin SVMs (page 361)
• Soft Margin SVMs (page 366)
• Kernel SVMs (page 369)
• SVMs with Scikit-Learn (page 370)
• Support-Vector Regression (SVR) (page 374)

Related projects:
• Forged Banknotes (page 475)

– Support-Vector Machine (page 481)
• MNIST Character Recognition (page 451)

– SVM for QMNIST (page 459)

11.1 Hard Margin SVMs

Given training samples (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) with inputs in ℝ𝑚 and labels in {−1, 1} (binary classification) we want
to find a separating hyperplane with maximum distance to both classes. The distance betwenn both classes with
respect to a hyperplane is called margin.
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Fig. 11.1: Typically, the margin w.r.t. a hyperplane is smaller than the distance between two sets.

11.1.1 Hyperplanes

A hyperplane is the set of all 𝑥 in ℝ𝑚 satisfying

𝑎T 𝑥 + 𝑏 = 0.

The vector 𝑎 ∈ ℝ𝑚 {0} controls the direction of the hyperplane (normal vector) and 𝑏 ∈ ℝ controls the distance
to the origin (the distance is |𝑏|

|𝑎| ). If two normal vectors only differ in length, not in direction, then corresponding
hyperplanes are in parallel. The hyperplane equation can be multiplied by any nonzero real number without effecting
the hyperplane. Thus, many different pairs (𝑎, 𝑏) yield the same hyperplane.
A hyperplane is the level set for level 0 of a function

ℎ𝑎,𝑏 ∶ ℝ𝑚 → ℝ, ℎ𝑎,𝑏(𝑥) ∶= 𝑎T 𝑥 + 𝑏.

On one side of the hyperplane we have ℎ𝑎,𝑏(𝑥) > 0. On the other side we have ℎ𝑎,𝑏(𝑥) < 0. The absolute value
|ℎ𝑎,𝑏(𝑥)| grows linearly with the distance of 𝑥 to the hyperplane. All level sets of ℎ𝑎,𝑏 are hyperplanes parallel to the
hyperplane ℎ𝑎,𝑏(𝑥) = 0.

Fig. 11.2: A hyperplane can be regarded as the zero level set of a linear function.

Hint: For brevity we’ll write ‘the hyperplane ℎ𝑎,𝑏(𝑥) = 0’ instead of the more correct ‘the hyperplane {𝑥 ∈ ℝ𝑚 ∶
ℎ𝑎,𝑏(𝑥) = 0}’.
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11.1.2 Separating Hyperplanes

Let 𝐿+ and 𝐿− be the index sets of positive and negative samples, respectively. That is,

𝐿+ ∶= {𝑙 ∈ {1, … , 𝑛} ∶ 𝑦𝑙 = 1} and 𝐿− ∶= {𝑙 ∈ {1, … , 𝑛} ∶ 𝑦𝑙 = −1}.

A hyperplane ℎ𝑎,𝑏(𝑥) = 0 is called separating (with respect to the given data set) if

ℎ𝑎,𝑏(𝑥𝑙) > 0 for 𝑙 ∈ 𝐿+ and ℎ𝑎,𝑏(𝑥𝑙) < 0 for 𝑙 ∈ 𝐿−.

We may rewrite this condition as
𝑦𝑙 ℎ𝑎,𝑏(𝑥𝑙) > 0 for all 𝑙.

Hint: In our definition of ‘separating’ we not only require separation of both classes but also that the negative class
is on the negative side of the hyperplane and the positive class is on the positive side. If classes are on the wrong side,
that is, if 𝑦𝑙 ℎ𝑎,𝑏(𝑥𝑙) < 0 for all 𝑙, then ℎ−𝑎,−𝑏(𝑥) = 0 is a separating hyperplane in terms of our definition. But note
that ℎ𝑎,𝑏(𝑥) = 0 and ℎ−𝑎,−𝑏(𝑥) = 0 in fact are two descriptions of one and the same hyperplane.

Given a separating hyperplane ℎ𝑎,𝑏(𝑥) = 0 the margin is

margin = min
𝑙∈𝐿+

|𝑎T 𝑥𝑙 + 𝑏|
|𝑎| + min

𝑙∈𝐿−

|𝑎T 𝑥𝑙 + 𝑏|
|𝑎|

= min
𝑙∈𝐿+

𝑎T 𝑥𝑙 + 𝑏
|𝑎| + min

𝑙∈𝐿−

−(𝑎T 𝑥𝑙 + 𝑏)
|𝑎|

= min
𝑙∈𝐿+

𝑎T 𝑥𝑙 + 𝑏
|𝑎| − max

𝑙∈𝐿−

𝑎T 𝑥𝑙 + 𝑏
|𝑎|

= min
𝑙∈𝐿+

𝑎T 𝑥𝑙
|𝑎| − max

𝑙∈𝐿−

𝑎T 𝑥𝑙
|𝑎|

= min
𝑙∈𝐿+

( 𝑎
|𝑎|)

T
𝑥𝑙 − max

𝑙∈𝐿−
( 𝑎

|𝑎|)
T

𝑥𝑙.

Obviously, the margin does not depend on 𝑏 and it does not depend on the length of 𝑎 (because 𝑎 gets normalized in
the formula above). Solely the direction of 𝑎 matters. Note that ( 𝑎

|𝑎| )
T 𝑥𝑙 is the (signed) distance between the origin

and the projection of 𝑥𝑙 onto the subspace spanned by 𝑎. Set

𝑑+
𝑎 ∶= min

𝑙∈𝐿+
( 𝑎

|𝑎|)
T

𝑥𝑙 and 𝑑−
𝑎 ∶= max

𝑙∈𝐿−
( 𝑎

|𝑎|)
T

𝑥𝑙.

Then
margin = 𝑑+

𝑎 − 𝑑−
𝑎 .

Fig. 11.3: Margin with respect to a separating hyperplane with corresponding notation.
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11.1.3 A Centered Separating Hyperplane

Given a vector 𝑎 with 𝑑+
𝑎 > 𝑑−

𝑎 each 𝑏 with

−|𝑎| 𝑑+
𝑎 < 𝑏 < −|𝑎| 𝑑−

𝑎

yields a separating hyperplane ℎ𝑎,𝑏(𝑥) = 0 (prove this!).
For fixed 𝑎 there is only one separating hyperplane with equal distances to both classes. Corresponding b is

𝑏 = −|𝑎| 𝑑+
𝑎 + 𝑑−

𝑎
2 .

To see this simply calculate the distances:

distance to positive class = min
𝑙∈𝐿+

|𝑎T 𝑥𝑙 + 𝑏|
|𝑎| = min

𝑙∈𝐿+

𝑎T 𝑥𝑙 − |𝑎| 𝑑+
𝑎+𝑑−

𝑎
2

|𝑎| = 𝑑+
𝑎 − 𝑑+

𝑎 + 𝑑−
𝑎

2 = 𝑑+
𝑎 − 𝑑−

𝑎
2

distance to negative class = min
𝑙∈𝐿−

|𝑎T 𝑥𝑙 + 𝑏|
|𝑎| = min

𝑙∈𝐿−

− (𝑎T 𝑥𝑙 − |𝑎| 𝑑+
𝑎+𝑑−

𝑎
2 )

|𝑎| = −max
𝑙∈𝐿−

𝑎T 𝑥𝑙 − |𝑎| 𝑑+
𝑎+𝑑−

𝑎
2

|𝑎|

= − (𝑑−
𝑎 − 𝑑+

𝑎 + 𝑑−
𝑎

2 ) = −𝑑−
𝑎 − 𝑑+

𝑎
2 = 𝑑+

𝑎 − 𝑑−
𝑎

2

11.1.4 Maximum Margin

So far we know how to find a centered separating hyperplane given a fixed direction 𝑎 and we also know how to
calculate the margin. To find a (centered) separating hyperplane with maximum margin we have to solve

min
𝑙∈𝐿+

( 𝑎
|𝑎|)

T
𝑥𝑙 − max

𝑙∈𝐿−
( 𝑎

|𝑎|)
T

𝑥𝑙 → max
𝑎∈ℝ𝑚

for 𝑎 and then calculate 𝑏. This minimization problem is non-differentiable and lacks any other useful structure for
analytical or numerical minimization.
Although the idea of a separating hyperplane with maximum margin is simple and straight forward, the major con-
tribution of the inventors of SVMs (Vapnik273 and Chervonenkis274) is a reformulation of the margin maximization
problem as a quadratic minimization problem. A minimization problem is called quadratic if the objective func-
tion is quadratic and all contraints are linear (the set of feasible points is an intersection of half spaces). There
exist several very efficient algorithms for solving quadratic minimization problems, making margin maximization a
computationally tractable task.
Parameters 𝑎 and 𝑏 for the centered separating hyperplane with maximum margin are the solution to

|𝑎|2 → min
𝑎∈ℝ𝑚

with constraints {𝑎T 𝑥𝑙 + 𝑏 ≥ 1, for 𝑙 ∈ 𝐿+,
𝑎T 𝑥𝑙 + 𝑏 ≤ −1 for 𝑙 ∈ 𝐿−.

We now derive the quadratic minimization problem from our considerations above.
We start with fixed 𝑎 and consider the corresponding centered separating hyperplane (assuming there is a separating
hyperplane with normal vector 𝑎):

𝑎T 𝑥 − |𝑎| 𝑑+
𝑎 + 𝑑−

𝑎
2 = 0.

Dividing the equation by |𝑎| 𝑑+
𝑎−𝑑−

𝑎
2 (second factor is half the margin) does not change the hyperplane. Resulting

parameters
𝑎∗ ∶= 2

𝑑+𝑎 − 𝑑−𝑎

𝑎
|𝑎| and 𝑏∗ ∶= −𝑑+

𝑎 + 𝑑−
𝑎

𝑑+𝑎 − 𝑑−𝑎
273 https://en.wikipedia.org/wiki/Vladimir_Vapnik
274 https://en.wikipedia.org/wiki/Alexey_Chervonenkis
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Fig. 11.4: A hyperplane has to be feasible and has to have maximum slope to solve the optimization problem.

do not depend on the length of 𝑎 but solely on its direction. We now have

ℎ𝑎∗,𝑏∗(𝑥𝑙) ≥ 2
𝑑+𝑎 − 𝑑−𝑎

𝑑+
𝑎 − 𝑑+

𝑎 + 𝑑−
𝑎

𝑑+𝑎 − 𝑑−𝑎
= 𝑑+

𝑎 − 𝑑−
𝑎

𝑑+𝑎 − 𝑑−𝑎
= 1 for 𝑙 ∈ 𝐿+

and
ℎ𝑎∗,𝑏∗(𝑥𝑙) ≤ 2

𝑑+𝑎 − 𝑑−𝑎
𝑑−

𝑎 − 𝑑+
𝑎 + 𝑑−

𝑎
𝑑+𝑎 − 𝑑−𝑎

= 𝑑−
𝑎 − 𝑑+

𝑎
𝑑+𝑎 − 𝑑−𝑎

= −1 for 𝑙 ∈ 𝐿−,

that is 𝑎∗ and 𝑏∗ satisfy the constraints of the quadratic minimization problem.
Next we show that whenever we have a hyperplane ℎ𝑎,𝑏(𝑥) = 0 satisfying the constraints and with 𝑎 having the same
fixed direction as 𝑎∗, then |𝑎| ≥ |𝑎∗|. That is, 𝑎∗ and 𝑏∗ solve the quadratic minimization problem if we only consider
one direction. Remember that as long as all considered normal vectors 𝑎 have the same direction (but different length)
all such 𝑎 yield identical 𝑎∗. With

|𝑎| 𝑑+
𝑎 = min

𝑙∈𝐿+
𝑎T 𝑥𝑙 ≥ 1 − 𝑏

and
|𝑎| 𝑑−

𝑎 = max
𝑙∈𝐿−

𝑎T 𝑥𝑙 ≤ −1 − 𝑏
we see

|𝑎∗| = 2
𝑑+𝑎 − 𝑑−𝑎

≤ 2
1−𝑏
|𝑎| − −1−𝑏

|𝑎|
= |𝑎|.

The final step is to show that |𝑎∗| is the smaller the larger the margin is. But this follows immediately from

|𝑎∗| = 2
𝑑+𝑎 − 𝑑−𝑎

because 𝑑+
𝑎 − 𝑑−

𝑎 is the margin.
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11.1.5 Support Vectors

Given the centered separating hyperplane ℎ𝑎,𝑏(𝑥) = 0 with maximum margin each sample 𝑥𝑙 satisfying ℎ𝑎,𝑏(𝑥𝑙) =
±1 is called support vector. If we remove all samples from the data set but the support vectors, the SVM solution
does not change. The solution is supported by the support vectors.

Fig. 11.5: Support vectors are data points on the margin’s boundary.

Additional training samples alter the trained model only if they lie inside the margin! Thus, SVM classifiers are very
robust to changes in the training set.

11.2 Soft Margin SVMs

Hard margin SVMs only work if the two classes are linearly separable. This is rarely seen in practise because some
samples might be misslabeled or we do not have enough information to obtain clearly separated classes. In such cases
the quadratic optimization problem has no feasible point and, thus, no solution.

11.2.1 From Constraints to Loss Functions

To overcome non-existence of solutions we may relax the constraints. Instead of requiring all constraints to be fully
satisfied, we could measure the violation of constraints. Then we have two objectives: minimize constraint violation
andmaximizemargin. Remember that maximizing themargin is equivalent tominimizing the length of the separating
hyperplane’s normal vector. So we have to solve two minimization problems at once. The standard approach is to
minimize a weighted sum of both objective functions:

measure for contraint violation + 𝛼 |𝑎|2 → min
𝑎,𝑏

.

The parameter 𝛼 controls the trade-off between satisfaction of constraints and size of the margin. Small 𝛼 yields well
satisfied constraints (almost all samples on the correct side of the margin) but small margin (large |𝑎|). Large 𝛼 leads
to a wide margin but violated constraints (incorrect predictions on training set).

Fig. 11.6: Margin width and separation quality depend on the parameter 𝛼.

The measure for constraint violation is a typical loss functions, because for SVMs constraint violation is equivalent
to missclassification. A loss function measures the distance between a model’s predictions and true labels. An SVM
model’s prediction for input 𝑥 is the sign of 𝑎T 𝑥 + 𝑏, but the value 𝑎T 𝑥 + 𝑏 carries more information than just the
sign (that is, the predicted class): if |𝑎T 𝑥 + 𝑏| is large the prediction is very reliable, if it is small the sample is very
close to the decision boundary. We may interpret 𝑎T 𝑥 + 𝑏 as a score and, thus, as the model’s prediction.
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For a given loss function 𝐿 ∶ ℝ × {−1, 1} → ℝ we want to solve

1
𝑛

𝑛
∑
𝑙=1

𝐿(𝑎T 𝑥𝑙 + 𝑏, 𝑦𝑙) + 𝛼 |𝑎|2 → min
𝑎,𝑏

.

The loss function 𝐿 should be zero if and only if 𝑥𝑙 is on the correct side of the margin, that is, if and only if
𝑦𝑙 (𝑎T 𝑥𝑙 + 𝑏) ≥ 1. If 𝑥𝑙 is not on the correct side (on the wrong side or inside margin), then 𝐿 should be the larger
the farther away 𝑥𝑙 is from the correct side. In this case 1 − 𝑦𝑙 (𝑎T 𝑥𝑙 + 𝑏) is a reasonable choice. Both cases can be
expressed in one formula:

𝐿(𝑧, 𝑦) ∶= max{0, 1 − 𝑦 𝑧}.
This loss function is known as hinge loss.
The minimization problem of soft margin SVMs now reads

1
𝑛

𝑛
∑
𝑙=1

max{0, 1 − 𝑦𝑙 (𝑎T 𝑥𝑙 + 𝑏)} + 𝛼 |𝑎|2 → min
𝑎,𝑏

.

Soft margin SVMs still try to maximize the margin between both classes, but some samples are allowed to lie inside
the margin or even on the wrong side. So the margin is not a hard one, but in some sense soft.

11.2.2 Quadratic Optimization

The minimization problem above is not differentiable, but convex. There are several efficient algorithms for approx-
imating the minimizer (subgradient descent). Alternatively we may rewrite it as a quadratic optimization problem.
For this purpose we start with the quadratic hard margin problem

|𝑎|2 → min
𝑎∈ℝ𝑚

with constraints 𝑦𝑙 (𝑎T 𝑥𝑙 + 𝑏) ≥ 1

and introduce 𝑛 additional variables 𝑠1, … , 𝑠𝑛 (sometimes called slack variables) expressing the violation of the hard
margin constraints. Instead of the hard margin constraints we require

𝑦𝑙 (𝑎T 𝑥𝑙 + 𝑏) ≥ 1 − 𝑠𝑙 and 𝑠𝑙 ≥ 0.

Additional nonnegativity constraints ensure that satisfied hard margin constraints always yield a violation of zero
(instead of negative violation). Minimal constraint violation can be reached by minimizing the sum of all 𝑠𝑙. Because
we want to minimize |𝑎|, too, we minimize a weighted sum

1
𝑛

𝑛
∑
𝑙=1

𝑠𝑙 + 𝛼 |𝑎|2 → min
𝑠,𝑎,𝑏

with constraints 𝑦𝑙 (𝑎T 𝑥𝑙 + 𝑏) ≥ 1 − 𝑠𝑙, 𝑠𝑙 ≥ 0.

For each 𝑎 and 𝑏 constraints can be satisfied by choosing 𝑠1, … , 𝑠𝑛 large enough. The smallest feasible 𝑠𝑙 is

max{0, 1 − 𝑦𝑙 (𝑎T 𝑥𝑙 + 𝑏)}.

Thus, solving the minimization problem with respect to 𝑠1, … , 𝑠𝑛 (with fixed 𝑎 and 𝑏) yields the optimal value

min
𝑎,𝑏

1
𝑛

𝑛
∑
𝑙=1

max{0, 1 − 𝑦𝑙 (𝑎T 𝑥𝑙 + 𝑏)} + 𝛼 |𝑎|2.

This shows that the quadratic problem with slack variables is equivalent to the original non-differentiable problem.
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11.2.3 Another Reformulation

Applying some mathematical standard techniques for transforming optimization problems (Lagrange duality275) we
may derive another reformulation of the soft margin SVM minimization problem:

𝑛
∑
𝑙=1

𝑐𝑙 − 1
2

𝑛
∑
𝑙=1

𝑛
∑
𝜆=1

𝑦𝑙 𝑦𝜆 (𝑥T𝑙 𝑥𝜆) 𝑐𝑙 𝑐𝜆 → max
𝑐1,…,𝑐𝑛

with constraints
𝑛

∑
𝑙=1

𝑐𝑙 𝑦𝑙 = 0 and 0 ≤ 𝑐𝑙 ≤ 1
2 𝑛 𝛼, 𝑙 = 1, … , 𝑛.

This again is a quadratic optimization problem with linear constraints. From 𝑐1, … , 𝑐𝑛 we obtain the centered sepa-
rating hyperplane with maximum margin by (without proof):

𝑎 =
𝑛

∑
𝑙=1

𝑐𝑙 𝑦𝑙 𝑥𝑙, 𝑏 = 𝑦𝜆 −
𝑛

∑
𝑙=1

𝑐𝑙 𝑦𝑙 𝑥T𝑙 𝑥𝜆 for some 𝜆 with 0 < 𝑐𝜆 < 1
2 𝑛 𝛼 .

From duality theory one obtains the following interpretation of the 𝑐𝑙:
• If 𝑐𝑙 = 0, then 𝑥𝑙 is on the correct side of the margin.
• If 𝑐𝑙 = 1

2 𝑛 𝛼 , then 𝑥𝑙 is inside the margin or on the wrong side.

• If 0 < 𝑐𝑙 < 1
2 𝑛 𝛼 , then 𝑥𝑙 is on the boundary between margin and correct side.

11.2.4 Support Vectors

In the context of soft margin SVMs support vectors are samples 𝑥𝑙 which are not classified correctly or lie on the
margin’s boundary. With the above reformulation of the soft margin minimization problem support vectors are
characterized by 𝑐𝑙 > 0.

Fig. 11.7: In contrast to hard margin SVMs support vectors may lie inside the margin.

From the above reformulation we immediately see that the separating hyperplane (that is, 𝑎 and 𝑏) can be calculated
from the support vectors. Thus, all other training samples do not influence classification.
Given some input 𝑥 prediction is the sign of

𝑛
∑
𝑙=1

𝑐𝑙 𝑦𝑙 𝑥T𝑙 𝑥 −
𝑛

∑
𝑙=1

𝑐𝑙 𝑦𝑙 𝑥T𝑙 𝑥𝜆 + 𝑦𝜆 for some 𝜆 with 0 < 𝑐𝜆 < 1
2 𝑛 𝛼.

Most of the 𝑐𝑙 are zero. Only the (few) support vectors are required for calculating predictions. Thus, predictions
from SVMs are very fast.
Another remarkable feature of the reformulated minimization problem is that the minimization problem as well as
corresponding predictions only depend on inner products of (training) inputs, not on the 𝑥𝑙 themselves.
275 https://en.wikipedia.org/wiki/Duality_(optimization)
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11.3 Kernel SVMs

SVMs as introduced above only yield linear classifiers. With some simple modification, known as the kernel trick, we
may extend soft margin SVMs to nonlinear classification, where the decision boundary is defined by some nonlinear
function instead of a hyperplane.

11.3.1 Feature Transforms

When considering linear regression we applied functions 𝜑1, … , 𝜑𝜇 ∶ ℝ𝑚 → ℝ to the feature values and then applied
linear regression with linear functions to the transformed features to obtain nonlinear models. Exactly the same idea
applies to SVMs. Given a vector-valued function 𝜑 ∶ ℝ𝑚 → ℝ𝜇 with 𝜇 > 𝑚 we transform all inputs 𝑥 to 𝜑(𝑥) and
train a linear SVM classifier in ℝ𝜇.

Example
For 𝑚 = 3 polynomial features of degree 2 are given by

𝜑(𝑥) = ( 1√
2 , 𝑥(1), 𝑥(2), 𝑥(3), 1√

2 (𝑥(1))2 , 1√
2 (𝑥(2))2 , 1√

2 (𝑥(3))2 , 𝑥(1) 𝑥(2), 𝑥(1) 𝑥(3), 𝑥(2) 𝑥(3)) .

Why we use
√

2 here will become clear below.

Fig. 11.8: Data set and margin in original and in transformed space.

11.3.2 Kernels

Training and prediction with soft margin SVMs do not use the feature values directly but only inner products of the
inputs. Thus, the transform 𝜑 only appears in expressions

𝐾(𝑥, ̃𝑥) ∶= 𝜑(𝑥)T 𝜑( ̃𝑥).

Given some feature transform 𝜑 corresponding function 𝐾 ∶ ℝ𝑚 × ℝ𝑚 → ℝ is called a kernel.
Kernels can be interpreted as similarity measures because 𝐾 attains its maximum for 𝑥 = ̃𝑥 and 𝐾 is zero if 𝜑(𝑥)
is orthogonal to 𝜑( ̃𝑥).

Example
For 𝑚 = 3 polynomial features of degree 2 as above yield the kernel

𝐾(𝑥, ̃𝑥) = 1
2 (𝑥T ̃𝑥 + 1)2 .
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The
√

2 in the transform 𝜑 ensures that we get such a simple expression for the inner product of two transformed
feature vectors.

Working with kernels instead of feature transforms is much more efficient. In the above example computing
𝜑(𝑥)T 𝜑( ̃𝑥) requires two feature transforms and an inner product in ℝ10. Computing 𝐾(𝑥, ̃𝑥) only requires an
inner product in ℝ3 plus one addition and one multiplication in ℝ.
For general 𝑚 and polynomial features of degree 2 we would have 𝜇 = 𝑚 (𝑚+1)

2 + 𝑚 + 1. For 𝑚 = 1000 this yields
𝜇 = 501501. Thus, computing inner products in ℝ𝜇 is much more expensive than computing inner products in ℝ𝑚.
The kernel trick allows for working with feature transforms without additional computational efforts.

11.3.3 More Kernels

Next to inhomogeneous polynomial kernels

(𝑥T ̃𝑥 + 1)𝑝 with some 𝑝 ∈ ℕ.

and homogeneous polynomial kernels
(𝑥T ̃𝑥)𝑝 with some 𝑝 ∈ ℕ.

there are several other kernels used in practise. The most important one is the Gaussian kernel

e−𝛾 |𝑥−�̃�|2 with some 𝛾 > 0,

also known as radial basis function (RBF) kernel. Deriving corresponding feature transform requires some advanced
math, because the feature transformmaps inputs into an infinite dimensional space. Gaussian kernel can be interpreted
as an inhomogeneous polynomial kernel of infinite degree.
For fixed ̃𝑥 and 𝑚 = 2 the RBF kernel has a bell shaped graph with the bell centered at ̃𝑥. Predictions of an SVM
for inputs 𝑥 are the signs of

𝑛
∑
𝑙=1

𝑐𝑙 𝑦𝑙 𝐾(𝑥𝑙, 𝑥) + constant.

This function is a weighted sum of bells centered at 𝑥1, … , 𝑥𝑛 with weights zero for non-support vectors 𝑥𝑙.

11.4 SVMs with Scikit-Learn

With LinearSVC276 Scikit-Learn offers a fast and well scaling implementation of linear SVMs for classification.
For kernel SVMs there is SVC277.
SVC by default uses the RBF kernel with 𝛾 adapted to the variance of the training feature values. Weighting between
margin width and correct classification is controlled by the parameter C which is 1

𝛼 . After fitting, the classifier object
provides access to the support vectors and to the decision function.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors
import sklearn.svm as svm

rng = np.random.default_rng(0)

We generate synthetic data with two classes, which are not linearly separable.

276 https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
277 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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n0 = 100 # samples in class 0
n1 = 100 # samples in class 1

# generate two point clouds
X0a = rng.multivariate_normal([-1, -1], [[0.3, 0], [0, 0.3]], size=n0 // 2)
X0b = rng.multivariate_normal([1, 1], [[0.3, 0], [0, 0.3]], size=n0 // 2)
X1a = rng.multivariate_normal([1, -1], [[0.3, 0], [0, 0.3]], size=n1 // 2)
X1b = rng.multivariate_normal([-1, 1], [[0.3, 0], [0, 0.3]], size=n1 // 2)
X = np.concatenate((X0a, X0b, X1a, X1b))

# set labels
y0 = -np.ones(n0)
y1 = np.ones(n1)
y = np.concatenate((y0, y1))

# set plotting region
x0_min = X[:, 0].min() - 0.2
x0_max = X[:, 0].max() + 0.2
x1_min = X[:, 1].min() - 0.2
x1_max = X[:, 1].max() + 0.2

# plot data set
fig, ax = plt.subplots(figsize=(8,8))
ax.scatter(X[y == -1, 0], X[y == -1, 1], c='#ff0000', edgecolor='black')
ax.scatter(X[y == 1, 0], X[y == 1, 1], c='#00ff00', edgecolor='black')
ax.set_xlim(x0_min, x0_max)
ax.set_ylim(x1_min, x1_max)
ax.set_aspect('equal')
plt.show()
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Classification accuracy can be controlled via 𝛼 and 𝛾. The higher 𝛼 the wider the margin. The lower 𝛼 the more
accurate the classifications. Small 𝛾 yields smooth but possibly imprecise decision boundaries. For large 𝛾 decision
boundaries are fit more tightly to the training data, resulting in more accurate predictions on training data.
Small 𝛼 and/or large 𝛾 may result in overfitting.

alpha = 1
gamma = 1

svc = svm.SVC(C=1/alpha, gamma=gamma)
svc.fit(X, y)

fig, ax = plt.subplots(figsize=(10, 10))

# plot model (function values color-coded)
x0, x1 = np.meshgrid(np.linspace(x0_min, x0_max, 100), np.linspace(x1_min, x1_max,

↪ 100))
y_grid = svc.decision_function(np.stack((x0.reshape(-1), x1.reshape(-1)),␣

↪axis=1)).reshape(100, 100)
max_y = np.max(np.abs(y_grid))
cm = matplotlib.colors.LinearSegmentedColormap.from_list('ryg', ['#ff0000', '

↪#ffff00', '#00ff00'])
ax.contourf(x0, x1, y_grid, cmap=cm, levels=np.linspace(-max_y, max_y, 50))

# plot decision boundary and margin
ax.contour(x0, x1, y_grid, levels=[-1, 0, 1], linewidths=[1, 2, 1], colors=3*['

↪#808080']) (continues on next page)
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(continued from previous page)

# plot data set
ax.scatter(X[y == -1, 0], X[y == -1, 1], c='#ff0000', edgecolor='black')
ax.scatter(X[y == 1, 0], X[y == 1, 1], c='#00ff00', edgecolor='black')

# plot support vectors
X_supp = X[svc.support_]
ax.scatter(X_supp[:, 0], X_supp[:, 1], c='#ffffff', marker='o', s=3)

ax.set_xlim(x0_min, x0_max)
ax.set_ylim(x1_min, x1_max)
ax.set_aspect('equal')

plt.show()
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11.5 Support-Vector Regression (SVR)

Support vector regression is the little brother of support vector machines used for classification.

Self-study task
Get an overview of SVR from A tutorial on support vector regression278. Read section 1 (skip formulas in 1.3 and
1.4), subsections 2.1 and 2.2 (skipping formulas again), subsections 3.1 and 3.2, section 4. Then try to answer the
following questions:

• Which loss function is used for SVR formulated as a minimization problem?
• What type of minimization problem has to be solved (linear, quadratic, cubic, general nonlinear)?
• Is the term feature space used to denote the same thing in the paper and in our book?
• Can SVR cope with high-dimensional feature spaces (in our terminology) similar to SVM?

11.5.1 SVR with Scikit-Learn

Scikit-Learn implements SVR in SVR279.

import numpy as np
import matplotlib.pyplot as plt

import sklearn.svm as svm

rng = np.random.default_rng(0)

def truth(x):
return x + np.cos(2 * np.pi * x)

xmin = 0
xmax = 1
x = np.linspace(xmin, xmax, 100)

n = 100 # number of data points to generate
noise_level = 0.3 # standard deviation of artificial noise

# simulate data
X = (xmax - xmin) * rng.random((n, 1)) + xmin
y = truth(X).reshape(-1) + noise_level * rng.standard_normal(n)

# plot truth and data
fig, ax = plt.subplots()
ax.plot(x, truth(x), '-b', label='truth')
ax.plot(X.reshape(-1), y, 'or', markersize=3, label='data')
ax.legend()
plt.show()

278 https://alex.smola.org/papers/2004/SmoSch04.pdf
279 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
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When creating the SVR object we may provide the width of the 𝜀-tube containing data with no influence on the loss
function and we may select one of several predefined kernels. The regularization parameter can be specified, too.
Here we have to take care, because the higher the parameter the less regularization is applied.

epsilon = 0.4
alpha = 1e-1

# regression
svr = svm.SVR(epsilon=epsilon, kernel='rbf', C=1/alpha)
svr.fit(X, y)

# get hypothesis for plotting
y_svr = svr.predict(x.reshape(-1, 1))

# plot truth, data, hypothesis
fig, ax = plt.subplots()
ax.plot(x, truth(x), '-b', label='truth')
ax.plot(x, y_svr+epsilon, '-c', label='tube')
ax.plot(x, y_svr-epsilon, '-c')
ax.plot(X.reshape(-1), y, 'or', markersize=3, label='data')
ax.plot(x, y_svr, '-g', label='model')
ax.legend()
plt.show()
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If regularization is very weak, then the tube contains almost all data points. For higher regularization the fitted
hypothesis is smoother, but the tube does not contain all data points.
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CHAPTER

TWELVE

NAIVE BAYES CLASSIFICATION

Naive Bayes classifiers are a class of relatively simple and computationally efficient classifiers for multiclass classi-
fication tasks. They are based on Bayes’ theorem280 for conditional probabilities and on the (naive) assumption that
features are mutually independent281 if interpreted as random variables.
Given training samples (𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) with 𝑚-dimensional feature vectors 𝑥𝑙 and labels 𝑦𝑙 ∈ {1, … , 𝐶} we
want to train a model which assigns a label 𝑦0 to non-training input 𝑥0.

12.1 Principal Approach

The training samples can be regarded as 𝑛 realizations of a pair (𝑋, 𝑌 ) of random variables. Then a natural way to
select a label for the unlabeled feature vector 𝑥0 is to postulate

𝑃(𝑌 = 𝑖|𝑋 = 𝑥0) → max
𝑖∈{1,…,𝐶}

.

That is, we choose 𝑦0 to be the maximizer of 𝑃(𝑌 = 𝑖|𝑋 = 𝑥0) with respect to 𝑖.
The probabilities 𝑃(𝑌 = 𝑖|𝑋 = 𝑥0) are not accessible. But Bayes’ theorem states

𝑃(𝑌 = 𝑖|𝑋 = 𝑥0) =
𝑝𝑋|𝑌 =𝑖(𝑥0) 𝑃 (𝑌 = 𝑖)

𝑝𝑋(𝑥0)

for all 𝑖 ∈ {1, … , 𝐶}. Here, 𝑝𝑋|𝑌 =𝑖 is a density of the conditional probability measure 𝑃( ⋅ |𝑌 = 𝑖) and 𝑝𝑋 is the
marginal density with respect to 𝑋 of a density for 𝑃 . If all components of 𝑋 are discrete random variables, then
𝑝𝑋|𝑌 =𝑖(𝑥0) and 𝑝𝑋(𝑥0) can be replaced by the probabilities 𝑃(𝑋 = 𝑥0|𝑌 = 𝑖) and 𝑃(𝑋 = 𝑥0), respectively. If
𝑋 contains continuous components, then we have to work with densities.
The denominator 𝑝𝑋(𝑥0) in Bayes’ theorem does not depend on 𝑖 and, thus, does not influence maximization. Know-
ing 𝑝𝑋|𝑌 =𝑖(𝑥0) and 𝑃(𝑌 = 𝑖) for all 𝑖 we may compute

𝑝𝑋(𝑥0) =
𝐶

∑
𝑖=1

𝑝𝑋|𝑌 =𝑖(𝑥0) 𝑃 (𝑌 = 𝑖),

because the sum of all 𝑃(𝑌 = 𝑖|𝑋 = 𝑥0) has to be 1. The conditional density 𝑝𝑋|𝑌 =𝑖(𝑥0) and the probabily
𝑃(𝑌 = 𝑖) can be estimated from the training samples.
280 https://en.wikipedia.org/wiki/Bayes%27_theorem
281 https://en.wikipedia.org/wiki/Independence_(probability_theory)
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12.2 Estimating Label Probabilities

For estimating the probabilities 𝑃(𝑌 = 𝑖) with 𝑖 ∈ {1, … , 𝐶} there exist two standard approaches:
• If it is known from the context of the learning task, that all labels are equally likely, then

𝑃(𝑌 = 𝑖) = 1
𝐶

for all 𝑖 ∈ {1, … , 𝐶}.
• If there is no additional information about label distribution and if the training samples reflect the unknown
underlying distribution sufficiently accurate, then

𝑃(𝑌 = 𝑖) = ∣{𝑙 ∈ {1, … , 𝑛} ∶ 𝑦𝑙 = 𝑖}∣
𝑛

for all 𝑖 ∈ {1, … , 𝐶} is a reasonable joice.
For some learning tasks there might be additional information about label distribution available. Then a tailored
estimate for 𝑃(𝑌 = 𝑖) should be used.

12.3 Estimating Classes’ Feature Probabilities

To estimate the densities 𝑝𝑋|𝑌 =𝑖(𝑥0) in Bayes’ theorem above we assume that all components 𝑋(1), … , 𝑋(𝑚) of the
random variable 𝑋 are mutually independent. Usually this assumption is not satisfied, but it simplifies formulas and
makes computations more efficient. Thus, the classification approach discussed here is called naive.
Mutual independency yields

𝑝𝑋|𝑌 =𝑖(𝑥0) = 𝑝𝑋(1)|𝑌 =𝑖 (𝑥(1)
0 ) ⋯ 𝑝𝑋(𝑚)|𝑌 =𝑖 (𝑥(𝑚)

0 ) .

So we only have to estimate one-dimensional densities. To simplify notation we write 𝑝𝑈|𝑌 =𝑖 (𝑢0) as placeholder for
one of the 𝑚 densities.

12.3.1 Gaussian Probabilities

If 𝑈 is a continuous random variable we may assume that 𝑝𝑈|𝑌 =𝑖 is a Gaussian density with mean 𝜇𝑖 and standard
deviation 𝜎𝑖:

𝑝𝑈|𝑌 =𝑖(𝑢0) = 1
𝜎𝑖

√
2 𝜋 exp(−1

2 (𝑢0 − 𝜇𝑖
𝜎𝑖

)
2
)

Parameters 𝜇𝑖 and 𝜎𝑖 can be estimated from the training samples in class 𝑖 with standard techniques (see statistics
lecture).

12.3.2 Bernoulli Probabilities

If 𝑈 takes values in {0, 1} then 𝑝𝑈|𝑌 =𝑖(𝑢0) in Bayes’ theorem has to be replaced by 𝑃(𝑈 = 𝑢0|𝑌 = 𝑖) with

𝑃(𝑈 = 0|𝑌 = 𝑖) = 1 − 𝑝𝑖 and 𝑃(𝑈 = 1|𝑌 = 𝑖) = 𝑝𝑖.

The parameter 𝑝𝑖 can be estimated from the training samples in class 𝑖 by counting the samples with value 1 for the
feature under consideration.

378 Chapter 12. Naive Bayes Classification



Data Science and Artificial Intelligence for Undergraduates
Volume 2: Data Visualization, Supervised Learning

12.3.3 Multinomial Probabilities

If 𝑋(1), … , 𝑋(𝑚) count the occurrences of 𝑚 possible events for several independent trials of an experiment, then
the corresponding random vector follows a multinomial distribution282 with parameters 𝑝1, … , 𝑝𝑚 (probabilities of
events) and 𝜈 (number of trials):

𝑃(𝑋 = 𝑥0) = 𝜈!
𝑥(1)

0 ! ⋯ 𝑥(𝑚)
0 !

𝑝𝑥(1)
0

1 ⋯ 𝑝𝑥(𝑚)
0𝑚 ,

where 𝑝1 + ⋯ + 𝑝𝑚 = 1.
A typical machine learning application with multinomially distributed inputs is language processing. Each feature
counts the number of occurrences of some word in a text. Based on such word counts models then can be trained to
solve classification tasks.
Note that components of a multinomially distributed random vector are not independent. Thus, multinomial prob-
abilities do not fit into the naive Bayes framework. Nonetheless multinomial naive Bayes is a fixed term, because
non-independence does not prevent us from writing probabilities as products with each factor depending only on one
component of the random vector. To see this we introduce probabilities 𝑝𝑖,1, … , 𝑝𝑖,𝑚 for each class 𝑖. Then

𝑃(𝑋 = 𝑥0|𝑌 = 𝑖) = 𝜈!
𝑥(1)

0 ! ⋯ 𝑥(𝑚)
0 !

𝑝𝑥(1)
0

𝑖,1 ⋯ 𝑝𝑥(𝑚)
0

𝑖,𝑚

with 𝜈 = 𝑥(1)
0 + ⋯ + 𝑥(𝑚)

0 . The factor

𝑐(𝑥0) ∶=
(𝑥(1)

0 + ⋯ + 𝑥(𝑚)
0 )!

𝑥(1)
0 ! ⋯ 𝑥(𝑚)

0 !
only depends on the sample 𝑥0, but neither on the probabilities 𝑝𝑖,𝑘 nor on the class 𝑖. Thus, we have the typical
product structure

𝑃(𝑋 = 𝑥0|𝑌 = 𝑖) =
𝑚

∏
𝑘=1

𝑐(𝑥0) 1
𝑚 𝑝𝑥(𝑘)

0
𝑖,𝑘

of the naive Bayes approach, although components of 𝑋 are not independent. Moreover, we do not have to compute
𝑐(𝑥0) explicitely. It’s a scaling factor which can be computed subsequently from the fact that all probabilities have to
sum to 1 (cf. 𝑝𝑋(𝑥0) above).
The 𝑝𝑖,𝑘 can be estimated from training data by counting the occurences of event 𝑘 in class 𝑖. Denoting the number
of occurrences by 𝜈𝑖,𝑘 and the number of samples in class 𝑖 by 𝑛𝑖 the estimate reads

𝑝𝑖,𝑘 = 𝜈𝑖,𝑘
𝑛𝑖

.

If 𝜈𝑖,𝑘 is zero for some event, which might by the case for small training set size, then 𝑝𝑖,𝑘 is estimated to be zero.
But if 𝑝𝑖,𝑘 is zero for some event 𝑘, then due to the product structure the whole probability 𝑃(𝑋 = 𝑥0|𝑌 = 𝑖) will
become zero. Thus, classes for which some event never occurres in the training data are never used as labels by the
model.

Note: The problemwith zero probabilities stems from estimation. The exact probabilities always are strictly positive,
else we would count occurrences of events having zero probability. Due to estimating probabilites from incomplete
data we may estimate probabilities to be zero although they aren’t.

To avoid such failure either sufficiently large training sets have to be used or event counts have to be set to at least
one for each event and each class. An typical estimate for 𝑝𝑖,𝑘 which prevents problems with missing events is

𝑝𝑖,𝑘 = 𝜈𝑖,𝑘 + 1
𝑛𝑖 + 𝑚 ,

known as Laplace smoothing. The total number of samples per class is increased by 𝑚. The idea here is that per
feature we add one training sample showing count 1 for this feature. To prevent zero counts for all features we have
to add 𝑚 samples.
282 https://en.wikipedia.org/wiki/Multinomial_distribution
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12.3.4 Kernel Density Estimates

If the underlying probability model is not know in advance, the densities 𝑝𝑋(𝑘)|𝑌 =𝑖 can be estimated from training
data using kernel density estimation.

Self-study task
Read about kernel density estimation at Wikipedia283 (introduction, definition, example).

12.4 Naive Bayes Classification with Scikit-Learn

Different variants of naive Bayes classification are implemented in Scikit-Learns’s naive_bayes module284.

12.5 Related Projects

• Forged Banknotes (page 475)
– Naive Bayes Classification (page 481) (project)

283 https://en.wikipedia.org/wiki/Kernel_density_estimation
284 https://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes
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CHAPTER

THIRTEEN

TEXT CLASSIFICATION

Up to now we only considered classification tasks with numerical features. But the very important field of text analysis
and classification lacks such numerical features. Here we discuss relevant points to consider when using texts as model
inputs. To avoid too much theory we immediately apply everything to a real-world example.

• Preprocessing Text Data (page 381)
• Training (page 401)

Related projects:
• Blogs (page 489)

– Blog Author Classification (Training) (page 489)
– Blog Author Classification (Test) (page 492)

13.1 Preprocessing Text Data

Wewant to classify blog posts by age and gender of the post’s author. Training data is available from The Blog Author-
ship Corpus285, containing 650000 posts from 19000 blogs. Data may be freely used for non-commercial research
purposes. Data was collected for research published in Effects of Age and Gender on Blogging286 (J. Schler, M.
Koppel, S. Argamon, J. Pennebaker, Proceedings of 2006 AAAI Spring Symposium on Computational Approaches
for Analyzing Weblogs).
In addition to usual preprocessing and model training we will discuss how to convert text data to numerical features
and how to cope with very high dimensional feature spaces. Models will be based on word counts. This first chapter
contains everything we need to do before counting words. The second chapter discusses how to count words and how
to use word counts for training machine learning models.

data_path = '/data/datasets/blogs/'

13.1.1 Getting and Restructuring the Data Set

Data comes as ZIP file from the above mentioned website (313 MB). The ZIP file contains one XML287 file per
blog (uncompressed size is 808 MB). An XML file is a text file containing some markup code (similar to HTML).
Information about a blog’s author is provided in the file name.
285 https://u.cs.biu.ac.il/~koppel/BlogCorpus.htm
286 https://u.cs.biu.ac.il/~schlerj/schler_springsymp06.pdf
287 https://en.wikipedia.org/wiki/XML
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Extracting Blog Information

File names have the format blog_id.gender.age.industry.astronomical_sign.xml. We create a
data frame containing all the information but astronomical signs and save it to a CSV file.

import pandas as pd
import numpy as np
import zipfile
import re
import langdetect

with zipfile.ZipFile(data_path + 'blogs.zip') as zf:
file_names = zf.namelist()

print(file_names[:5])

['blogs/', 'blogs/1000331.female.37.indUnk.Leo.xml', 'blogs/1000866.female.17.
↪Student.Libra.xml', 'blogs/1004904.male.23.Arts.Capricorn.xml', 'blogs/
↪1005076.female.25.Arts.Cancer.xml']

XML files are in a subdirectory and the subdirectory is listed by zf.namelist(), too.

blog_ids = []
genders = [] # 'm' if male, 'f' if female
ages = []
industries = []

for file_name in file_names:

if file_name.split('.')[-1] != 'xml':
print('skipping', file_name)
continue

blog_id, gender, age, industry, astro = file_name.split('/')[-1].split('.
↪')[0:-1]

blog_ids.append(int(blog_id))

if gender == 'male':
genders.append('m')

elif gender == 'female':
genders.append('f')

else:
print('unknown gender:', gender)

ages.append(int(age))

industries.append(industry)

blogs = pd.DataFrame({'gender': genders, 'age': ages, 'industry': industries},␣
↪index=blog_ids)

skipping blogs/

blogs

gender age industry
1000331 f 37 indUnk

(continues on next page)
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(continued from previous page)

1000866 f 17 Student
1004904 m 23 Arts
1005076 f 25 Arts
1005545 m 25 Engineering
... ... ... ...
996147 f 36 Telecommunications
997488 m 25 indUnk
998237 f 16 indUnk
998966 m 27 indUnk
999503 m 25 Internet

[19320 rows x 3 columns]

blogs['industry'] = blogs['industry'].str.replace('indUnk', 'unknown')

blogs

gender age industry
1000331 f 37 unknown
1000866 f 17 Student
1004904 m 23 Arts
1005076 f 25 Arts
1005545 m 25 Engineering
... ... ... ...
996147 f 36 Telecommunications
997488 m 25 unknown
998237 f 16 unknown
998966 m 27 unknown
999503 m 25 Internet

[19320 rows x 3 columns]

blogs.to_csv(data_path + 'blogs.csv')

Converting XML Files to one CSV File

We would like to have a data frame containing all blog posts. This data frame can easily be modified (data prepro-
cessing!) and saved to a CSV file for future use.
Reading XML files can be done with themodule xml.etree.ElementTree288 from the standard python library.
Usage is relatively simple but the parser gets stuck at almost all files. Although file extension is XML the files do
not contain valid XML. Most files contain characters not allowed in XML files and some files even contain HTML
fragments, which make the parser fail. Thus, we have to parse files manually.
The structure of the files is as follows:

<Blog>
<date>DAY,MONTH_NAME,YEAR</date>
<post>TEXT_OF_POST</post>
...
<date>DAY,MONTH_NAME,YEAR</date>
<post>TEXT_OF_POST</post>
</Blog>

When parsing the files we have to take into account the following observations:
288 https://docs.python.org/3/library/xml.etree.elementtree.html
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• Files are littered with random white space characters.
• Enconding is unknown and may vary from file to file.
• Files contain non-printable characters (00h-1Fh) other than line breaks (could be an encoding issue).
• Links in original posts are marked by urlLink (not urllink as indicated in the data set description).

White space can be removed with str.strip(). At least some files are not Unicode encoded. Interpreting non-
Unicode files as Unicode may lead to errors. Using a 1-byte-encoding like ASCII or ISO 8859-1 also works for
UTF-8 files, because each byte is interpreted as some character. Using a 1-byte-encoding for UTF-8 files may result
in non-printable characters, which have to be removed before further processing of the text data. Removing all non-
printable characters also removes line breaks. But line breaks do not matter for our classification task. So that’s not
a problem. The link marker urlLink can be savely removed. Possible URLs following the marker are hard to
remove. For the moment we keep them.
Months in the date field are given by name, mostly in English but also in some other languages. To translate month
names to numbers we use a dictionary. To get the dictionary we may start with English month names and then add
more names one by one, if program stops with key error. Here is a list of languages and one XML file per language:

language file
French 1022086.female.17.Student.Cancer.xml
Spanish 1162265.male.17.Student.Aries.xml
Portuguese 1253219.female.27.indUnk.Sagittarius.xml
German 1366984.female.25.Technology.Aries.xml
Estonian 1405766.male.24.HumanResources.Scorpio.xml
Italian 1847277.female.24.Student.Gemini.xml
Finnish 2042296.female.25.Student.Sagittarius.xml
Dutch 3032299.female.33.Non-Profit.Scorpio.xml
Polish 3340219.male.45.Technology.Virgo.xml
Romanian 3559973.female.36.Manufacturing.Aries.xml
Swedish 4145017.male.23.BusinessServices.Libra.xml
Russian 4230660.female.13.Student.Virgo.xml
Croatian 817097.female.26.Student.Taurus.xml
Norwegian 887044.female.23.indUnk.Pisces.xml

Some dates are missing with ,, in the date field. We set such dates to 0/0/0.
Looking at some of the XML files with non-English month names we see that there are some post written in languages
other than English. The data set providers only checked whether a blog (not a post) contains at least 200 common
English words. Thus, we have to remove some posts. Language detection can be done with the langdetect
module289.

# cell execution may take several hours due to language detection

month_num = {'january': 1, 'february': 2, 'march': 3, 'april': 4, 'may': 5, 'june
↪': 6,

'july': 7, 'august': 8, 'september': 9, 'october': 10, 'november':␣
↪11, 'december': 12,

# French
'janvier': 1, 'mars': 3, 'avril': 4, 'mai': 5, 'juin': 6,
'juillet': 7, 'septembre': 9, 'octobre': 10, 'novembre': 11,
# Spanish
'enero': 1, 'febrero': 2, 'marzo': 3, 'abril': 4, 'mayo': 5, 'junio

↪': 6,
'julio': 7, 'agosto': 8, 'septiembre': 9, 'octubre': 10, 'noviembre

↪': 11, 'diciembre': 12,
# Portuguese
'janeiro': 1, 'fevereiro': 2, 'maio': 5, 'junho': 6,

(continues on next page)
289 https://github.com/Mimino666/langdetect
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(continued from previous page)

'julho': 7, 'agosto': 8, 'setembro': 9, 'outubro': 10, 'novembro':␣
↪11, 'dezembro': 12,

# German
'januar': 1, 'februar': 2, 'märz': 3, 'april': 4, 'mai': 5, 'juni':␣

↪6,
'juli': 7, 'august': 8, 'september': 9, 'oktober': 10, 'november':␣

↪11, 'dezember': 12,
# Estonian
'jaanuar': 1, 'aprill': 4, 'juuni': 6, 'juuli': 7,
# Italian
'giugno': 6, 'luglio': 7, 'ottobre': 10,
# Finnish
'toukokuu': 5, 'elokuu': 8,
# Dutch
'maart': 3, 'mei': 5, 'augustus': 8,
# Polish
'maj': 5, 'czerwiec': 6, 'lipiec': 7,
# Romanian
'ianuarie': 1, 'februarie': 2, 'iulie': 7, 'septembrie': 9,

↪'noiembrie': 11,
# Swedish
'augusti': 8,
# Russian
'avgust': 8,
# Croatian
'lipanj': 6, 'kolovoz': 8,
# Norwegian
'mars': 3, 'desember': 12,
# unknown
'unknown': 0}

blog_ids = []
days = []
months = []
years = []
texts = []
langs = []

with zipfile.ZipFile(data_path + 'blogs.zip') as zf:

for file_name in zf.namelist():

if file_name.split('.')[-1] != 'xml':
print('skipping', file_name)
continue

#print(file_name)

blog_id = int(file_name.split('/')[-1].split('.')[0])

with zf.open(file_name) as f:
xml = f.read().decode(encoding='iso-8859-1')

xml_posts = xml.split('<date>')[1:]

for xml_post in xml_posts:

day, month, year = xml_post[:(xml_post.find('</date>'))].split(',')
if len(day) == 0:

day = '0'

(continues on next page)
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if len(month) == 0:
month = 'unknown'

if len(year) == 0:
year = '0'

text = xml_post[(xml_post.find('<post>') + 6):(xml_post.find('</post>
↪'))]

text = re.sub(r'[\x00-\x1F]+', ' ', text) # non-printable␣
↪characters

text = text.replace('&nbsp;', ' ') # HTML entity for protected␣
↪spaces

text = text.replace('urlLink', '') # link marker
text = text.strip()

try:
lang = langdetect.detect(text)

except langdetect.LangDetectException:
lang = ''

if len(text) > 0:
blog_ids.append(blog_id)
days.append(int(day))
months.append(month_num[month.lower()])
years.append(int(year))
texts.append(text)
langs.append(lang)

posts = pd.DataFrame(data={'blog_id': blog_ids, 'day': days, 'month': months,
↪'year': years,

'text': texts, 'lang': langs})
posts

skipping blogs/

blog_id day month year \
0 1000331 31 5 2004
1 1000331 29 5 2004
2 1000331 28 5 2004
3 1000331 28 5 2004
4 1000331 28 5 2004
... ... ... ... ...
676023 999503 4 7 2004
676024 999503 3 7 2004
676025 999503 2 7 2004
676026 999503 1 7 2004
676027 999503 1 7 2004

text lang
0 Well, everyone got up and going this morning. ... en
1 My four-year old never stops talking. She'll ... en
2 Actually it's not raining yet, but I bought 15... en
3 Ha! Just set up my RSS feed - that is so easy!... en
4 Oh, which just reminded me, we were talking ab... en
... ... ...
676023 Today we celebrate our independence day. In... en
676024 Ugh, I think I have allergies... My nose has ... en
676025 "Science is like sex; occasionally something p... en
676026 Dog toy or marital aid I managed 10/14 on th... en
676027 I had a dream last night about a fight when I ... en

(continues on next page)
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[676028 rows x 6 columns]

print(len(posts))

posts = posts.loc[posts['lang'] == 'en', :]
posts = posts.drop(columns=['lang'])

print(len(posts))

676028
653764

posts.to_csv(data_path + 'posts.csv')

posts = pd.read_csv(data_path + 'posts.csv', index_col=0)

posts

blog_id day month year \
0 1000331 31 5 2004
1 1000331 29 5 2004
2 1000331 28 5 2004
3 1000331 28 5 2004
4 1000331 28 5 2004
... ... ... ... ...
676023 999503 4 7 2004
676024 999503 3 7 2004
676025 999503 2 7 2004
676026 999503 1 7 2004
676027 999503 1 7 2004

text
0 Well, everyone got up and going this morning. ...
1 My four-year old never stops talking. She'll ...
2 Actually it's not raining yet, but I bought 15...
3 Ha! Just set up my RSS feed - that is so easy!...
4 Oh, which just reminded me, we were talking ab...
... ...
676023 Today we celebrate our independence day. In...
676024 Ugh, I think I have allergies... My nose has ...
676025 "Science is like sex; occasionally something p...
676026 Dog toy or marital aid I managed 10/14 on th...
676027 I had a dream last night about a fight when I ...

[653702 rows x 5 columns]
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13.1.2 Exploring the Data Set

Now we have two data frames: blogs and posts. We should have a look at the data before tackling the learning
task.

print('blogs:', len(blogs))
print('posts:', len(posts))

blogs: 19320
posts: 653702

Exploring Blog Authors

blogs.groupby('gender').count()

age industry
gender
f 9660 9660
m 9660 9660

The data set is well balanced with respect to blog author’s gender.

blogs.groupby('age').count()

gender industry
age
13 690 690
14 1246 1246
15 1771 1771
16 2152 2152
17 2381 2381
23 2026 2026
24 1895 1895
25 1620 1620
26 1340 1340
27 1205 1205
33 464 464
34 378 378
35 338 338
36 288 288
37 259 259
38 171 171
39 152 152
40 145 145
41 139 139
42 127 127
43 116 116
44 94 94
45 103 103
46 72 72
47 71 71
48 77 77

blogs['age'].hist(bins=np.arange(13, 49)-0.5)
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<Axes: >

We have three age groups of different size:

print(np.count_nonzero((blogs['age'] < 20).to_numpy()))
print(np.count_nonzero(((blogs['age'] > 20) & (blogs['age'] < 30)).to_numpy()))
print(np.count_nonzero((blogs['age'] > 30).to_numpy()))

8240
8086
2994

According to the data set description gender should be balanced in each age group.

blogs['age_group'] = pd.cut(blogs['age'], bins=[0, 20, 30, 100])

blogs.groupby(['age_group', 'gender']).count()

/tmp/ipykernel_19434/2441672544.py:3: FutureWarning: The default of␣
↪observed=False is deprecated and will be changed to True in a future version␣
↪of pandas. Pass observed=False to retain current behavior or observed=True to␣
↪adopt the future default and silence this warning.
blogs.groupby(['age_group', 'gender']).count()

age industry
age_group gender
(0, 20] f 4120 4120

m 4120 4120
(20, 30] f 4043 4043

m 4043 4043

(continues on next page)

13.1. Preprocessing Text Data 389



Data Science and Artificial Intelligence for Undergraduates
Volume 2: Data Visualization, Supervised Learning
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(30, 100] f 1497 1497
m 1497 1497

blogs.groupby('industry').count()['age'].sort_values(ascending=False)

industry
unknown 6827
Student 5120
Education 980
Technology 943
Arts 721
Communications-Media 479
Internet 397
Non-Profit 372
Engineering 312
Government 236
Law 197
Consulting 191
Science 184
Marketing 180
BusinessServices 163
Publishing 150
Advertising 145
Religion 139
Telecommunications 119
Military 116
Banking 112
Accounting 105
Fashion 98
Tourism 94
HumanResources 94
Transportation 91
Sports-Recreation 90
Manufacturing 87
Architecture 69
Chemicals 62
Biotech 57
LawEnforcement-Security 57
RealEstate 55
Museums-Libraries 55
Construction 55
Automotive 54
Agriculture 36
InvestmentBanking 33
Environment 28
Maritime 17
Name: age, dtype: int64

Industry is available for about 60 per cent of the blog authors.
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Exploring Blog Posts

Although for our classification task dates of posts are irrelevant, we have a look at them. Looking at irrelevant columns
yields a better feeling for the data set and its reliability.

posts.groupby('year').count()

blog_id day month text
year
0 23 23 23 23
1999 68 68 68 68
2000 866 866 866 866
2001 5427 5427 5427 5427
2002 21772 21772 21772 21772
2003 100199 100199 100199 100199
2004 525318 525318 525318 525318
2005 6 6 6 6
2006 23 23 23 23

The data set providers scraped the data in August 2004. Thus, there should be no newer posts. Since we only are
interested in post texts, we do not care about this inconsistency here.

posts.groupby('month').count()

blog_id day year text
month
0 23 23 23 23
1 21812 21812 21812 21812
2 24663 24663 24663 24663
3 29099 29099 29099 29099
4 33166 33166 33166 33166
5 75275 75275 75275 75275
6 125797 125797 125797 125797
7 154842 154842 154842 154842
8 125919 125919 125919 125919
9 13051 13051 13051 13051
10 16296 16296 16296 16296
11 16525 16525 16525 16525
12 17234 17234 17234 17234

Themaximum in summer months is not because people write more blog posts in summer. Blogging becamemore and
more popular from month to month and posts had been collected till August 2004. Including posts from September
2004 we (presumable) would get September counts higher than August counts. Slight drop from July to August could
be caused by incomplete data for August 2004.

posts.groupby('day').count()['blog_id'].plot()

<Axes: xlabel='day'>
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There are more posts at the beginning of a month than at a month’s end. Counts for 31st are much lower because not
every month has a 31st.
We should have a look at class balancing. We already know that gender is well balanced and age is not if we count
on a per-blog basis. But since we want to classify blog posts (not complete blogs) by gender and age of the author we
have to consider class sizes on a per post-basis.

posts_per_blog = posts.groupby('blog_id')['day'].count()

blogs['posts'] = 0
blogs.loc[posts_per_blog.index, 'posts'] = posts_per_blog

blogs.groupby(['gender', 'age_group'])['posts'].sum()

/tmp/ipykernel_19434/1016594775.py:6: FutureWarning: The default of␣
↪observed=False is deprecated and will be changed to True in a future version␣
↪of pandas. Pass observed=False to retain current behavior or observed=True to␣
↪adopt the future default and silence this warning.
blogs.groupby(['gender', 'age_group'])['posts'].sum()

gender age_group
f (0, 20] 110387

(20, 30] 155425
(30, 100] 56786

m (0, 20] 115255
(20, 30] 152739
(30, 100] 63110

Name: posts, dtype: int64

In the highest age group gender is somewhat unbalanced, but not much. An even more accurate measure of class size
(data per class) is the cummulated text length per class.
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posts['length'] = posts['text'].str.len()
chars_per_blog = posts.groupby('blog_id')['length'].sum()

blogs['chars'] = 0
blogs.loc[chars_per_blog.index, 'chars'] = chars_per_blog

blogs.groupby(['gender', 'age_group'])['chars'].sum()

/tmp/ipykernel_19434/1431541158.py:7: FutureWarning: The default of␣
↪observed=False is deprecated and will be changed to True in a future version␣
↪of pandas. Pass observed=False to retain current behavior or observed=True to␣
↪adopt the future default and silence this warning.
blogs.groupby(['gender', 'age_group'])['chars'].sum()

gender age_group
f (0, 20] 117123221

(20, 30] 179750611
(30, 100] 74878617

m (0, 20] 119793206
(20, 30] 175919412
(30, 100] 72894990

Name: chars, dtype: int64

Here balancing of gender looks better, but again the highest age group is much smaller than the other two age groups.

13.1.3 Preprocessing Text for Counting Words

Machine learning algorithms expect numbers as inputs. So we have to convert strings to vectors of numbers. There
exist different conversion techniques, some advanced ones like Word2vec290 and some simpler ones like the bag of
words approach. The latter assigns each word in a corpus a position in a vector and represents a string by counting
the occurrences of each word. The vector representation of a string is the vector containing all word counts.
Input features are word counts and length of feature vectors equals the number of different words in a dictionary.
Thus, feature vectors are extremely long and contain zeros almost everywhere. Vectors containing zeros almost
everywhere are called sparse vectors. A sparse vectors is not stored as array, but as list of index-value pairs for non-
zero components only. Memory consumption is not given by vector length but by the number of non-zero components.
Scikit-Learn and NumPy support sparse vectors (and matrices) and automatically choose a suitable data type where
appropriate.
The dictionary (and, thus, the feature space dimension) is determined from the training set. All words contained in
the training set form the dictionary. Usually one leaves out words occurring only in very few training samples or
words occurring in almost all training samples. From the former a model cannot learn something useful due to lack
of samples. The latter do not contain useful information to discriminate between different classes.
Before converting strings to vectors some preprocessing is necessary. At least punctuation and other special characters
should be removed. Other preprocessing steps may include:

• Stop word removal: Remove common words like ‘and’, ‘or’, ‘have’. There exist list of stop words for most
languages. Stop word removal has to be used with care, because some common words may contain important
information, like ‘not’ for instance.

• Stemming: Remove word endings like plural ‘s’ or ‘ing’ to get word stems. There exist many different stemming
algorithms. Results are sometimes incorrect. For instance, ‘thus’ is usually stemmed to ‘thu’.

• Lemmatization: Get the base form of a word. It’s a more intelligent form of stemming, but requires lots of
computation time. Again, there exist many different algorithms.

290 https://en.wikipedia.org/wiki/Word2vec
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Stop words, stemming, and lemmatization are, for instance, implemented in the nltk Python package (Natural
Language Toolkit)291. The subject is known as natural language processing.

Removing Punctuation and other Special Characters

We remove all characters but A-Z, numbers, single spaces, and basic punctuation (!, ?, dot, comma, aposthrophe).
Regular expressions292 allow for efficient removal.

posts['text'] = posts['text'].str.replace(r"[^\w ,\.\?!']", '', regex=True)

posts['text'] = posts['text'].str.replace(r'\s+', ' ', regex=True)

posts['text']

0 Well, everyone got up and going this morning. ...
1 My fouryear old never stops talking. She'll sa...
2 Actually it's not raining yet, but I bought 15...
3 Ha! Just set up my RSS feed that is so easy! W...
4 Oh, which just reminded me, we were talking ab...

...
676023 Today we celebrate our independence day. In ho...
676024 Ugh, I think I have allergies... My nose has b...
676025 Science is like sex occasionally something pra...
676026 Dog toy or marital aid I managed 1014 on this ...
676027 I had a dream last night about a fight when I ...
Name: text, Length: 653702, dtype: object

Maybe some texts are empty now. We should remove them.

print(len(posts))

posts = posts.loc[posts.loc[:, 'text'] != '', :]

print(len(posts))

653702
653702

Lemmatization

To reduce dictionary size and increase chances for good classification results we use lemmatization. For instance we
want to count ‘child’ and ‘children’ as one and the same word. We choose the WordNetLemmatizer293 of NLTK.
WordNet294 is a database provided by Princeton University which contains relations between English words.
The WordNetLemmatizer takes a word and looks it up in the data base. If it is found there, it returns the base
form, else the original word is returned. WordNet data base can be searched online295, too. Searching WordNet
database with NLTK or online includes some stemming-like preprocessing steps296.

import nltk

Before first use of WordNetLemmatizer we have to download the database.
291 https://www.nltk.org
292 https://docs.python.org/3/library/re.html#regular-expression-syntax
293 https://www.nltk.org/api/nltk.stem.wordnet.html
294 https://wordnet.princeton.edu
295 http://wordnetweb.princeton.edu/perl/webwn
296 https://wordnet.princeton.edu/documentation/morphy7wn
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nltk.download('wordnet')

[nltk_data] Downloading package wordnet to
[nltk_data] /var/lib/u21302575108/nltk_data...
[nltk_data] Package wordnet is already up-to-date!

True

We have to create a WordNetLemmatizer object and then call its lemmatize method.

lemmatizer = nltk.stem.WordNetLemmatizer()

lemmatizer.lemmatize('child')

'child'

lemmatizer.lemmatize('children')

'child'

Note that the WordNet lemmatizer only works for lower case words (a not well documented fact).

lemmatizer.lemmatize('Children')

'Children'

Simply calling WordNetLemmatizer with some word may yield unexpected results. Given the sentence ‘He is
killing him.’ we would expect ‘killing’ to be lemmatized to ‘kill’.

lemmatizer.lemmatize('killing')

'killing'

The problem here is that ‘killing’ is the base form of a noun (‘That resulted in a killing.’) andWordNetLemmatizer
by default looks for nouns. A second argument to lemmatize modifies the default behavior.

lemmatizer.lemmatize('killing', pos=nltk.corpus.reader.wordnet.VERB)

'kill'

The abbreviation ‘pos’ stands for ‘part of speech’. The module nltk.corpus.reader.wordnet contains
some WordNet related functionality. It defines some constants, for instance. Passing nltk.corpus.reader.
wordnet.NOUN to pos (the default) tells the lemmatizer that the word is a noun. Passing nltk.corpus.
reader.wordnet.VERB tells it that the word is a verb. Further options are nltk.corpus.reader.
wordnet.ADJ (adjectives) and nltk.corpus.reader.wordnet.ADV (adverbs).

print(nltk.corpus.reader.wordnet.NOUN)
print(nltk.corpus.reader.wordnet.VERB)
print(nltk.corpus.reader.wordnet.ADJ)
print(nltk.corpus.reader.wordnet.ADV)
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n
v
a
r

Although these are simple strings, we should use the constants. If implementation of NLTK oder WordNet changes,
our code is more likely to remain working then.
The question now is: How to obtain POS information? NLTK implements several POS taggers. If you do not want to
decide which one to choose, use the one recommended by NLTK by simply calling pos_tag(). This function takes
a list of words and punctuation symbols as argument. Such a list can be generated by calling word_tokenize().
Again several tokenization algorithms are available and word_tokenize() uses the recommended one.
To use tokenization and tagging we have to download some NLTK data. The data to download may change if NLTK
recommends other algorithms in future. But corresponding methods will show a warning if required data is not
available and the warning message contains the code for downloading.

nltk.download('punkt') # for tokenization
nltk.download('averaged_perceptron_tagger') # for POS tagging

[nltk_data] Downloading package punkt to
[nltk_data] /var/lib/u21302575108/nltk_data...
[nltk_data] Package punkt is already up-to-date!
[nltk_data] Downloading package averaged_perceptron_tagger to
[nltk_data] /var/lib/u21302575108/nltk_data...
[nltk_data] Package averaged_perceptron_tagger is already up-to-
[nltk_data] date!

True

Tokenization and tagging (in theory) could be implemented as follows.

posts['tokenized'] = None
posts['tagged'] = None

for idx in posts.index:
posts.loc[idx, 'tokenized'] = nltk.tokenize.word_tokenize(posts.loc[idx, 'text

↪'])
posts.loc[idx, 'tagged'] = nltk.tag.pos_tag(posts.loc[idx, 'tokenized'])

---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[39], line 5

2 posts['tagged'] = None
4 for idx in posts.index:

----> 5 posts.loc[idx, 'tokenized'] = nltk.tokenize.word_tokenize(posts.
↪loc[idx, 'text'])

6 posts.loc[idx, 'tagged'] = nltk.tag.pos_tag(posts.loc[idx,
↪'tokenized'])

File /opt/conda/envs/python3/lib/python3.11/site-packages/pandas/core/indexing.
↪py:849, in _LocationIndexer.__setitem__(self, key, value)

846 self._has_valid_setitem_indexer(key)
848 iloc = self if self.name == "iloc" else self.obj.iloc

--> 849 iloc._setitem_with_indexer(indexer, value, self.name)

File /opt/conda/envs/python3/lib/python3.11/site-packages/pandas/core/indexing.
↪py:1835, in _iLocIndexer._setitem_with_indexer(self, indexer, value, name)
1832 # align and set the values

(continues on next page)
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1833 if take_split_path:
1834 # We have to operate column-wise

-> 1835 self._setitem_with_indexer_split_path(indexer, value, name)
1836 else:
1837 self._setitem_single_block(indexer, value, name)

File /opt/conda/envs/python3/lib/python3.11/site-packages/pandas/core/indexing.
↪py:1891, in _iLocIndexer._setitem_with_indexer_split_path(self, indexer,␣
↪value, name)
1886 if len(value) == 1 and not is_integer(info_axis):
1887 # This is a case like df.iloc[:3, [1]] = [0]
1888 # where we treat as df.iloc[:3, 1] = 0
1889 return self._setitem_with_indexer((pi, info_axis[0]), value[0])

-> 1891 raise ValueError(
1892 "Must have equal len keys and value "
1893 "when setting with an iterable"
1894 )
1896 elif lplane_indexer == 0 and len(value) == len(self.obj.index):
1897 # We get here in one case via .loc with a all-False mask
1898 pass

ValueError: Must have equal len keys and value when setting with an iterable

This code results in an error which is somewhat hard to figure out. If on the right-hand side of an assignment to some
Pandas object is an iterable, then Pandas expects a same-sized iterable on the left-hand side. Thus, it is not possible to
assign, for instance, a list to a cell of a data frame. There exist several more or less complicated workarounds, which
all are rather inefficient. Thus, we use the following code, which requires two for loops (list comprehensions) instead
of one.

# cell execution takes several minutes

posts['tokenized'] = [nltk.tokenize.word_tokenize(text) for text in posts['text']]

posts['tokenized']

0 [Well, ,, everyone, got, up, and, going, this,...
1 [My, fouryear, old, never, stops, talking, ., ...
2 [Actually, it, 's, not, raining, yet, ,, but, ...
3 [Ha, !, Just, set, up, my, RSS, feed, that, is...
4 [Oh, ,, which, just, reminded, me, ,, we, were...

...
676023 [Today, we, celebrate, our, independence, day,...
676024 [Ugh, ,, I, think, I, have, allergies, ..., My...
676025 [Science, is, like, sex, occasionally, somethi...
676026 [Dog, toy, or, marital, aid, I, managed, 1014,...
676027 [I, had, a, dream, last, night, about, a, figh...
Name: tokenized, Length: 653702, dtype: object

# cell execution takes an hour and requires 25 GB of memory

posts['tagged'] = [nltk.tag.pos_tag(tokens) for tokens in posts['tokenized']]

posts['tagged']

0 [(Well, RB), (,, ,), (everyone, NN), (got, VBD...
1 [(My, PRP$), (fouryear, JJ), (old, JJ), (never...

(continues on next page)
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2 [(Actually, RB), (it, PRP), ('s, VBZ), (not, R...
3 [(Ha, NNP), (!, .), (Just, RB), (set, VBN), (u...
4 [(Oh, UH), (,, ,), (which, WDT), (just, RB), (...

...
676023 [(Today, NN), (we, PRP), (celebrate, VBP), (ou...
676024 [(Ugh, NNP), (,, ,), (I, PRP), (think, VBP), (...
676025 [(Science, NN), (is, VBZ), (like, IN), (sex, N...
676026 [(Dog, NNP), (toy, NN), (or, CC), (marital, JJ...
676027 [(I, PRP), (had, VBD), (a, DT), (dream, NN), (...
Name: tagged, Length: 653702, dtype: object

The problem now is to translate NLTK POS tags to WordNet POS tags. Have a look at the list of NLTK POS tags297.
There we see the following relations:

NLTK POS tag WordNet POS tag
JJ… ADJ
RB… ADV
NN… NOUN
VB… VERB

All NLTK POS tags have at least two characters. So we may use the following conversion function.

def NLTKPOS_to_WordNetPOS(tag):

if tag[0:2] == 'JJ':
return nltk.corpus.reader.wordnet.ADJ

elif tag[0:2] == 'RB':
return nltk.corpus.reader.wordnet.ADV

elif tag[0:2] == 'NN':
return nltk.corpus.reader.wordnet.NOUN

elif tag[0:2] == 'VB':
return nltk.corpus.reader.wordnet.VERB

else:
return None

Tokens with NLTK POS tags not present in WordNet can be removed, because they do not carry much information
about the text. Here we have to keep in mind that our model will be based on word counts. So no relations between
words are considered. For our model the sentence ‘John is in the house.’ will be the same as ‘The house is in John’.
For more advanced models, relations between words, and thus word classes other than adjectives, adverbs, verbs,
nouns, may be of importance.
Note that the lemmatize function always returns some word. If a word is not found in theWordNet data base, then
the orignal word is returned. If we want to sort out words not contained in WordNet we have use a trick. Looking
at the source code of lemmatize298 we see that the function calls nltk.corpus.wordnet._morphy. The
_morphy function returns a (possibly empty) list of lemmas found in WordNet. If _morphy returns an empty list,
we know that the word under consideration is something unsual (contains typos, for instance) and should be ignored.
Else we use the first lemma in the list.
In principle, this approach is good, but there’s a snag to it: If we pass the wrong POS tag to _morphy we won’t get
a result.

nltk.corpus.wordnet._morphy('children', nltk.corpus.reader.wordnet.VERB)

[]

297 https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
298 https://www.nltk.org/_modules/nltk/stem/wordnet.html
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So we have to refine our strategy. If _morphy returns an empty list, we call _morphy with all possible POS tags.
If all returned lists are empty, then we can be relatively sure that the word is something unsual and, thus, irelevant for
our classification task.
Another issue is that WordNet does not lemmatize words containing apostrophes. For she’s or havn’t that’s not a
real problem, because such words are of little importance for our classification tasks. But what about mama’s, for
instance? We should remove all occurences of ‘s.

# cell execution may take several hours

print_max = 1000
printed = 0

posts['lemmatized'] = None

for idx in posts.index:
lemmas = [] # list of all lemmatized words of current post
for token, tag in posts.loc[idx, 'tagged']:

modified_token = token.lower().replace("'s", '')

wordnet_tag = NLTKPOS_to_WordNetPOS(tag)
if not (wordnet_tag is None):

morphy_result = nltk.corpus.wordnet._morphy(modified_token, wordnet_
↪tag)

if len(morphy_result) > 0:
lemmas.append(morphy_result[0])

else:
morphy_result_all = nltk.corpus.wordnet._morphy(modified_token,␣

↪nltk.corpus.reader.wordnet.NOUN) \
+ nltk.corpus.wordnet._morphy(modified_token,␣

↪nltk.corpus.reader.wordnet.VERB) \
+ nltk.corpus.wordnet._morphy(modified_token,␣

↪nltk.corpus.reader.wordnet.ADJ) \
+ nltk.corpus.wordnet._morphy(modified_token,␣

↪nltk.corpus.reader.wordnet.ADV)
if len(morphy_result_all) > 0:

lemmas.append(morphy_result_all[0])
else:

if printed < print_max:
print(modified_token, end=', ')
printed += 1

posts.loc[idx, 'lemmatized'] = ' '.join(lemmas)

posts['lemmatized']

everyone, , , everything, .., fouryear, ummm, ...., ummm, anything, , goldeyes,␣
↪n't, skydome, occassionally, goldeyes, n't, 'm, , n't, everyone, gameboy, n't,
↪ n't, n't, everything, 've, hmm, something, else, mcnally, something, anyone,
↪'ve, 've, breadmaker, n't, n't, 've, imdb, everything, something, something,
↪'m, ineveitable, n't, , n't, 'm, 've, kel, 'm, ya, di, amore, 'm, .., n't, n
↪'t, heh, , everyone, sleepyland, n't, 'm, ya, di, amore, whoopie, 've, umm, n
↪'t, epvm, n't, poopeyhead, nathan, 're, n't, nathan, nathan, alstadt, we, we,␣
↪dan, dave, we, dan, , , .., n't, 'm, thnk, 'm, epvm, umm, heh, n't, arg, , 'm,
↪ 'm, madsen, eek, umm, .., brett, alex, joanne, now.they, 're, alex, , gosh,␣
↪darnit, improv, 'm, 'm, 're, n't, ...., ya, di, amore, 'm, 'm, n't, ya, di,␣
↪amore, , something, grrr, , 'm, enjoyig, hey, catie, momly, n't, duper, n't,
↪'m, anyone, 'm, , thingamabobber, 're, 're, 're, 've, di, amore, n't, 'm, 'm,␣
↪, everyone, brandon, jake, n't, meh, , ok., my, n't, a., 'm, kane, ummm,␣
↪something, else, psh, n't, n't, heh, anything, 'm, ya, di, amore, 'm,␣
↪superduper, ...., , 're, contraversial, blahdeblahdeblah, nequa, naperville,
↪'re, 're, 're, n't, heck, kathryn, how, poopy, 'm, sleepyland, goodnight,␣
↪everyone, ya, di, amore, 'm, superduper, ...., , 're, contraversial,␣
↪blahdeblahdeblah, nequa, naperville, 're, 're, 're, n't, heck, kathryn, how,␣
↪poopy, 'm, sleepyland, goodnight, everyone, ya, di, amore, hey, alex, 'm,␣
↪baaack, 'm, something, everyone, hink, genevieve, n't, grr, pooey, , tootsie,␣
↪, catie, , n't, steve, chem, , , ah, passon, .., kast, hmmm, , anyone,␣
↪everything, 've, heh, spontanious, catie, rar, ah, n't, something, everything,
↪ n't, hmmm, ah, , 'm, 're, 've, n't, righthand, ya, di, amore, n't, n't, ,
↪'ve, n't, n't, 've, finaly, 'm, 'm, , , ...., , , , 'm, ya, di, amore, hehe,
↪'m, n't, 'm, 'm, 'm, umm, kristen, chris, alex, general.oh, umm, epvm, 'm,␣
↪and, arg, 'm, 'm, jeez, owwwwwwwwwwwwww, jeez, n't, , n't, , alex, emily,␣
↪chris, alex, chem, , , 'm, 'm, something, jusat, arg, n't, ouch, , 'm, ....,
↪'ve, n't, , , .., something, umm, him, eek, n't, kathryn, joanne, 'm, if, him,
↪ could, n't, something, s., umm, n't, n't, meh, 'm, n't, n't, .., coyle, , ,␣
↪borring, .., sooooooooooooooooooooooooooo, mehgan, n't, arg, , my, eek, n't, n
↪'t, arg, 've, , eek, welp, haha, n't, 've, kane, n't, n't, 'm, argh, vnted,
↪'m, alstadt, n't, n't, , 'm, aww, selfseeking, , , n't, n't, minddr, ahh, ya,␣
↪di, amore, brandon, 'm, 're, jumpin, 'm, 've, 'm, .., heh, arg, 'm, ya, di,␣
↪amore, rar, heh, hoo, 'm, umm, n't, n't, s'all, umm, n't, anything, chris, ,
↪'re, n't, 'm, n't, n't, , n't, 'm, 'm, n't, arg, , , anyone, heh, goodnight,
↪'m, 'm, 've, 'm, everyone, everyone, rar, ...., rar, mixedup, , n't, that, ah,
↪ 'm, anyone, friggin, business.and, .., 'm, weieners, arg, 're, 're, 're, ..,
↪'re, 're, gon, haha, gianopolis, something, 'm, heck, whew, ...., n't, arg,␣
↪naperville, pooey, something, 're, , psh, naperville, 're, minigang, n't,␣
↪jeez, fricking, 'm, naperville, , , haha, whoa, ...., opur, ummm, ...., , n't,
↪ rotton, , 're, diane, n't, chem, , n't, , something, n't, eek, julia, , n't,␣
↪n't, kathryn, yikes, ...., 'm, .., alstadt, n't, anything, , nathan, steve, n
↪'t, arg, 'm, errr, something, everyone, xoxo, everything, kathryn, n't, , 'm,␣
↪amanda, 've, 'm, , anytime, 'm, n't, , exb, ooo, dave, im'ing, drat, n't, ,
↪'m, eek, n't, dan, n't, n't, everything, 'm, , something, 'm, 'm, , arg, chem,
↪ , kordalewski, rar, , , 'm, chem, soo, diane, ahhhh, diane, , 'm, pez, n't, ,
↪ n't, kathryn, n't, nikki, n't, n't, , nonband, nikki, 're, malevalent, nikki,
↪ ...., n't, 'm, everything, , joanne, nikki, ...., ...., n't, anyone,␣
↪perkyness, vdiddy, , doman, , 'm, reallly, , , something, kari, , ....,␣
↪christy, ryan, her, , anything, anything, everything, , dave, n't, 've, n't, ,
↪ 'm, scool, , 'm, , something, soo, ...., ...., eek, yikes, stevey, steve,␣
↪zimnie, 've, , , , haha, n't, steve, , n't, hmmm, ...., ummm, , , , gov.,␣
↪andre, haha, ah, kathryn, n't, anyone, , , albinak, , c., 'm, 'm, 'm, n't, 'm,
↪ n't, n't, 'm, 're, kathryn, joanne, 'm, 'm, everyone, bucs, 'm, everyone, 'm,
↪ wated, 're, neil, something, neil, n't, kristen, alex, 'm, kathryn, joanne,
↪'m, n't, n't, superbowl, n't, something, n't, n't, ...., , hehe, kazba, catie,
↪ 're, 'm, myself, evereryone, else, superbowl, .so, , else, 've, everything,
↪'m, 'm, 've, , n't, something, emily, 'm, 'm, joanne, kristen, 're, 'm, 'm,␣
↪superbowl, n't, jso, n't, alex, jso, jso, n't, jso, 're, n't, .., 'm, , andy,␣
↪diane, ...., diane, , 'm, , haha, n't, something, , rollercoaster, satuday,
↪'ve, , duper, diane, arg, c., 've, emily, n't, n't, ...., n't, n't, phew, 'm,
↪'m, 'm, 'm, something, phew, rollercoaster, 'm, emily, n't, 'm, n't, anything,
↪ kath, oprah, phil, , bulemic, joanne, , joanne, versa, else, , 'm, 'm,␣
↪goodnight, xoxo, emily, 're, anything, 're, n't, 'm, n't, zach, richa, jeez, ,
↪ everyone, n't, everyone, n't, jeez, n't, n't, n't, , 're, ...., arg, heck, ,␣
↪, , something, something, n't, ...., n't, 're, n't, , 're, n't, 'm, 're, n't,␣
↪kari, richa, zach, 're, .., , n't, 'm, richa, zach, 'm, 'm, , calfornia, , 'm,
↪ n't, .., n't, bleh, zach, everyone, 've, richa, anyone, to.do, n't, sooo, n
↪'t, anyone, rotton, , jso, 'm, should, awesomely, diane, hehe, , possitively,␣
↪snippity, emily, , emily, eric, eek, n't, im, dave, justin, dan, 'm, joanne,␣
↪kathryn, nikki, rar, chris, jim, haha, shpeal, klos, diane, , diane, diane, n
↪'t, n't, eric, chris, jim, 're, catie, , n't, n't, n't, anything, 've, .., , n
↪'t, lookis, 've, musto, , prefference, jso, 've, , n't, muah, 've, n't, chem,␣
↪diane, 'm, 'm, diane, 'm, , , 've, , usuaully, n't, , andy, n't, diane, n't,
↪'m, n't, n't, emily, diane, christine, , n't, kathryn, 've, kathryn, n't,␣
↪realllly, kath, n't, lockin, n't, 've, joanne, 'm,

(continues on next page)
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(continued from previous page)

0 well get up go morning still raining okay sort...
1 old never stop talk say mom say say oh yeah do...
2 actually not raining yet buy ticket game mom b...
3 ha just set r feed be so easy do do enough tod...
4 just remind be talk can food coffee break morn...

...
676023 today celebrate independence day honor event g...
676024 think have allergy nose have be stuff week mak...
676025 science be sex occasionally practical come not...
676026 dog toy marital aid manage little quiz see wel...
676027 have dream last night fight be younger dad hea...
Name: lemmatized, Length: 653702, dtype: object

posts = posts[['blog_id', 'lemmatized']]

posts.to_csv(data_path + 'posts_lemmatized.csv')

posts

blog_id lemmatized
0 1000331 well get up go morning still raining okay sort...
1 1000331 old never stop talk say mom say say oh yeah do...
2 1000331 actually not raining yet buy ticket game mom b...
3 1000331 ha just set r feed be so easy do do enough tod...
4 1000331 just remind be talk can food coffee break morn...
... ... ...
676023 999503 today celebrate independence day honor event g...
676024 999503 think have allergy nose have be stuff week mak...
676025 999503 science be sex occasionally practical come not...
676026 999503 dog toy marital aid manage little quiz see wel...
676027 999503 have dream last night fight be younger dad hea...

[653702 rows x 2 columns]

posts_lemmatized = pd.read_csv(data_path + 'posts_lemmatized.csv', index_col=0,␣
↪nrows=100)

posts['lemmatized'] = posts_lemmatized['lemmatized']

idx = 0

print(posts.loc[0, 'lemmatized'])

well get up go morning still raining okay sort suit mood easily have stay home␣
↪bed book cat have be lot rain people have wet basement be lake be golf course␣
↪fields be green green green be suppose be degree friday be deal mosquito next␣
↪week hear winnipeg describe old testament city cbc radio one last week sort␣
↪rings true flood infestation

We could improve preprocessing by tagging geographical locations, names of persons, and so on. But somewhere
one has to stop. Let’s see what a machine learning model can learn from our (not perfectly) preprocessed data…
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13.2 Training

In this second chapter on text classification we train several machine learning models on the preprocessed data from
the first chapter.

13.2.1 Loading Data

import pandas as pd
import numpy as np

data_path = '/data/datasets/blogs/'

blogs = pd.read_csv(data_path + 'blogs.csv', index_col=0)

blogs

gender age industry
1000331 f 37 unknown
1000866 f 17 Student
1004904 m 23 Arts
1005076 f 25 Arts
1005545 m 25 Engineering
... ... ... ...
996147 f 36 Telecommunications
997488 m 25 unknown
998237 f 16 unknown
998966 m 27 unknown
999503 m 25 Internet

[19320 rows x 3 columns]

posts = pd.read_csv(data_path + 'posts.csv', index_col=0)
posts_lemmatized = pd.read_csv(data_path + 'posts_lemmatized.csv', index_col=0)

posts['lemmatized'] = posts_lemmatized['lemmatized']

posts

blog_id day month year \
0 1000331 31 5 2004
1 1000331 29 5 2004
2 1000331 28 5 2004
3 1000331 28 5 2004
4 1000331 28 5 2004
... ... ... ... ...
676023 999503 4 7 2004
676024 999503 3 7 2004
676025 999503 2 7 2004
676026 999503 1 7 2004
676027 999503 1 7 2004

text \
0 Well, everyone got up and going this morning. ...
1 My four-year old never stops talking. She'll ...
2 Actually it's not raining yet, but I bought 15...
3 Ha! Just set up my RSS feed - that is so easy!...

(continues on next page)
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(continued from previous page)

4 Oh, which just reminded me, we were talking ab...
... ...
676023 Today we celebrate our independence day. In...
676024 Ugh, I think I have allergies... My nose has ...
676025 "Science is like sex; occasionally something p...
676026 Dog toy or marital aid I managed 10/14 on th...
676027 I had a dream last night about a fight when I ...

lemmatized
0 well get up go morning still raining okay sort...
1 old never stop talk say mom say say oh yeah do...
2 actually not raining yet buy ticket game mom b...
3 ha just set r feed be so easy do do enough tod...
4 just remind be talk can food coffee break morn...
... ...
676023 today celebrate independence day honor event g...
676024 think have allergy nose have be stuff week mak...
676025 science be sex occasionally practical come not...
676026 dog toy marital aid manage little quiz see wel...
676027 have dream last night fight be younger dad hea...

[653702 rows x 6 columns]

Some posts do not contain any lemmatized text. Note that Pandas interprets empty fields in a CSV file as nan. So
we may run into troubles if we do not replace nan by empty strings or remove the rows from the data frame.

posts.loc[posts['lemmatized'].isna(), :]

blog_id day month year \
830 1004904 19 6 2004
1166 1008329 10 4 2004
1756 1011311 25 5 2004
3882 1022086 6 7 2004
3885 1022086 6 7 2004
... ... ... ... ...
673231 988941 3 2 2003
674144 988941 19 1 2004
674253 988941 25 3 2004
674723 992078 17 11 2003
675851 998237 28 8 2003

text lemmatized
830 J.A.M.C. NaN
1166 www.teenopendiary.com ----> elysicidal NaN
1756 artie and me NaN
3882 The three of us NaN
3885 Amalia and I NaN
... ... ...
673231 I will, I will! NaN
674144 What? NaN
674253 YAYness! NaN
674723 Ugh. http://www.cnn.com/2003/US/Southwest/... NaN
675851 whoa im tlaking to kevin daly whoa NaN

[968 rows x 6 columns]

posts.dropna(how='any', inplace=True)

posts
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blog_id day month year \
0 1000331 31 5 2004
1 1000331 29 5 2004
2 1000331 28 5 2004
3 1000331 28 5 2004
4 1000331 28 5 2004
... ... ... ... ...
676023 999503 4 7 2004
676024 999503 3 7 2004
676025 999503 2 7 2004
676026 999503 1 7 2004
676027 999503 1 7 2004

text \
0 Well, everyone got up and going this morning. ...
1 My four-year old never stops talking. She'll ...
2 Actually it's not raining yet, but I bought 15...
3 Ha! Just set up my RSS feed - that is so easy!...
4 Oh, which just reminded me, we were talking ab...
... ...
676023 Today we celebrate our independence day. In...
676024 Ugh, I think I have allergies... My nose has ...
676025 "Science is like sex; occasionally something p...
676026 Dog toy or marital aid I managed 10/14 on th...
676027 I had a dream last night about a fight when I ...

lemmatized
0 well get up go morning still raining okay sort...
1 old never stop talk say mom say say oh yeah do...
2 actually not raining yet buy ticket game mom b...
3 ha just set r feed be so easy do do enough tod...
4 just remind be talk can food coffee break morn...
... ...
676023 today celebrate independence day honor event g...
676024 think have allergy nose have be stuff week mak...
676025 science be sex occasionally practical come not...
676026 dog toy marital aid manage little quiz see wel...
676027 have dream last night fight be younger dad hea...

[652734 rows x 6 columns]

13.2.2 Counting Words

As discussed in the previous chapter we use the bag of words model: features are word counts and feature space
dimension equals the size of the dictionary. Say we have 𝑚 different words in our dictionary. Then the components
𝑥(1), … , 𝑥(𝑚) of a feature vector 𝑥 count the occurrences of words 1, … , 𝑚 of the dictionary in a blog post.
The dictionary is created from the training data. Important: words not contained in the training data will be ignored
by the model. So training data has to be sufficiently rich. To generate the dictionary we have to split data into training
and test sets. But up to now we did not compose concrete training samples.
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Model Inputs and Outputs

Model inputs will be vectors of word counts (or of numbers derived from word counts, see below). For the moment
we only have strings. We arrange all the strings in a 1d NumPy array:

S = posts['lemmatized'].to_numpy()

print(S.shape)
S

(652734,)

array(['well get up go morning still raining okay sort suit mood easily have␣
↪stay home bed book cat have be lot rain people have wet basement be lake be␣
↪golf course fields be green green green be suppose be degree friday be deal␣
↪mosquito next week hear winnipeg describe old testament city cbc radio one␣
↪last week sort rings true flood infestation',

'old never stop talk say mom say say oh yeah do lady bug hide rain hear␣
↪own voice very very exhaust now remember be go work sigh',

'actually not raining yet buy ticket game mom birthday tonight be␣
↪suppose rain do cancel baseball game rain ballpark be beautiful ai use go jay␣
↪game live toronto really take kid game now do know blue jay ticket cost now␣
↪sure cheap here winnipeg oh just check definitely be',

..., 'science be sex occasionally practical come not reason do',
'dog toy marital aid manage little quiz see well do',
'have dream last night fight be younger dad heavy wrench brother hit␣

↪head be bleed bad hope be just dream'],
dtype=object)

Model outputs will be class labels. We have 6 classes: all combinations of 2 genders and 3 age groups.

# add one column per class
posts['label'] = ''

# fill columns blogwise
for blog_id in blogs.index:

# get class for blog
label = blogs.loc[blog_id, 'gender']
if blogs.loc[blog_id, 'age'] < 20:

label = label + '1'
elif blogs.loc[blog_id, 'age'] < 30:

label = label + '2'
else:

label = label + '3'

# set class for all posts of the blog
posts.loc[posts['blog_id'] == blog_id, 'label'] = label

posts

blog_id day month year \
0 1000331 31 5 2004
1 1000331 29 5 2004
2 1000331 28 5 2004
3 1000331 28 5 2004
4 1000331 28 5 2004
... ... ... ... ...
676023 999503 4 7 2004

(continues on next page)
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(continued from previous page)

676024 999503 3 7 2004
676025 999503 2 7 2004
676026 999503 1 7 2004
676027 999503 1 7 2004

text \
0 Well, everyone got up and going this morning. ...
1 My four-year old never stops talking. She'll ...
2 Actually it's not raining yet, but I bought 15...
3 Ha! Just set up my RSS feed - that is so easy!...
4 Oh, which just reminded me, we were talking ab...
... ...
676023 Today we celebrate our independence day. In...
676024 Ugh, I think I have allergies... My nose has ...
676025 "Science is like sex; occasionally something p...
676026 Dog toy or marital aid I managed 10/14 on th...
676027 I had a dream last night about a fight when I ...

lemmatized label
0 well get up go morning still raining okay sort... f3
1 old never stop talk say mom say say oh yeah do... f3
2 actually not raining yet buy ticket game mom b... f3
3 ha just set r feed be so easy do do enough tod... f3
4 just remind be talk can food coffee break morn... f3
... ... ...
676023 today celebrate independence day honor event g... m2
676024 think have allergy nose have be stuff week mak... m2
676025 science be sex occasionally practical come not... m2
676026 dog toy marital aid manage little quiz see wel... m2
676027 have dream last night fight be younger dad hea... m2

[652734 rows x 7 columns]

posts['label'] = posts['label'].astype('category')
posts['label'] = posts['label'].cat.reorder_categories(['f1', 'f2', 'f3', 'm1',

↪'m2', 'm3'])
print(posts['label'].cat.categories)

Index(['f1', 'f2', 'f3', 'm1', 'm2', 'm3'], dtype='object')

y = posts['label'].cat.codes.to_numpy()

y.shape

(652734,)
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Train-Test Split

posts.loc[posts['lemmatized'].isna(), :]

Empty DataFrame
Columns: [blog_id, day, month, year, text, lemmatized, label]
Index: []

import sklearn.model_selection as model_selection

S_train, S_test, y_train, y_test = model_selection.train_test_split(S, y, test_
↪size=0.2)

S_train.shape, S_test.shape

((522187,), (130547,))

Simple Word Counting

Scikit-Learn implements dictionary generation and word counting in sklearn.feature_extraction.
text.CountVectorizer299. All strings by default are converted to lower case. Scikit-Learn’s CountVec-
torizer counts occurrences of words or group of words (n-grams). Counting words is the default. Stop words can
be removed automatically based on a built-in list of English stop words.
Calling fit builds the dictionary. Calling transform counts words based on the dictionary. As usual
fit_transform does both steps at once. But for CountVectorizer calling fit_transform is more
efficient than calling fit and transform separately.
CountVectorizer provides some options for excluding rare or very frequent words. We will come back to those
options below.

import sklearn.feature_extraction.text as fe_text

count_vect = fe_text.CountVectorizer()
X_train = count_vect.fit_transform(S_train)

X_train.shape

(522187, 50985)

We have more than 50000 different words in our vocabulary. The vocabulary is accessible through Count_vect.
vocabulary_. It’s a dict with strings as keys and corresponding indices as values.

count_vect.vocabulary_['sunshine']

43601

The feature with this index contains counts of ‘sunshine’.
We should have a closer look on the word counts. There will be some words occurring only in very few post. From
such rare words a machine learning model cannot learn something useful. On the other hand, words appearing in
almost all posts do not contain information to differentiate between classes.
299 https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
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The number of samples containing a fixed word is denoted as document frequency (DF) of the word. The word count
within one sample is denoted as term frequency (TF) of the word (and the sample).
Let’s have a look at document frequencies:

dfs = np.array(X_train.sign().sum(axis=0)).reshape(-1)
words = count_vect.vocabulary_.keys()
idxs = count_vect.vocabulary_.values()

vocabulary = pd.DataFrame({'word': words, 'idx': idxs})
vocabulary['df'] = dfs[vocabulary['idx'].to_numpy()]

vocabulary = vocabulary.sort_values('df', ascending=False)

vocabulary

word idx df
5 be 4005 439217
81 have 20248 332156
11 do 13220 297286
125 get 18599 244616
1 go 18935 241553
... ... ... ...
50948 taipeh 44256 1
50949 razorbill 36475 1
50950 porifera 34339 1
50951 reformable 36939 1
50952 periodontitis 33028 1

[50985 rows x 3 columns]

Note that X_train is not a usual NumPy array, but a sparse array. The sum method works as usual, but reshaping
is not supported by sparse arrays. Thus, we convert the result of sum (which is much smaller than X_train) into a
NumPy array before reshaping it.
Here is a list of words occuring only in very few posts:

vocabulary.loc[vocabulary['df'] < 5,'word']

39234 dashiki
39075 peerage
39076 pictograph
39079 diamante
39288 3d

...
50948 taipeh
50949 razorbill
50950 porifera
50951 reformable
50952 periodontitis
Name: word, Length: 13572, dtype: object

More than 13000 words appear in only 1 to 4 posts. Such rare words should be removed from the vocabulary. In
other words, we may remove more than 13000 features, because they do not contain useful information.
Here are the words appearing most often together with the cut of posts containing them:

for idx in range(100):
word = vocabulary['word'].iloc[idx]
df = vocabulary['df'].iloc[idx]
print(word, '({:.2f})'.format(df / X_train.shape[0]), end=' ')
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be (0.84) have (0.64) do (0.57) get (0.47) go (0.46) not (0.44) so (0.43) just␣
↪(0.40) think (0.34) know (0.33) now (0.32) make (0.31) time (0.30) say (0.30)␣
↪more (0.27) see (0.27) really (0.27) well (0.26) good (0.26) come (0.25) then␣
↪(0.25) take (0.25) want (0.25) day (0.22) people (0.22) much (0.22) back (0.
↪22) work (0.21) today (0.21) here (0.21) only (0.21) look (0.21) even (0.20)␣
↪too (0.19) other (0.19) last (0.19) way (0.19) still (0.18) right (0.18) need␣
↪(0.17) new (0.17) love (0.17) tell (0.17) feel (0.17) things (0.17) try (0.
↪17) first (0.17) very (0.16) life (0.16) start (0.16) give (0.16) thing (0.
↪16) there (0.16) little (0.16) also (0.15) night (0.15) again (0.15) friend␣
↪(0.15) call (0.15) never (0.14) talk (0.14) leave (0.14) home (0.13) use (0.
↪13) most (0.13) long (0.13) week (0.13) let (0.13) mean (0.13) like (0.12)␣
↪keep (0.12) as (0.12) read (0.12) end (0.12) better (0.12) find (0.12) great␣
↪(0.12) guy (0.11) ever (0.11) always (0.11) next (0.11) few (0.11) write (0.
↪11) watch (0.11) post (0.11) hope (0.11) seem (0.11) actually (0.11) play (0.
↪11) put (0.11) sure (0.11) up (0.11) ask (0.11) bad (0.11) many (0.11) maybe␣
↪(0.11) one (0.11) happen (0.11) days (0.10) place (0.10)

Here we see that there are no words that appear in almost all posts. In principle, every word might be useful to
differentiate between classes. Even if we would throw away words appearing in, for instance, more than 50 per cent
of posts, we could remove only 3 features.
Scikit-Learn’s CountVectorizer() takes parameters min_df and max_df to exclude rare words and words
appearing very often, respectively.

count_vect = fe_text.CountVectorizer(min_df=5, max_df=1.0)
X_train = count_vect.fit_transform(S_train)

X_train.shape

(522187, 37413)

Weighted Counting

For short posts word counts will be lower than for longer posts. Thus, we should normalize word counts. Then feature
values contain counts relative to the length of a post. Here we use sklearn.preprocessing.normalize300.

import sklearn.preprocessing as preprocessing

X_train = preprocessing.normalize(X_train, norm='l1')

Another issue is the importance of words. The more posts contain a word, the less important for classifying posts
the word is. So we could apply a weighting with weights the higher the lower the document frequency is. There exist
different concrete weighting rules. The default one of Scikit-Learn is

weight of word = 1 + log 1 + number of documents
1 + document frequency of word .

If a word appears in all documents, the weight is 1. Else the weight is greater than 1. Sometimes the logarithm is
used without adding 1. Then words appearing in all documents have weight 0, that is, they are ignored.
The vector of weighted counts usually is normalized as above.
Scikit-Learn implements this so called TF-IDF-weighting (TF: term frequency, IDF: inverse document frequency) in
sklearn.feature_extraction.text.TfidfVectorizer301. Usage is identical to CountVector-
izer.
300 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.normalize.html
301 https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
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tfidf_vect = fe_text.TfidfVectorizer(min_df=5, max_df=1.0)
X_train = tfidf_vect.fit_transform(S_train)

X_train.shape

(522187, 37413)

Do not forget to transform test samples in the same way (no second call to fit!):

X_test = tfidf_vect.transform(S_test)

X_test.shape

(130547, 37413)

13.2.3 Naive Bayes Classifier

Feature vectors containing word counts follow a multinomial distribution, which is well suited for naive Bayes clas-
sification. Naive Bayes classifiers are very fast in training and prediction because only some emperical probabilities
have to be calculated from sample counts. Thus, naive Bayes classifiers can cope with high dimensional feature spaces
and large training data sets.
Strictly speaking, naive Bayes classifiers expect integer inputs (counts). But formulas allow for real-valued features,
too. There is no theory backing multinomial naive Bayes for real-valued features. But experience shows that it works
quite well. In context of bag of words language processing multinomial naive Bayes with TF-IDF values works much
better than with simple word counts.

import sklearn.naive_bayes as naive_bayes

mnb = naive_bayes.MultinomialNB()
mnb.fit(X_train, y_train)

MultinomialNB()

Note that MultinomialNB has only very few parameters with default values suitable for our learning task. By
default it uses Laplace smoothing and label probabilities are estimated from the training data (instead of uniform
label distribution).

y_train_pred = mnb.predict(X_train)
y_test_pred = mnb.predict(X_test)

For visualizing classification accuracy we use the following function.

import matplotlib.pyplot as plt
import seaborn as sns
import sklearn.metrics as metrics

def show_accuracy(y, y_pred):

print('correct classification rate: {:.4f} (random guessing: 0.1667)
↪'.format(metrics.accuracy_score(y, y_pred)))

print('correct classification rate (gender): {:.4f} (random guessing: 0.5000)
↪'.format(metrics.accuracy_score(y // 3, y_pred // 3)))

print('correct classification rate (age): {:.4f} (random guessing: 0.3333)
↪'.format(metrics.accuracy_score(y - 3 * (y // 3), y_pred - 3 * (y_pred // 3))))

(continues on next page)
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# calculate confusion matrices
cm = pd.crosstab(pd.Series(y, name='truth'), pd.Series(y_pred, name=

↪'prediction'))
cm = cm.reindex(index=[0, 1, 2, 3, 4, 5], columns=[0, 1, 2, 3, 4, 5], fill_

↪value=0)
cm_gender = pd.crosstab(pd.Series(y // 3, name='truth'), pd.Series(y_pred //␣

↪3, name='prediction'))
cm_gender = cm_gender.reindex(index=[0, 1], columns=[0, 1], fill_value=0)
cm_age = pd.crosstab(pd.Series(y - 3 * (y // 3), name='truth'), pd.Series(y_

↪pred - 3 * (y_pred // 3), name='prediction'))
cm_age = cm_age.reindex(index=[0, 1, 2], columns=[0, 1, 2], fill_value=0)

# normalize rows of confusion matrices (we have unbalanced classes)
cm = cm.astype(float)
cm_gender = cm_gender.astype(float)
cm_age = cm_age.astype(float)
for i in range(0, 6):

cm.loc[i, :] = cm.loc[i, :] / cm.loc[i, :].sum()
for i in range(0, 2):

cm_gender.loc[i, :] = cm_gender.loc[i, :] / cm_gender.loc[i, :].sum()
for i in range(0, 3):

cm_age.loc[i, :] = cm_age.loc[i, :] / cm_age.loc[i, :].sum()

# plot confusion matrices
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(12,3.5), tight_layout=True)
sns.heatmap(cm, annot=True, fmt='.2f', cmap='hot', ax=ax1,

xticklabels=posts['label'].cat.categories, yticklabels=posts[
↪'label'].cat.categories)

sns.heatmap(cm_gender, annot=cm_gender, fmt='.2f', cmap='hot', ax=ax2,
xticklabels=['f', 'm'], yticklabels=['f', 'm'])

sns.heatmap(cm_age, annot=cm_age, fmt='.2f', cmap='hot', ax=ax3,
xticklabels=['1', '2', '3'], yticklabels=['1', '2', '3'])

plt.show()

Prediction accuracy on training data:

show_accuracy(y_train, y_train_pred)

correct classification rate: 0.4577 (random guessing: 0.1667)
correct classification rate (gender): 0.6777 (random guessing: 0.5000)
correct classification rate (age): 0.6457 (random guessing: 0.3333)

Prediction accuracy on test data:

show_accuracy(y_test, y_test_pred)

410 Chapter 13. Text Classification



Data Science and Artificial Intelligence for Undergraduates
Volume 2: Data Visualization, Supervised Learning

correct classification rate: 0.4338 (random guessing: 0.1667)
correct classification rate (gender): 0.6634 (random guessing: 0.5000)
correct classification rate (age): 0.6351 (random guessing: 0.3333)

Prediction accuracy of the naive Bayes model is much better than random guessing. But we have to take into account
class imbalance. Next to random guessing we may consider another trivial model for comparison of prediction
accuracy: What happens if a model always predicts the largest class?

samples = np.histogram(y_train, bins=6, range=(-0.5, 5.5))[0]
print(samples)

[ 88173 123839 45420 92169 122165 50421]

show_accuracy(y_test, np.argmax(samples) * np.ones(y_test.shape))

correct classification rate: 0.2402 (random guessing: 0.1667)
correct classification rate (gender): 0.4958 (random guessing: 0.5000)
correct classification rate (age): 0.4727 (random guessing: 0.3333)

Always predicting the largest class works better than random guessing, but not as good as naive Bayes.
We should have a closer look at our model to get a better understanding of it’s decision rules and also of the data set. A
multinomial Bayes model is completely determined by the probabilities 𝑝𝑘,𝑖. The values 𝑝𝑘,𝑖 express the probability to
observe feature 𝑘 (the 𝑘th word in our vocabulary) in class 𝑖. The MultinomialNB objects provides the logarithm
of these probabilities as a 2d NumPy array MultinomialNB.feature_log_prob_. First index is the class,
second index the feature.

p = np.exp(mnb.feature_log_prob_)

p

array([[2.82486314e-06, 1.06657203e-05, 1.50133781e-05, ...,
1.94223374e-06, 1.74543529e-06, 2.20958134e-06],

[2.42658465e-06, 6.50200990e-06, 1.61185337e-05, ...,

(continues on next page)
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5.40897601e-06, 1.52174765e-06, 1.86291326e-06],
[3.16922035e-06, 8.23294289e-06, 1.46964824e-05, ...,
5.55744801e-06, 3.46527245e-06, 2.94293686e-06],

[4.33136042e-06, 1.01679660e-05, 2.14931631e-05, ...,
4.23157086e-06, 1.69074347e-06, 2.65137775e-06],

[2.44322058e-06, 7.15660286e-06, 1.61798918e-05, ...,
1.32512575e-05, 1.94623715e-06, 2.01389749e-06],

[3.11215272e-06, 7.82176886e-06, 1.72747277e-05, ...,
7.67104041e-06, 5.87706081e-06, 3.72104924e-06]])

We may ask: Which words are most likely contained in a post written by a woman in age group 3?

i = 2 # class

# make dict for mapping indices to words
i2w = dict(zip(tfidf_vect.vocabulary_.values(), tfidf_vect.vocabulary_.keys()))

# get 1d array of indices sorted descending by probability
s = p[i, :].argsort()[::-1]

# print most likely words
for idx in s[0:20]:

print(i2w[idx], p[i, idx])

be 0.01807095671226715
have 0.007949892249550804
do 0.006283225758642027
get 0.004215487511561934
not 0.003949829251723054
go 0.0038146191475615997
so 0.0032094272219337326
just 0.003171984731898014
know 0.0027767618498825836
think 0.002707606061709398
say 0.002463912137631007
make 0.002445372958287036
time 0.00244219262808092
work 0.0023443172188228716
now 0.0022574399274471963
see 0.002239260855123209
day 0.002179888002166481
more 0.0021602842162711912
take 0.002147657978906127
want 0.00208513406619077

Obviously, we have to formulate our question more precisely: Which words are more likely contained in a post written
by a woman in age group 3 than in any other class?

i = 2 # class

# get mask for selecting relevant words
likeliest_classes = p.argsort(axis=0)[-1, :]
mask = likeliest_classes == i

# get 1d array of indices sorted descending by probability
s = p[i, :].argsort()[::-1]

# print most likely words
for idx in s[mask[s]][0:20]:

print(i2w[idx], p[i, idx])
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book 0.0010989358770037991
old 0.0010590729846730097
woman 0.0010209207510928407
kid 0.0010198160240573167
child 0.0009682983100168208
comment 0.0009273079531121888
family 0.0008822763541782803
photo 0.0007498600268252408
rick 0.0007213990173024888
send 0.000693886210236962
husband 0.0006279847725706796
mother 0.0005971536115977698
dog 0.000572935663428436
favorite 0.0005620350678289687
light 0.0005582600807629513
water 0.0005342255476616197
visit 0.0005333974878505576
son 0.0005249505300652883
begin 0.0005129303011784495
body 0.0005077890351387825

This contains some more information about important words in a class. But ultimately we want to know which words
dichotomize between classes. So we have to go one step further. Instead of looking for the most likely class given
a word, we have to find words for which probabilities of the two most likely classes are as far away from each other
as possible. We may calculate the ratio of both probabilities. If it is close to 1, then both probabilities are almost
identical. If it is much greater than one, then the one probability is much higher than the other.

best_two_classes = p.argsort(axis=0)[:-3:-1, :]

best_probs_0 = p[best_two_classes[0, :], np.arange(p.shape[1])]
best_probs_1 = p[best_two_classes[1, :], np.arange(p.shape[1])]
prob_ratios = best_probs_0 / best_probs_1

s = prob_ratios.argsort()[::-1]

for idx in s[0:20]:
print(i2w[idx], prob_ratios[idx], best_two_classes[0, idx], best_two_

↪classes[1, idx])

guam 57.690526155910824 5 2
corsair 47.53816228311916 5 2
uygur 34.368973906082616 5 2
tyke 31.360347041069716 3 2
battalion 28.488640702798268 2 5
improvised 19.254284653553338 2 3
regiment 18.911414974965442 2 3
xinjiang 18.30088754992347 5 2
expeditionary 18.082096818654847 2 5
infantry 15.621887983747696 2 5
pfc 15.156355170252311 2 5
spanner 15.112521737020673 2 1
dayton 14.519504223779798 5 4
40th 14.329376817750704 2 5
venerable 14.172037806976384 2 5
sherry 13.689534679813065 2 0
feast 13.499351300023987 2 1
cavalry 13.273764590605861 2 5
oratory 11.670985186018493 2 3
recessional 11.48808974663984 2 5

This list contains several words related to military, war, politics. Presumable there is a blog in our data set discussing
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such topics in many posts. Even if there is only one blog containing some word, which has many posts, the word
is not removed from the vocabulary because it is contained in many documents. All those posts then have identical
labels. Consequently, the word in question is tightly connected with one class. To avoid such one-blog influences we
could classify whole blogs, that is, consider all posts of a blog as one document.
Correct classification rates are not as high as they should be. So let’s further investigate prediction quality. It seems
obvious that longer posts should be easier to classify than short posts, because long post contain more words and,
thus, more information about the author.

lengths = np.array([len(s) for s in S_test])
mask = lengths > 1000

print('considering {} posts'.format(mask.sum()))

show_accuracy(y_test[mask], y_test_pred[mask])

considering 23419 posts
correct classification rate: 0.4712 (random guessing: 0.1667)
correct classification rate (gender): 0.7006 (random guessing: 0.5000)
correct classification rate (age): 0.6542 (random guessing: 0.3333)

Considering only posts with at least 1000 characters indeed yields slightly better correct classification rates. Here
comes somemore detail: sort all posts by length, bin sorted posts into bins of equal size, calculate correct classification
rate for each bin.

bin_size = 1000

lengths = np.array([len(s) for s in S_test])
s = lengths.argsort()

acc = []
mean_length = []
for k in range(bin_size, s.size, bin_size):

acc.append(metrics.accuracy_score(y_test[s[(k-bin_size):k]], y_test_pred[s[(k-
↪bin_size):k]]))

mean_length.append(lengths[s[(k-bin_size):k]].mean())

fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(8,8))
ax1.plot(acc)
ax2.plot(mean_length)
ax1.set_xlabel('bin')
ax1.set_ylabel('correct classification rate')
ax2.set_xlabel('bin')
ax2.set_ylabel('post length')
plt.show()
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13.2.4 Support Vector Machine

Scikit-Learn provides different implementations of support vector machines for classification:
• SVC302 is the most general one. It supports linear and kernel SVMs, but is relatively slow.
• LinearSVC303 is a more efficient implementation supporting only linear SVMs.
• SGDClassifier304 uses gradient descent to minimize some loss function, the hinge loss for instance. It
supports penalty terms for regularization and, thus, SVMs.

302 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
303 https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
304 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
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Linear SVM

We start with SGDClassifier. For multi-class problems the one-versus-all approach is used. The 6 linear models
can be trained in parallel.

import sklearn.linear_model as linear_model

sgdsvm = linear_model.SGDClassifier(loss='hinge', penalty='l2', alpha=1,
n_jobs=1, tol=1e-3, max_iter=10)

param_grid = {'alpha': [0.1 ** k for k in range(0, 10)]}
gs = model_selection.GridSearchCV(sgdsvm, param_grid, scoring='accuracy', cv=5, n_

↪jobs=-1)
gs.fit(X_train, y_train)

print(gs.best_params_)

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.

(continues on next page)
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warnings.warn(
/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_

↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

(continues on next page)
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/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

{'alpha': 1.0000000000000004e-06}

/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/linear_model/_
↪stochastic_gradient.py:713: ConvergenceWarning: Maximum number of iteration␣
↪reached before convergence. Consider increasing max_iter to improve the fit.
warnings.warn(

sgdsvm = linear_model.SGDClassifier(loss='hinge', penalty='l2', alpha=1e-6,
verbose=1, n_jobs=-1, tol=1e-3, max_iter=1000)

sgdsvm.fit(X_train, y_train)

[Parallel(n_jobs=-1)]: Using backend ThreadingBackend with 20 concurrent␣
↪workers.

-- Epoch 1
-- Epoch 1
-- Epoch 1
-- Epoch 1
-- Epoch 1
-- Epoch 1

(continues on next page)
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Norm: 219.73, NNZs: 33064, Bias: -2.337957, T: 522187, Avg. loss: 0.779561
Total training time: 0.24 seconds.
-- Epoch 2
Norm: 268.65, NNZs: 37108, Bias: -1.501407, T: 522187, Avg. loss: 1.184225
Total training time: 0.26 seconds.
-- Epoch 2
Norm: 199.09, NNZs: 35332, Bias: -2.960665, T: 522187, Avg. loss: 0.466104
Total training time: 0.31 seconds.
-- Epoch 2
Norm: 209.23, NNZs: 35929, Bias: -2.149786, T: 522187, Avg. loss: 0.534687
Total training time: 0.33 seconds.
-- Epoch 2
Norm: 237.08, NNZs: 35350, Bias: -2.486370, T: 522187, Avg. loss: 0.908144
Total training time: 0.32 seconds.
-- Epoch 2
Norm: 262.72, NNZs: 36823, Bias: -1.829896, T: 522187, Avg. loss: 1.211338
Total training time: 0.31 seconds.
-- Epoch 2
Norm: 168.64, NNZs: 34434, Bias: -1.778373, T: 1044374, Avg. loss: 0.419178
Total training time: 0.48 seconds.
-- Epoch 3
Norm: 210.25, NNZs: 37329, Bias: -1.387185, T: 1044374, Avg. loss: 0.635662
Total training time: 0.54 seconds.
-- Epoch 3
Norm: 181.81, NNZs: 36309, Bias: -1.833561, T: 1044374, Avg. loss: 0.482218
Total training time: 0.59 seconds.
-- Epoch 3
Norm: 150.58, NNZs: 36359, Bias: -2.077375, T: 1044374, Avg. loss: 0.241740
Total training time: 0.60 seconds.
-- Epoch 3
Norm: 202.72, NNZs: 37215, Bias: -1.345307, T: 1044374, Avg. loss: 0.650129
Total training time: 0.61 seconds.
-- Epoch 3
Norm: 157.23, NNZs: 36641, Bias: -1.687595, T: 1044374, Avg. loss: 0.278794
Total training time: 0.65 seconds.
-- Epoch 3
Norm: 150.96, NNZs: 34985, Bias: -1.671367, T: 1566561, Avg. loss: 0.371611
Total training time: 0.77 seconds.
-- Epoch 4
Norm: 189.24, NNZs: 37382, Bias: -1.152830, T: 1566561, Avg. loss: 0.560032
Total training time: 0.86 seconds.
-- Epoch 4
Norm: 160.93, NNZs: 36699, Bias: -1.524977, T: 1566561, Avg. loss: 0.425225
Total training time: 0.89 seconds.
-- Epoch 4
Norm: 131.42, NNZs: 36678, Bias: -1.912441, T: 1566561, Avg. loss: 0.210238
Total training time: 0.92 seconds.
-- Epoch 4
Norm: 137.20, NNZs: 36898, Bias: -1.463867, T: 1566561, Avg. loss: 0.241759
Total training time: 0.96 seconds.
-- Epoch 4
Norm: 180.91, NNZs: 37305, Bias: -1.462382, T: 1566561, Avg. loss: 0.574577
Total training time: 0.96 seconds.
-- Epoch 4
Norm: 142.23, NNZs: 35270, Bias: -1.565278, T: 2088748, Avg. loss: 0.351199
Total training time: 1.04 seconds.
-- Epoch 5
Norm: 178.76, NNZs: 37395, Bias: -1.191582, T: 2088748, Avg. loss: 0.528111
Total training time: 1.16 seconds.
-- Epoch 5
Norm: 149.78, NNZs: 36852, Bias: -1.514599, T: 2088748, Avg. loss: 0.400745
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Total training time: 1.16 seconds.
-- Epoch 5
Norm: 125.77, NNZs: 37022, Bias: -1.384963, T: 2088748, Avg. loss: 0.225969
Total training time: 1.23 seconds.
-- Epoch 5
Norm: 120.35, NNZs: 36855, Bias: -1.777925, T: 2088748, Avg. loss: 0.196958
Total training time: 1.23 seconds.
-- Epoch 5
Norm: 136.46, NNZs: 35440, Bias: -1.536337, T: 2610935, Avg. loss: 0.340258
Total training time: 1.31 seconds.
-- Epoch 6
Norm: 169.97, NNZs: 37337, Bias: -1.335996, T: 2088748, Avg. loss: 0.541578
Total training time: 1.28 seconds.
-- Epoch 5
Norm: 142.67, NNZs: 36940, Bias: -1.575590, T: 2610935, Avg. loss: 0.386590
Total training time: 1.46 seconds.
-- Epoch 6
Norm: 171.57, NNZs: 37399, Bias: -1.137722, T: 2610935, Avg. loss: 0.509895
Total training time: 1.49 seconds.
-- Epoch 6
Norm: 118.16, NNZs: 37077, Bias: -1.374983, T: 2610935, Avg. loss: 0.217068
Total training time: 1.52 seconds.
-- Epoch 6
Norm: 113.18, NNZs: 36939, Bias: -1.660853, T: 2610935, Avg. loss: 0.189184
Total training time: 1.55 seconds.
-- Epoch 6
Norm: 133.26, NNZs: 35543, Bias: -1.505106, T: 3133122, Avg. loss: 0.333129
Total training time: 1.59 seconds.
-- Epoch 7
Norm: 163.21, NNZs: 37352, Bias: -1.249988, T: 2610935, Avg. loss: 0.523599
Total training time: 1.64 seconds.
-- Epoch 6
Norm: 112.62, NNZs: 37122, Bias: -1.349333, T: 3133122, Avg. loss: 0.211330
Total training time: 1.81 seconds.
-- Epoch 7
Norm: 167.07, NNZs: 37400, Bias: -1.152601, T: 3133122, Avg. loss: 0.497132
Total training time: 1.85 seconds.
-- Epoch 7
Norm: 137.27, NNZs: 37003, Bias: -1.440040, T: 3133122, Avg. loss: 0.378094
Total training time: 1.83 seconds.
-- Epoch 7
Norm: 130.37, NNZs: 35606, Bias: -1.430404, T: 3655309, Avg. loss: 0.328107
Total training time: 1.87 seconds.
-- Epoch 8
Norm: 107.79, NNZs: 37000, Bias: -1.613265, T: 3133122, Avg. loss: 0.184543
Total training time: 1.87 seconds.
-- Epoch 7
Norm: 158.85, NNZs: 37359, Bias: -1.239013, T: 3133122, Avg. loss: 0.511492
Total training time: 2.00 seconds.
-- Epoch 7
Norm: 108.23, NNZs: 37153, Bias: -1.293614, T: 3655309, Avg. loss: 0.207319
Total training time: 2.10 seconds.
-- Epoch 8
Norm: 128.56, NNZs: 35664, Bias: -1.465531, T: 4177496, Avg. loss: 0.324141
Total training time: 2.16 seconds.
-- Epoch 9
Norm: 103.84, NNZs: 37030, Bias: -1.560485, T: 3655309, Avg. loss: 0.181205
Total training time: 2.20 seconds.
-- Epoch 8
Norm: 163.42, NNZs: 37402, Bias: -1.144784, T: 3655309, Avg. loss: 0.489235
Total training time: 2.22 seconds.
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-- Epoch 8
Norm: 133.91, NNZs: 37031, Bias: -1.430053, T: 3655309, Avg. loss: 0.371696
Total training time: 2.20 seconds.
-- Epoch 8
Norm: 155.12, NNZs: 37363, Bias: -1.212708, T: 3655309, Avg. loss: 0.503037
Total training time: 2.37 seconds.
-- Epoch 8
Norm: 104.81, NNZs: 37172, Bias: -1.243639, T: 4177496, Avg. loss: 0.204386
Total training time: 2.40 seconds.
-- Epoch 9
Norm: 127.11, NNZs: 35696, Bias: -1.463909, T: 4699683, Avg. loss: 0.321378
Total training time: 2.44 seconds.
-- Epoch 10
Norm: 100.69, NNZs: 37050, Bias: -1.526634, T: 4177496, Avg. loss: 0.178778
Total training time: 2.52 seconds.
-- Epoch 9
Norm: 160.40, NNZs: 37405, Bias: -1.104108, T: 4177496, Avg. loss: 0.482781
Total training time: 2.58 seconds.
-- Epoch 9
Norm: 130.57, NNZs: 37059, Bias: -1.383276, T: 4177496, Avg. loss: 0.367050
Total training time: 2.57 seconds.
-- Epoch 9
Norm: 101.85, NNZs: 37188, Bias: -1.259478, T: 4699683, Avg. loss: 0.202182
Total training time: 2.69 seconds.
-- Epoch 10
Norm: 126.07, NNZs: 35738, Bias: -1.464982, T: 5221870, Avg. loss: 0.319141
Total training time: 2.73 seconds.
-- Epoch 11
Norm: 152.42, NNZs: 37364, Bias: -1.225642, T: 4177496, Avg. loss: 0.496826
Total training time: 2.73 seconds.
-- Epoch 9
Norm: 98.12, NNZs: 37073, Bias: -1.470048, T: 4699683, Avg. loss: 0.176941
Total training time: 2.85 seconds.
-- Epoch 10
Norm: 158.30, NNZs: 37405, Bias: -1.051860, T: 4699683, Avg. loss: 0.478211
Total training time: 2.95 seconds.
-- Epoch 10
Norm: 128.14, NNZs: 37075, Bias: -1.369116, T: 4699683, Avg. loss: 0.363634
Total training time: 2.94 seconds.
-- Epoch 10
Norm: 99.42, NNZs: 37195, Bias: -1.205442, T: 5221870, Avg. loss: 0.200388
Total training time: 2.98 seconds.
-- Epoch 11
Norm: 125.14, NNZs: 35757, Bias: -1.439000, T: 5744057, Avg. loss: 0.317268
Total training time: 3.01 seconds.
-- Epoch 12
Norm: 149.96, NNZs: 37370, Bias: -1.267810, T: 4699683, Avg. loss: 0.491971
Total training time: 3.10 seconds.
-- Epoch 10
Norm: 96.06, NNZs: 37095, Bias: -1.451079, T: 5221870, Avg. loss: 0.175365
Total training time: 3.18 seconds.
-- Epoch 11
Norm: 97.22, NNZs: 37205, Bias: -1.209968, T: 5744057, Avg. loss: 0.199035
Total training time: 3.27 seconds.
-- Epoch 12
Norm: 124.42, NNZs: 35780, Bias: -1.437333, T: 6266244, Avg. loss: 0.315803
Total training time: 3.29 seconds.
-- Epoch 13
Norm: 156.49, NNZs: 37405, Bias: -1.104196, T: 5221870, Avg. loss: 0.474072
Total training time: 3.31 seconds.
-- Epoch 11

(continues on next page)
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Norm: 125.91, NNZs: 37095, Bias: -1.350864, T: 5221870, Avg. loss: 0.360769
Total training time: 3.32 seconds.
-- Epoch 11
Norm: 147.85, NNZs: 37374, Bias: -1.248811, T: 5221870, Avg. loss: 0.488246
Total training time: 3.46 seconds.
-- Epoch 11
Norm: 94.17, NNZs: 37108, Bias: -1.408897, T: 5744057, Avg. loss: 0.174297
Total training time: 3.51 seconds.
-- Epoch 12
Norm: 95.36, NNZs: 37218, Bias: -1.171307, T: 6266244, Avg. loss: 0.197882
Total training time: 3.56 seconds.
-- Epoch 13
Norm: 123.68, NNZs: 35804, Bias: -1.484681, T: 6788431, Avg. loss: 0.314356
Total training time: 3.57 seconds.
-- Epoch 14
Norm: 154.48, NNZs: 37405, Bias: -1.084382, T: 5744057, Avg. loss: 0.471331
Total training time: 3.67 seconds.
-- Epoch 12
Norm: 124.08, NNZs: 37103, Bias: -1.325807, T: 5744057, Avg. loss: 0.358538
Total training time: 3.69 seconds.
-- Epoch 12
Norm: 93.75, NNZs: 37225, Bias: -1.164110, T: 6788431, Avg. loss: 0.196876
Total training time: 3.84 seconds.
-- Epoch 14
Norm: 123.22, NNZs: 35817, Bias: -1.440790, T: 7310618, Avg. loss: 0.313391
Total training time: 3.85 seconds.
-- Epoch 15
Norm: 92.55, NNZs: 37119, Bias: -1.389629, T: 6266244, Avg. loss: 0.173379
Total training time: 3.84 seconds.
-- Epoch 13
Norm: 146.14, NNZs: 37375, Bias: -1.153201, T: 5744057, Avg. loss: 0.485277
Total training time: 3.83 seconds.
-- Epoch 12
Norm: 153.22, NNZs: 37405, Bias: -1.094359, T: 6266244, Avg. loss: 0.468621
Total training time: 4.03 seconds.
-- Epoch 13
Norm: 122.38, NNZs: 37112, Bias: -1.275066, T: 6266244, Avg. loss: 0.356526
Total training time: 4.06 seconds.
-- Epoch 13
Norm: 122.59, NNZs: 35829, Bias: -1.438006, T: 7832805, Avg. loss: 0.312608
Total training time: 4.13 seconds.
-- Epoch 16
Norm: 92.30, NNZs: 37230, Bias: -1.161619, T: 7310618, Avg. loss: 0.196101
Total training time: 4.13 seconds.
-- Epoch 15
Norm: 91.10, NNZs: 37126, Bias: -1.376473, T: 6788431, Avg. loss: 0.172595
Total training time: 4.16 seconds.
-- Epoch 14
Norm: 144.55, NNZs: 37376, Bias: -1.218568, T: 6266244, Avg. loss: 0.482629
Total training time: 4.19 seconds.
-- Epoch 13
Norm: 151.83, NNZs: 37405, Bias: -1.086403, T: 6788431, Avg. loss: 0.466587
Total training time: 4.39 seconds.
-- Epoch 14
Norm: 122.16, NNZs: 35835, Bias: -1.404379, T: 8354992, Avg. loss: 0.311554
Total training time: 4.41 seconds.
-- Epoch 17
Norm: 91.03, NNZs: 37232, Bias: -1.152392, T: 7832805, Avg. loss: 0.195366
Total training time: 4.42 seconds.
-- Epoch 16
Norm: 121.01, NNZs: 37120, Bias: -1.323271, T: 6788431, Avg. loss: 0.354857
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Total training time: 4.44 seconds.
-- Epoch 14
Norm: 89.78, NNZs: 37132, Bias: -1.393862, T: 7310618, Avg. loss: 0.171843
Total training time: 4.51 seconds.
-- Epoch 15
Norm: 143.38, NNZs: 37376, Bias: -1.217295, T: 6788431, Avg. loss: 0.480415
Total training time: 4.57 seconds.
-- Epoch 14
Norm: 121.82, NNZs: 35842, Bias: -1.377545, T: 8877179, Avg. loss: 0.310999
Total training time: 4.68 seconds.
-- Epoch 18
Norm: 89.83, NNZs: 37236, Bias: -1.175119, T: 8354992, Avg. loss: 0.194731
Total training time: 4.70 seconds.
-- Epoch 17
Norm: 150.75, NNZs: 37405, Bias: -1.079330, T: 7310618, Avg. loss: 0.464582
Total training time: 4.75 seconds.
-- Epoch 15
Norm: 119.71, NNZs: 37126, Bias: -1.244118, T: 7310618, Avg. loss: 0.353777
Total training time: 4.82 seconds.
-- Epoch 15
Norm: 88.64, NNZs: 37134, Bias: -1.367492, T: 7832805, Avg. loss: 0.171274
Total training time: 4.83 seconds.
-- Epoch 16
Norm: 142.04, NNZs: 37377, Bias: -1.192788, T: 7310618, Avg. loss: 0.478759
Total training time: 4.87 seconds.
-- Epoch 15
Norm: 121.53, NNZs: 35850, Bias: -1.410848, T: 9399366, Avg. loss: 0.310291
Total training time: 4.95 seconds.
-- Epoch 19
Norm: 88.73, NNZs: 37240, Bias: -1.146500, T: 8877179, Avg. loss: 0.194189
Total training time: 4.98 seconds.
-- Epoch 18
Norm: 149.66, NNZs: 37405, Bias: -1.025816, T: 7832805, Avg. loss: 0.463129
Total training time: 5.09 seconds.
-- Epoch 16
Norm: 87.59, NNZs: 37137, Bias: -1.338993, T: 8354992, Avg. loss: 0.170799
Total training time: 5.16 seconds.
Convergence after 16 epochs took 5.16 seconds
Norm: 140.98, NNZs: 37378, Bias: -1.191497, T: 7832805, Avg. loss: 0.477089
Total training time: 5.17 seconds.
-- Epoch 16
Norm: 118.56, NNZs: 37133, Bias: -1.275177, T: 7832805, Avg. loss: 0.352552
Total training time: 5.19 seconds.
-- Epoch 16
Norm: 121.13, NNZs: 35852, Bias: -1.386067, T: 9921553, Avg. loss: 0.309652
Total training time: 5.22 seconds.
-- Epoch 20
Norm: 87.80, NNZs: 37241, Bias: -1.116436, T: 9399366, Avg. loss: 0.193698
Total training time: 5.25 seconds.
Convergence after 18 epochs took 5.25 seconds

[Parallel(n_jobs=-1)]: Done 2 out of 6 | elapsed: 5.3s remaining: 10.6s

Norm: 148.73, NNZs: 37405, Bias: -1.046856, T: 8354992, Avg. loss: 0.461690
Total training time: 5.44 seconds.
-- Epoch 17
Norm: 121.05, NNZs: 35857, Bias: -1.384460, T: 10443740, Avg. loss: 0.309075
Total training time: 5.50 seconds.
-- Epoch 21

(continues on next page)
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Norm: 140.07, NNZs: 37379, Bias: -1.177948, T: 8354992, Avg. loss: 0.475676
Total training time: 5.54 seconds.
-- Epoch 17
Norm: 117.56, NNZs: 37136, Bias: -1.294708, T: 8354992, Avg. loss: 0.351373
Total training time: 5.56 seconds.
-- Epoch 17
Norm: 120.81, NNZs: 35869, Bias: -1.375922, T: 10965927, Avg. loss: 0.308701
Total training time: 5.77 seconds.
Convergence after 21 epochs took 5.77 seconds
Norm: 147.81, NNZs: 37405, Bias: -1.039440, T: 8877179, Avg. loss: 0.460558
Total training time: 5.79 seconds.
-- Epoch 18
Norm: 139.18, NNZs: 37380, Bias: -1.162537, T: 8877179, Avg. loss: 0.474609
Total training time: 5.89 seconds.
-- Epoch 18
Norm: 116.50, NNZs: 37140, Bias: -1.292449, T: 8877179, Avg. loss: 0.350666
Total training time: 5.91 seconds.
-- Epoch 18
Norm: 147.02, NNZs: 37405, Bias: -1.056075, T: 9399366, Avg. loss: 0.459475
Total training time: 6.16 seconds.
-- Epoch 19
Norm: 138.34, NNZs: 37380, Bias: -1.124137, T: 9399366, Avg. loss: 0.473367
Total training time: 6.25 seconds.
-- Epoch 19
Norm: 115.65, NNZs: 37142, Bias: -1.300770, T: 9399366, Avg. loss: 0.349788
Total training time: 6.27 seconds.
-- Epoch 19
Norm: 146.34, NNZs: 37405, Bias: -1.042664, T: 9921553, Avg. loss: 0.458375
Total training time: 6.53 seconds.
-- Epoch 20
Norm: 137.66, NNZs: 37383, Bias: -1.129650, T: 9921553, Avg. loss: 0.472506
Total training time: 6.60 seconds.
-- Epoch 20
Norm: 114.86, NNZs: 37143, Bias: -1.250730, T: 9921553, Avg. loss: 0.349037
Total training time: 6.61 seconds.
-- Epoch 20
Norm: 145.62, NNZs: 37405, Bias: -1.032389, T: 10443740, Avg. loss: 0.457693
Total training time: 6.88 seconds.
-- Epoch 21
Norm: 137.01, NNZs: 37383, Bias: -1.119291, T: 10443740, Avg. loss: 0.471555
Total training time: 6.89 seconds.
-- Epoch 21
Norm: 113.98, NNZs: 37146, Bias: -1.237537, T: 10443740, Avg. loss: 0.348467
Total training time: 6.95 seconds.
-- Epoch 21
Norm: 136.37, NNZs: 37383, Bias: -1.136997, T: 10965927, Avg. loss: 0.470758
Total training time: 7.18 seconds.
-- Epoch 22
Norm: 145.04, NNZs: 37406, Bias: -1.056571, T: 10965927, Avg. loss: 0.456832
Total training time: 7.21 seconds.
-- Epoch 22
Norm: 113.30, NNZs: 37149, Bias: -1.265502, T: 10965927, Avg. loss: 0.347908
Total training time: 7.30 seconds.
Convergence after 21 epochs took 7.30 seconds
Norm: 135.71, NNZs: 37383, Bias: -1.137318, T: 11488114, Avg. loss: 0.470119
Total training time: 7.46 seconds.
-- Epoch 23
Norm: 144.41, NNZs: 37406, Bias: -1.044690, T: 11488114, Avg. loss: 0.456202
Total training time: 7.51 seconds.
-- Epoch 23
Norm: 135.18, NNZs: 37383, Bias: -1.126682, T: 12010301, Avg. loss: 0.469384

(continues on next page)
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Total training time: 7.74 seconds.
Convergence after 23 epochs took 7.74 seconds
Norm: 143.94, NNZs: 37406, Bias: -1.031312, T: 12010301, Avg. loss: 0.455551
Total training time: 7.79 seconds.
-- Epoch 24
Norm: 143.41, NNZs: 37406, Bias: -1.047508, T: 12532488, Avg. loss: 0.454907
Total training time: 8.06 seconds.
Convergence after 24 epochs took 8.06 seconds

[Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 8.1s finished

SGDClassifier(alpha=1e-06, n_jobs=-1, verbose=1)

y_train_pred = sgdsvm.predict(X_train)
y_test_pred = sgdsvm.predict(X_test)

show_accuracy(y_train, y_train_pred)
show_accuracy(y_test, y_test_pred)

correct classification rate: 0.5322 (random guessing: 0.1667)
correct classification rate (gender): 0.7157 (random guessing: 0.5000)
correct classification rate (age): 0.6922 (random guessing: 0.3333)

correct classification rate: 0.4530 (random guessing: 0.1667)
correct classification rate (gender): 0.6695 (random guessing: 0.5000)
correct classification rate (age): 0.6397 (random guessing: 0.3333)

Results are slightly better than with naive Bayes. LinearSVC should yield similar results because the same opti-
mization problem is solved with a different algorithm.

import sklearn.svm as svm
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linearsvm = svm.LinearSVC(C=1e6, tol=1e-3, max_iter=100, dual='auto')
linearsvm.fit(X_train, y_train)

LinearSVC(C=1000000.0, dual='auto', max_iter=100, tol=0.001)

The minimization algorithm shows very slow convergence. Stopping before convergence usually yields low prediction
quality.

y_train_pred = linearsvm.predict(X_train)
y_test_pred = linearsvm.predict(X_test)

show_accuracy(y_train, y_train_pred)
show_accuracy(y_test, y_test_pred)

correct classification rate: 0.5743 (random guessing: 0.1667)
correct classification rate (gender): 0.7393 (random guessing: 0.5000)
correct classification rate (age): 0.7233 (random guessing: 0.3333)

correct classification rate: 0.4520 (random guessing: 0.1667)
correct classification rate (gender): 0.6696 (random guessing: 0.5000)
correct classification rate (age): 0.6392 (random guessing: 0.3333)

Kernel SVM

To improve prediction quality we could use a nonlinear kernel. This is supported by SVC, but requires much more
computation time for training as well as for prediction.
Alternatively, we could first transform features and then train a linear classifier. But we have almost 40000 features.
Using polynomial features of degree 2 would result in approximately 400002

2 , that is, almost 1 billion features.

kernelsvm = svm.SVC(kernel='rbf', C=1e6, tol=1e-5, max_iter=100)
kernelsvm.fit(X_train, y_train)
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/opt/conda/envs/python3/lib/python3.11/site-packages/sklearn/svm/_base.py:297:␣
↪ConvergenceWarning: Solver terminated early (max_iter=100). Consider pre-
↪processing your data with StandardScaler or MinMaxScaler.
warnings.warn(

SVC(C=1000000.0, max_iter=100, tol=1e-05)

y_train_pred = kernelsvm.predict(X_train)
y_test_pred = kernelsvm.predict(X_test)

show_accuracy(y_train, y_train_pred)
show_accuracy(y_test, y_test_pred)

correct classification rate: 0.1762 (random guessing: 0.1667)
correct classification rate (gender): 0.4912 (random guessing: 0.5000)
correct classification rate (age): 0.3589 (random guessing: 0.3333)

correct classification rate: 0.1754 (random guessing: 0.1667)
correct classification rate (gender): 0.4933 (random guessing: 0.5000)
correct classification rate (age): 0.3569 (random guessing: 0.3333)

Again minimization did not converge in acceptable time and predictions are not satisfying.
Scikit-Learn provides a technique known as kernel approximation. The idea is to mimic the behavior of a kernel
by an inner product in a relatively low dimensional space. Using kernel approximation we should get similar results
like from a kernel SVM, but from a linear SVM on a low dimensional space. See Random Features for Large-Scale
Kernel Machines305, especially Section 1, for some more background.

import sklearn.kernel_approximation as kernel_approximation

Kernel approximation requires very much memory. Avoid parallelization (parameter n_jobs) to save memory. The
values for 𝛼 and 𝛾 below were obtained via hyperparameter optimization (took several days).
305 https://people.eecs.berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf
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# cell execution takes several minutes and requires 70 GB of memory

rbf = kernel_approximation.RBFSampler(n_components=10000, gamma=0.13)
X_train_rbf = rbf.fit_transform(X_train)
X_test_rbf = rbf.transform(X_test)

rbfsvm = linear_model.SGDClassifier(loss='hinge', penalty='l2', alpha=0.00390625,
verbose=1, n_jobs=-1, tol=1e-3, max_iter=100)

rbfsvm.fit(X_train_rbf, y_train)

[Parallel(n_jobs=-1)]: Using backend ThreadingBackend with 20 concurrent␣
↪workers.

-- Epoch 1-- Epoch 1

-- Epoch 1
-- Epoch 1
-- Epoch 1
-- Epoch 1
Norm: 0.09, NNZs: 10000, Bias: -1.005309, T: 522187, Avg. loss: 0.174627
Total training time: 11.02 seconds.
-- Epoch 2
Norm: 0.07, NNZs: 10000, Bias: -1.004696, T: 522187, Avg. loss: 0.193802
Total training time: 11.12 seconds.
-- Epoch 2
Norm: 0.19, NNZs: 10000, Bias: -1.005802, T: 522187, Avg. loss: 0.338775
Total training time: 12.17 seconds.
-- Epoch 2
Norm: 0.12, NNZs: 10000, Bias: -1.002819, T: 522187, Avg. loss: 0.354316
Total training time: 12.33 seconds.
-- Epoch 2
Norm: 0.12, NNZs: 10000, Bias: -1.000431, T: 522187, Avg. loss: 0.469682
Total training time: 13.28 seconds.
-- Epoch 2
Norm: 0.12, NNZs: 10000, Bias: -1.002134, T: 522187, Avg. loss: 0.476062
Total training time: 13.32 seconds.
-- Epoch 2
Norm: 0.07, NNZs: 10000, Bias: -1.002831, T: 1044374, Avg. loss: 0.174006
Total training time: 23.26 seconds.
-- Epoch 3
Norm: 0.05, NNZs: 10000, Bias: -1.002826, T: 1044374, Avg. loss: 0.193173
Total training time: 23.29 seconds.
-- Epoch 3
Norm: 0.15, NNZs: 10000, Bias: -1.005076, T: 1044374, Avg. loss: 0.337748
Total training time: 26.07 seconds.
-- Epoch 3
Norm: 0.09, NNZs: 10000, Bias: -1.001710, T: 1044374, Avg. loss: 0.353110
Total training time: 26.12 seconds.
-- Epoch 3
Norm: 0.09, NNZs: 10000, Bias: -0.999915, T: 1044374, Avg. loss: 0.468034
Total training time: 28.09 seconds.
-- Epoch 3
Norm: 0.09, NNZs: 10000, Bias: -1.000301, T: 1044374, Avg. loss: 0.474449
Total training time: 28.51 seconds.
-- Epoch 3
Norm: 0.04, NNZs: 10000, Bias: -1.002124, T: 1566561, Avg. loss: 0.193149
Total training time: 35.85 seconds.
-- Epoch 4
Norm: 0.06, NNZs: 10000, Bias: -1.002027, T: 1566561, Avg. loss: 0.173986
Total training time: 38.03 seconds.

(continues on next page)
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(continued from previous page)

-- Epoch 4
Norm: 0.13, NNZs: 10000, Bias: -1.004452, T: 1566561, Avg. loss: 0.337721
Total training time: 39.54 seconds.
-- Epoch 4
Norm: 0.07, NNZs: 10000, Bias: -1.001182, T: 1566561, Avg. loss: 0.353068
Total training time: 39.75 seconds.
-- Epoch 4
Norm: 0.07, NNZs: 10000, Bias: -0.999728, T: 1566561, Avg. loss: 0.467977
Total training time: 46.13 seconds.
-- Epoch 4
Norm: 0.07, NNZs: 10000, Bias: -1.000222, T: 1566561, Avg. loss: 0.474392
Total training time: 46.56 seconds.
-- Epoch 4
Norm: 0.04, NNZs: 10000, Bias: -1.001369, T: 2088748, Avg. loss: 0.193139
Total training time: 48.33 seconds.
-- Epoch 5
Norm: 0.12, NNZs: 10000, Bias: -1.003747, T: 2088748, Avg. loss: 0.337711
Total training time: 53.12 seconds.
-- Epoch 5
Norm: 0.06, NNZs: 10000, Bias: -1.001167, T: 2088748, Avg. loss: 0.353051
Total training time: 53.53 seconds.
-- Epoch 5
Norm: 0.05, NNZs: 10000, Bias: -1.001559, T: 2088748, Avg. loss: 0.173979
Total training time: 54.16 seconds.
-- Epoch 5
Norm: 0.03, NNZs: 10000, Bias: -1.001132, T: 2610935, Avg. loss: 0.193134
Total training time: 60.81 seconds.
-- Epoch 6
Norm: 0.06, NNZs: 10000, Bias: -0.999880, T: 2088748, Avg. loss: 0.467954
Total training time: 63.45 seconds.
-- Epoch 5
Norm: 0.06, NNZs: 10000, Bias: -1.000137, T: 2088748, Avg. loss: 0.474368
Total training time: 63.81 seconds.
-- Epoch 5
Norm: 0.11, NNZs: 10000, Bias: -1.002949, T: 2610935, Avg. loss: 0.337706
Total training time: 66.07 seconds.
-- Epoch 6
Norm: 0.06, NNZs: 10000, Bias: -1.000917, T: 2610935, Avg. loss: 0.353042
Total training time: 66.61 seconds.
-- Epoch 6
Norm: 0.05, NNZs: 10000, Bias: -1.000998, T: 2610935, Avg. loss: 0.173974
Total training time: 67.14 seconds.
-- Epoch 6
Norm: 0.03, NNZs: 10000, Bias: -1.000767, T: 3133122, Avg. loss: 0.193130
Total training time: 71.86 seconds.
Convergence after 6 epochs took 71.86 seconds
Norm: 0.06, NNZs: 10000, Bias: -0.999961, T: 2610935, Avg. loss: 0.467942
Total training time: 78.22 seconds.
-- Epoch 6
Norm: 0.05, NNZs: 10000, Bias: -1.000163, T: 2610935, Avg. loss: 0.474355
Total training time: 78.77 seconds.
-- Epoch 6
Norm: 0.11, NNZs: 10000, Bias: -1.002777, T: 3133122, Avg. loss: 0.337703
Total training time: 79.11 seconds.
-- Epoch 7
Norm: 0.05, NNZs: 10000, Bias: -1.000635, T: 3133122, Avg. loss: 0.353037
Total training time: 79.93 seconds.
-- Epoch 7
Norm: 0.04, NNZs: 10000, Bias: -1.000990, T: 3133122, Avg. loss: 0.173972
Total training time: 80.23 seconds.
Convergence after 6 epochs took 80.23 seconds
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[Parallel(n_jobs=-1)]: Done 2 out of 6 | elapsed: 1.3min remaining: 2.7min

Norm: 0.10, NNZs: 10000, Bias: -1.002764, T: 3655309, Avg. loss: 0.337700
Total training time: 93.07 seconds.
Convergence after 7 epochs took 93.07 seconds
Norm: 0.05, NNZs: 10000, Bias: -0.999862, T: 3133122, Avg. loss: 0.467934
Total training time: 93.08 seconds.
-- Epoch 7
Norm: 0.05, NNZs: 10000, Bias: -1.000170, T: 3133122, Avg. loss: 0.474347
Total training time: 93.70 seconds.
-- Epoch 7
Norm: 0.05, NNZs: 10000, Bias: -1.000561, T: 3655309, Avg. loss: 0.353033
Total training time: 93.97 seconds.
Convergence after 7 epochs took 93.97 seconds
Norm: 0.05, NNZs: 10000, Bias: -1.000004, T: 3655309, Avg. loss: 0.467928
Total training time: 107.42 seconds.
Convergence after 7 epochs took 107.42 seconds
Norm: 0.04, NNZs: 10000, Bias: -1.000248, T: 3655309, Avg. loss: 0.474341
Total training time: 108.28 seconds.
Convergence after 7 epochs took 108.28 seconds

[Parallel(n_jobs=-1)]: Done 6 out of 6 | elapsed: 1.8min finished

SGDClassifier(alpha=0.00390625, max_iter=100, n_jobs=-1, verbose=1)

y_train_pred = rbfsvm.predict(X_train_rbf)
y_test_pred = rbfsvm.predict(X_test_rbf)

show_accuracy(y_train, y_train_pred)
show_accuracy(y_test, y_test_pred)

correct classification rate: 0.4220 (random guessing: 0.1667)
correct classification rate (gender): 0.6626 (random guessing: 0.5000)
correct classification rate (age): 0.5989 (random guessing: 0.3333)

correct classification rate: 0.3964 (random guessing: 0.1667)
correct classification rate (gender): 0.6465 (random guessing: 0.5000)
correct classification rate (age): 0.5807 (random guessing: 0.3333)
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Prediction quality on training set:

correct classification rate: 0.4348 (random guessing: 0.1667)
correct classification rate (gender): 0.6607 (random guessing: 0.5000)
correct classification rate (age): 0.6243 (random guessing: 0.3333)

Prediction quality on test set:

correct classification rate: 0.4105 (random guessing: 0.1667)
correct classification rate (gender): 0.6466 (random guessing: 0.5000)
correct classification rate (age): 0.6095 (random guessing: 0.3333)

We see that prediction quality is not as good as for fast and simple naive Bayes classification or linear SVC. A reason
might be lack of data. Although we have more than 500000 training samples the data set is very sparse in a 37000
dimensional space. If we wanted to have at least one sample per vertex of a 37000 dimensional cube, we would
require 237000 = (237)1000 > (1011)1000 = 1011000 samples. It’s very likely that our classes can be seprated by
hyperplanes without need for nonlinear separation.

13.2.5 Decision Tree

Due to their simplicity decision trees are well suited for large scale classification problems, too. As we will see below,
prediction quality is not as good as with naive Bayes. But for sake of completeness we provide some variants here.

Simple Decision Tree

Scikit-Learn’s DecisionTreeClassifier306 by default yields a fully grown tree. With more than 37000 fea-
tures and more than 500000 samples the tree would be too large to fit into memory. Thus, we cannot use pruning,
but have to limit the tree’s size in advance.

import sklearn.tree as tree

dtc = tree.DecisionTreeClassifier(max_depth=10)
dtc.fit(X_train, y_train)

DecisionTreeClassifier(max_depth=10)

y_train_pred = dtc.predict(X_train)
y_test_pred = dtc.predict(X_test)

show_accuracy(y_train, y_train_pred)
show_accuracy(y_test, y_test_pred)

306 https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
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correct classification rate: 0.3101 (random guessing: 0.1667)
correct classification rate (gender): 0.5736 (random guessing: 0.5000)
correct classification rate (age): 0.5356 (random guessing: 0.3333)

correct classification rate: 0.3013 (random guessing: 0.1667)
correct classification rate (gender): 0.5691 (random guessing: 0.5000)
correct classification rate (age): 0.5300 (random guessing: 0.3333)

Random Forest

Applying bagging to decision trees is known as random forests. Scikit-Learn’s RandomForestClassifier307
trains a number of decision trees and then calculates average class probabilites. The class with the highest averaged
probability is used as prediction. Again we have to limit the size of the trees.

import sklearn.ensemble as ensemble

rf = ensemble.RandomForestClassifier(n_estimators=100, max_depth=10)
rf.fit(X_train, y_train)

RandomForestClassifier(max_depth=10)

show_accuracy(y_train, y_train_pred)
show_accuracy(y_test, y_test_pred)

correct classification rate: 0.3101 (random guessing: 0.1667)
correct classification rate (gender): 0.5736 (random guessing: 0.5000)
correct classification rate (age): 0.5356 (random guessing: 0.3333)

307 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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correct classification rate: 0.3013 (random guessing: 0.1667)
correct classification rate (gender): 0.5691 (random guessing: 0.5000)
correct classification rate (age): 0.5300 (random guessing: 0.3333)

Boosted Trees

Wemay use AdaBoost in conjuction with decision stumps (trees with depth 1). This is the default behavior of Scikit-
Learn’s AdaBoostClassifier308.

ada = ensemble.AdaBoostClassifier(n_estimators=100)
ada.fit(X_train, y_train)

AdaBoostClassifier(n_estimators=100)

y_train_pred = ada.predict(X_train)
y_test_pred = ada.predict(X_test)

show_accuracy(y_train, y_train_pred)
show_accuracy(y_test, y_test_pred)

correct classification rate: 0.3560 (random guessing: 0.1667)
correct classification rate (gender): 0.6050 (random guessing: 0.5000)
correct classification rate (age): 0.5800 (random guessing: 0.3333)

308 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
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correct classification rate: 0.3540 (random guessing: 0.1667)
correct classification rate (gender): 0.6020 (random guessing: 0.5000)
correct classification rate (age): 0.5805 (random guessing: 0.3333)
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DATA VISUALIZATION

• Matplotlib Basics (page 437)
• Advanced Matplotlib (page 439)

14.1 Matplotlib Basics

Before solving these exercises you should have read Matplotlib Basics (page 5).

import numpy as np
import matplotlib.pyplot as plt

14.1.1 Simple Function Plot

Plot the sine function for angles from 0 to 2𝜋. Label the axes and show a title. Use a red line without markers.
Solution:

# your solution

14.1.2 Synchronized Axes

Create a figure containing sin(𝑥) and 2 cos(𝑥) for 𝑥 ∈ [0, 2 𝜋] next to each other and having identical vertical axes.
Solution:

# your solution

14.1.3 Plotting Poles

Plot 𝑓(𝑥) = tan(𝑥) for 𝑥 ∈ [−𝜋, 𝜋] and 𝑓(𝑥) ∈ [−10, 10]. Add dashed vertical lines at the poles.
Solution:

# your solution
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14.1.4 Parametric Curves

Plot a curve (𝑥(𝑡), 𝑦(𝑡)) in the plane. Align plots of 𝑥(𝑡) and 𝑦(𝑡) properly below and beside the curve plot, respec-
tively. As an example you could use 𝑥(𝑡) = cos 𝑡 + 2 sin(2 𝑡) and 𝑦(𝑡) = sin(𝑡) + 2 cos(3 𝑡) for 𝑡 ∈ [0, 2 𝜋].
Solution:

# your solution

14.1.5 Ticks and Grids

Plot 𝑓(𝑥) = sin(𝑥) for 𝑥 ∈ [−1, 7]. Place major tick labels at multiples of 𝜋 and minor tick labels at multiples of
𝜋/2. The y axis should have major ticks at −1, 0, 1 and minor ticks in between. Activate grid lines for minor and
major ticks on x axis and for major ticks on y axis. Further, use increased line width for grid lines at major ticks.
Solution:

# your solution

14.1.6 Circular Colorbar

Visualize the function 𝑓(𝑥, 𝑦) = arcsin(𝑥) + arccos(𝑦) + 𝜋/2 for (𝑥, 𝑦) ∈ [−1, 1] × [−1, 1] with a scatter plot of
uniformly distributed points with color given by the function values. Function values are angles in [0, 2 ⋅ 𝜋]. Thus,
colors at both ends of the colorbar should coincide. Create a circular colorbar next to the scatter plot.
Solution:

# your solution

14.1.7 Bent Arrows

Plot 𝑓(𝑥) = cos𝑥 for 𝑥 ∈ [−2 𝜋, 2 𝜋]. Add the text ‘two local minima’ to the plot and connect it with two arrows to
the minima. Take care that the arrows do not intersect with the graph.
Solution:

# your solution

14.1.8 Color Channels

Load the imagetux.png and plot it four times: original, red channel, green channel, blue channel (hint: a simple way
to create custom colormaps is matplotlib.colors.LinearSegmentedColormap.from_list309).
Solution:

# your solution

309 https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.LinearSegmentedColormap.html#matplotlib.colors.
LinearSegmentedColormap.from_list
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14.1.9 Pixelbased Postprocessing

Plot 𝑓(𝑥) = sin𝑥 for 𝑥 ∈ [−2 𝜋, 2 𝜋]. Fade out line ends with GIMP.
Solution:

# your solution

14.1.10 Vectorbased Postprocessing

Plot 𝑓(𝑥) = sin𝑥 for 𝑥 ∈ [−1, 7] and plot the sine approximations 𝑔(𝑥) = − 4
𝜋2 (𝑥 − 𝜋

2 )2 + 1 and ℎ(𝑥) =
− 4

𝜋2 (𝑥 − 3 𝜋
2 )2 − 1. Plot the region 𝑥 ∈ [𝜋 − 1

2 , 𝜋 + 1
2 ] in a separate figure. Save both figures as vector graphics

and add the detail view to the sine plot with Inkscape.
Solution:

# your solution

14.2 Advanced Matplotlib

Before solving these exercises you should have read Matplotlib (page 5).

14.2.1 Cycloids

Create a never ending animation which plots a curve in the following way: the pen is rotating around a center, which
itself rotates around the origin. Use different radiuses and rotation speeds for both rotations.
Solution:

# your solution
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FIFTEEN

WEATHER

We will work through several projects related to weather data and forecasting. Data will be obtained from Deutscher
Wetterdienst310.

• DWD Open Data Portal (page 443)
• Getting Forecasts (page 445)
• Climate Change (page 447)
• Weather Animation (page 448)

15.1 DWD Open Data Portal

Deutscher Wetterdienst (DWD)311 is Germany’s public authority for collecting, managing and publishing weather
data from around the world. DWD also creates weather forecasts for Germany and all other regions of the world.
Some years ago DWD launched an Open Data Portal312 and continually extends its services there.
DWD’s open data portal provides lots of data and is very complex. In this project we explore part of its structure and
locate data sources for subsequent projects.

15.1.1 Licensing

We want to use DWD’s data for education and research. Before we delve into the data we should check whether we
are allowed to do this and whether and how to attribute the source.
Task: Find out whether we are allowed to use DWD’s data for education and research puposes.
Solution:

# your answer

Task: Do we have to refer to DWD as data provider? If yes, how?
Solution:

# your answer

310 https://www.dwd.de
311 https://www.dwd.de
312 https://www.dwd.de/opendata
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15.1.2 Weather Stations

There are lots of weather stations at Germany collecting weather data. To locate wheather data on the map, we need
a list of stations and their geolocations.
Task: Find a list of all DWD weather stations at Germany measuring air temperature at least once per hour. The list
should containing geolocations (longitude, latitude, altitude) and other parameters. Get the URL, so we can download
it on demand.
Solution:

# your answer

Task: How many weather stations do we have in the list? List all parameters available for the stations.
Solution:

# your answer

Task: Get the station list for hourly precepitation measurements. How many stations do we have here?
Solution:

# your answer

15.1.3 Data

For each weather station we want to have access to all its historical and most recent measurements.
Task: Locate hourly temperature measurements for station Lichtentanne313. What’s the most recent measurement
(timestamp and temperatur)? What’s the oldest measurement available?
Solution:

# your answer

15.1.4 Metadata

Each station comes with extensive metadata telling a story about the station and its measurements.
Task: Answer the following questions from metadata of Lichtentanne station:

• Did the station move? If yes, when? Was it’s name changed, too?
• Has measurement equipment been replaced? If yes, when?
• What’s the time zone of timestamps in the data?

Solution:

# your answer

Whenever you find abnormalities in measurements, first check metadata!
313 https://www.openstreetmap.org/#map=16/50.6879/12.4329
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15.2 Getting Forecasts

The Open Data Portal314 of Deutscher Wetterdienst (DWD)315 provides detailed forecasts for Germany and all other
regions of the world in human and machine readable form. The machine readable service is called MOSMIX316. In
this project we

• collect information on how to use MOSMIX,
• automatically download newly published MOSMIX data,
• convert MOSMIX files to CSV files.

In this project we heavily rely on techniques presented in .

15.2.1 Investigating and Understanding MOSMIX

DWD’s open data portal is quite complex. Before we start downloading forecasts data we have to find information
on data location and format.
Task: Read about MOSMIX at DWD’s MOSMIX info page317. Follow relevant links and answer the following
questions:

• What are the differences between MOSMIX S and MOSMIX L?
• What’s the URL of the most recent MOSMIX L file for station ‘Zwickau’?
• What standard file formats are used for MOSMIX files (KMZ files)?
• How long MOSMIX files are available at DWD’s open data portal?

Solution:

# your answers

15.2.2 An Archive of Forecasts

MOSMIX data older than two days gets removed from DWD’s open data portal. To be able to analyze quality of
forecasts (that is, to compare them to real observations) we have to keep them in a local archive. For this purpose we
would have to visit DWD’s open data portal once a day and look for new MOSMIX files. Then we could download
them and add them to our local archive. With Python we may automate this job.
Task: Write a functionget_available_mosmix_fileswhich scrapes a list of URLs of all currently available
MOSMIX L files for a selected station from DWD open data portal. Arguments:

• station ID (string).
Return value:

• URLs (list of strings).
Solution:

# your solution

Now it’s time to download the files. Maybe we already downloaded some of them yesterday. So we should have a
look in our archive directory first to avoid downloading more files than necessary.
Task: Write a function download_files which downloads all new files from a list of URLs. Arguments:
314 https://www.dwd.de/opendata
315 https://www.dwd.de
316 https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html
317 https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html
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• URLs (list of strings),
• archive path (string).

Return value:
• names of new files (list of strings).

Hints:
• To check whether a file already exists, have a look at os.path.isfile318.
• Read and write in binary mode because KMZ files aren’t text files.

Solution:

# your solution

15.2.3 KMZ to CSV

Now that we have MOSMIX files in our local storage we should convert them to CSV files. Each row shall contain
all weather parameters for a fixed point of time. First column is the time stamp. All other columns contain all the
weather parameters contained in the MOSMIX files.
Task: Write a function kmz_to_csv for converting a list of KMZ files to CSV files. Arguments:

• archive path (string),
• list of file names (list of strings).

No return value.
Hint: MOSMIX files use an XML feature known as namespaces. Consequently, tag names contain collons, which
confuses Beautiful Soup’s standard HTML parser (which also parses simple XML files). To get MOSMIX files parsed
correctly, install the lxmlmodule and provide a second argument 'xml' to Beautiful Soup’s constructor. This tells
Beautiful Soup to use a dedicated XML parser, which by default is lxml.
Solution:

# your solution

15.2.4 Automatic Daily Download

To collect forecasts over a longer period of time we have to run the developed code once per day. We could implement
a loop and use time.sleep to make Python wait one day before continuing with the next run. The better (simpler
and more efficient) solution is to tell the operating system to run the Python program each day at a fixed time.
On Linux and macOS there is cron (and anacron) for scheduling tasks. On Windows there is the Task Scheduler.
Task: Find out the details about scheduling a daily task on your system. Then make a Python script file from your
code above and let it run once per day.
Solution:

# your steps to schedule a task

318 https://docs.python.org/3/library/os.path.html#os.path.isfile
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15.3 Climate Change

In this project we download historic weather data from DWD Open Data Portal319 and have a look at annual mean
temperatures and other values at different locations in Germany.
In this project we heavily rely on techniques presented in and as well as on knowledge obtained in the DWD Open
Data Portal (page 443) project.
We use the DWD data set Historical daily station observations for Germany320, see description321.

15.3.1 Station List

The first step is to get a list of all weather stations in Germany.
Task: Download the station list from DWD Open Data Portal322, make a nice data frame from it, and save it to a
CSV file. Columns:

• 'id' (DWD station ID, use as index, integer),
• 'name' (string),
• 'latitude' (float),
• 'longitude' (float),
• 'altitude' (integer),
• 'first' (date of first measurement, timestamp),
• 'last' (date of last measurement, timestamp).

Hint: pandas.read_fwf323 is your friend.
Solution:

# your solution

15.3.2 Download Measurements

Task: Get a list of file names of all ZIP files of the data set.
Hint: A good idea is to construct file names from data in the station list (ID, first and last day of measurement). But
it turns out that dates in the list in the file names do not coincide for several files. Thus, we have to scrape file names
from the data set’s file listing324.
Solution:

# your solution

Task: Process all files. Processing steps are:
1. Download the file.
2. Read the data file contained in the ZIP file.
3. Drop and rename colums and adjust types (see below).

319 https://www.dwd.de/opendata
320 https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily/kl/historical
321 https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily/kl/historical/DESCRIPTION_obsgermany_

climate_daily_kl_historical_en.pdf
322 https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily/kl/historical/KL_Tageswerte_Beschreibung_

Stationen.txt
323 https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_fwf.html
324 https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily/kl/historical/
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4. Write data to a CSV file (one large CSV file for data from all stations).
Columns for CSV file:

• date (timestamp of measurement),
• id (station ID, integer),
• 'wind_gust', 'wind_speed', 'precipitation', 'sunshine', 'snow',
'clouds', 'pressure', 'temperature', 'humidity', 'max_temp', 'min_temp',
'min_temp_ground' (float).

Solution:

# your solution

15.3.3 Update Station List

Dates of first and last measurements are incorrect in the station list created above. Now, that we have the measure-
ments, we should correct the list.
Task: For each station get dates for first and last measurement and write them to the station list CSV file. Drop all
stations that do not have any measurements.

# your solution

15.3.4 Plots

Task: Use Series.plot to create different plots:
• mean annual temperature/precipitation/… for the station with highest number of years with measurements,
• mean annual temperature/precipitation/… in Germany (mean over all stations)
• minimum/maximum temperature in Germany for each year

# your solution

15.4 Weather Animation

Based on the data collected in the Climate Change (page 447) project here we want to create an animation showing
air temperature (or other measurements) over a period of time for all weather stations on a map of Germany.
Before you start read Animations (page 41).
Following features should be implemented:

• simple (non-interacitve) map of Germany showing at least the borders,
• color-coded temperatures at weather stations (scatter plot),
• one animation frame per day,
• time stamp of currently shown data in each frame.
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15.4.1 Prepare Data

For each frame we need following data:
• time stamp string to show during animation
• coordinates for all relevant weather stations,
• temperature for all stations.

Use data collected in Climate Change (page 447).
Task: Decide for a time period of several months to show in the animation. Collect required data. Create a list with
one item per frame. Each item shall be a dictionary with following keys:

• 'text' (time stamp string for frame),
• 'x' (NumPy array with longitudes of all stations to show in the frame),
• 'y' (NumPy array with latitudes of all stations to show in the frame),
• 'val' (NumPy array with temperature for all stations).

Save the list with pickle to a file.

# your solution

15.4.2 Visualize Data

Task: Load the data saved above and create a map of Germany with Cartopy. Plot with GeoAxes.scatter325
and use Matplotlib’s animationmodule to animate the arrows. Don’t forget to show time stamps in the animation.
Save the animation to an MP4 video file.

Hint: To avoid troubles with Matplotlib consider the following:
• At the moment Matplotlib does not support blitting when saving animations, but redrawing the whole map for
every frame is too slow. Thus, when updating the drawing remove artists not needed anymore by calling the
artists remove326 function and then create new artists. This way the background (map) is kept. It’s kind of
manual blitting.

• If your animation looks like the scatter dots are covered by parts of the map, then pass zorder=100 (or
some other high value) to scatter. This tells Matplotlib to draw the scatter object on top of all other objects
(if all other objects have lower z-order).

Solution:

# your solution

325 https://scitools.org.uk/cartopy/docs/latest/reference/generated/cartopy.mpl.geoaxes.GeoAxes.html#cartopy.mpl.geoaxes.GeoAxes.scatter
326 https://matplotlib.org/stable/api/_as_gen/matplotlib.artist.Artist.remove.html
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SIXTEEN

MNIST CHARACTER RECOGNITION

A major application of data science and artificial intelligence is recognition of handwritten characters. I a series of
projects we will implement different techniques for this task based on the famous MNIST data set (and related data
sets) for training recognition systems. MNIST is provided by the National Institute of Standards and Technology327

• The xMNIST Family of Data Sets (page 451)
• Load QMNIST (page 453)
• QMNIST Feature Reduction (page 455)
• PCA and ANN for QMNIST (page 456)
• CNN for QMNIST (page 456)
• CNN Analysis for QMNIST (page 456)
• IBAN recognition (page 457)
• SVM for QMNIST (page 459)

16.1 The xMNIST Family of Data Sets

In the project we have a first look at the MNIST data set and related data sets. In subsequent projects we’ll use these
data sets for training machine learning models.
A major benefit from the project is, that we see how difficult data preparation can be. As we’ll learn later on, obtaining
unbiased data is extremely important for training machine learning algorithms.

16.1.1 NIST special database 19

Task: Learn about NIST special data base 19 from
• NIST Special Database 19, Handprinted Forms and Characters Database328 (sections 1 and 2)
• NIST Special Database 19329

Answer the following questions:
• Who collected the data?
• What are the conditions for using the data set?
• Who wrote the characters and digits?
• How many images are in the data set?
• How much disk space is needed?

327 https://www.nist.gov
328 https://www.nist.gov/system/files/documents/srd/nistsd19.pdf
329 https://www.nist.gov/srd/nist-special-database-19
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Solution:

# your answers

16.1.2 MNIST

Task: Learn about MNIST data set from
• Wikipedia330

• The MNIST database of handwritten digits331

Answer the following questions:
• Who collected the data?
• What are the conditions for using the data set?
• How many images are in the data set?
• What subset of symbols is shown on the images?
• What’s the size of the images?
• How much disk space is needed?
• What preprocessing steps were done?
• What’s the up to now best error rate for digit recognition based on MNIST?

Solution:

# your answers

16.1.3 QMNIST

Task: Learn about QMNIST data set from
• Cold Case: the Lost MNIST Digits332

• QMNIST333

Answer the following questions:
• Who collected the data?
• What are the conditions for using the data set?
• How many images are in the data set?
• What’s the size of the images?
• How much disk space is needed?
• What preprocessing steps were done?
• Is QMNIST a superset of MNIST?

Solution:

# your answers

Task: Download the QMNIST data set.
330 https://en.wikipedia.org/wiki/MNIST_database
331 http://yann.lecun.com/exdb/mnist/
332 https://arxiv.org/pdf/1905.10498.pdf
333 https://github.com/facebookresearch/qmnist
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16.1.4 EMNIST

Task: Learn about EMNIST data set from
• EMNIST: an extension of MNIST to handwritten letters334 (section I and subsections A, B, C of section II)
• The EMNIST Dataset335

Answer the following questions:
• Who collected the data?
• What are the conditions for using the data set?
• How many images are in the data set?
• What’s the size of the images?
• How much disk space is needed?
• What preprocessing steps were done?
• Why EMNIST was created?

Solution:

# your answers

16.2 Load QMNIST

In this project we develop a Python module for loading and preprocessing QMNIST images and metadata. Prereq-
uisites:

•
• The xMNIST Family of Data Sets (page 451)

16.2.1 Reading Data

Task: Get QMNIST training and test data from QMNIST GitHub repository336 (4 files ending with ...
idx3-ubyte.gz or ...idx2-int.gz) and find information on the file format.
Task: Write a function load which reads images and metadata from the QMNIST files. Parameters:

• path: defaulting to '', path of directory with data files.
• subset: defaulting to 'train' (load training data), passing 'test' loads test data.
• as_list: defaulting to False (return one large array), passing True returns a list of images.

Return values:
• NumPy array of shape (60000, 28, 28) or list of 60000 NumPy arrays of shape (28, 28) (range
0…1, type float16), depending on parameter as_list.

• NumPy array of shape (60000, ) containing classes (type uint8).
• NumPy array of shape (60000, ) containing series IDs (type uint8).
• NumPy array of shape (60000, ) containing writer IDs (type uint16).

334 https://arxiv.org/pdf/1702.05373.pdf
335 https://www.nist.gov/itl/products-and-services/emnist-dataset
336 https://github.com/facebookresearch/qmnist
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Test your function and show first and last images of training and test data. Print corresponding metainformation. You
may use the code from to show images.

Hint: Going the obvious path via zipfile module and np.fromfile fails due to two problems:
1. Python’s zipfile module has some trouble reading the QMNIST files. Try the gzip module337 from

Python’s standard library instead.
2. NumPy’s fromfile is not compatible with file objects created by the gzip module. The fromfile

function will read compressed instead of uncompressed data (for some very knotty technical reasons). Thus,
read with the file object’s read method and use np.frombuffer.

Solution:

# your solution

16.2.2 Preprocessing

Before images can be used preprocessing steps might be appropriate. Given a list of preprocessing steps we would
like to have a function which applies all the steps to all images.
Task: Write a function preprocess which applies a list of preprocessing steps to all images. Parameters:

• images: large NumPy array or list of arrays (images to be processed).
• steps: list of functions; each function takes an image and returns an image.
• as_list: False (default) returns images in large array (and fails if image sizes differ after applying pre-
processing steps); True returns list of images.

Return values:
• list of processed images or large array of images, depening an parameter as_list.

Test your code with two preprocessing steps:
1. horizontal mirrowing,
2. color inversion (black to white, white to black).

Solution:

# your solution

16.2.3 Python Module

Task: Create a Python module qmnist.py providing both functions load and preprocess.
Solution:

# your solution

337 https://docs.python.org/3/library/gzip.html
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16.3 QMNIST Feature Reduction

In this project we apply PCA to QMNIST data. Read about Feature Reduction (page 97) before you start.

16.3.1 Preprocessing

Task: Use the Python module developed in Load QMNIST (page 453) to load the first 5000 QMNIST training
images.
Solution:

# your solution

Task: Use the above module to apply the following preprocessing steps from
• auto crop,
• center in 20x20 image

Solution:

# your solution

16.3.2 Relevant Components

Task: Perform a full PCA (no feature reduction) and plot standard deviations (square roots of variances) for all
principal components.
Solution:

# your solution

Task: Show the data set’s mean and the first 100 principal components as images. Scale principal components by
corresponding standard deviation and use same color map for all images.
Solution:

# your solution

Task: Transform all images by PCA with 15 components. For one images plot original and transformed image side
by side (you may use PCA.inverse_transform338 or implement calculations manually).
Solution:

# your solution

338 https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA.inverse_transform
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16.3.3 Visualization

We may use feature reduction techniques to visualize high-dimensional data sets.
Task: Use PCA to reduce the data set to 3 features. Plot the now 3d data set. Color classes differently.

# your solution

Task: Use PCA to reduce the data set to 4 features. Make pair plots for combinations of two features (use same
coloring as above).

# your solution

16.4 PCA and ANN for QMNIST

In this project we train a small ANN for handwritten digit recognition. Using PCA for preprocessing allows to reduce
the ANN’s size compared to the ANN in ANNs with Keras (page 233).
You may reuse code from Load QMNIST (page 453) and .
Task: Solve the QMNIST digit recognition task with a layered feedforward ANN and prior PCA feature reduction to
15 features. Try to get at least 90 percent correct classifications on the test set (without using the test set for training,
of course).
Solution:

# your solution

16.5 CNN for QMNIST

In this project we train a CNN for handwritten digit recognition. Read Convolutional Neural Networks (page 252)
and CNNs with Keras (page 265) before you start.
You may reuse code from Load QMNIST (page 453) and .
Task: Solve the QMNIST digit recognition task with a CNN. Try to get 99 percent correct classifications on the test
set (without using the test set for training, of course). Remember that convolutions give more weight to image center.
Thus, do not crop QMNIST images. Use 28x28 images with centered bounding boxes. Save your model to a file.
Solution:

# your solution

16.6 CNN Analysis for QMNIST

In this project we analyse the CNN trained in CNN for QMNIST (page 456).
You may reuse code fromWhat did the CNN learn? (page 275).
Task: Load the CNN trained and saved in CNN for QMNIST (page 456).
Solution:

# your solution
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Task: Visualize filters for the first convolutional layer in your CNN and try to interpret some of them (what features
do they detect?).
Solution:

# your solution

Task: Take an image correctly classified to show a zero and modify it slightly to make you CNN ‘think’ that it’s a five
although human eye clearly sees a zero.
Solution:

# your solution

16.7 IBAN recognition

We aim at recognizing handwritten IBANs339. We first train a CNN an QMNIST for detecting single handwritten
digits. Then we use the CNN to recognize handwritten IBANs.
Task: Train and evaluate a CNN with log loss and softmax activation for classifying handwritten digits. Use the
QMNIST data set for training and testing. Use Keras and Keras-Tuner.
Solution:

# your solution

16.7.1 Simple IBAN recognition

We have a data set containing 10000 images of IBANs together with corresponding correct IBANs (strings). The
data set only contains German IBANs of the form

DExxyyyyyyyyyyyyyyyyyy

with xx being a checksum (see below) and yyyyyyyyyyyyyyyyyy being 18 digits (0-9).
For our first attempt we ignore the checksum and try to recognize the IBAN digit by digit.
Each image has size 28x560 (20 images of size 28x28 placed next to each other) and does not contain the letters DE.
Each 28x28 box contains exactly one 20x20 digit from the QMNIST test set randomly positioned in the box.
Task: Load the IBAN data set. Show an IBAN image and the corresponding correct IBAN.

# your solution

Task: Write a function get_iban_simplewhich takes an IBAN image and returns the IBAN as string (including
DE).

# your solution

Task: Convert all IBAN images to strings and calculate the correct classification rate.

# your solution

Task: Based on the correct classification rate on the QMNIST test set calculate the probability that an IBAN is
correctly recognized.
339 https://en.wikipedia.org/wiki/International_Bank_Account_Number
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# your solution

Task: Based on the correct classification rate on the QMNIST test set calculate the probability that a recognized
IBAN has at most one wrong digit.

# your solution

Task: Calculate the probability that a recognized IBAN has at most two wrong digits.

# your solution

16.7.2 IBAN recognition with checksum check

The third and fourth digit of an IBAN is a checksum. The checksum allows to detect common typos (missing digits,
interchanged digits, and others).
Task: Find out how to validate IBANs. For instance, have a look at Wikipedia on IBANs340. Then write a function
is_iban which takes an IBAN string and returns True or False depending on the validity of the IBAN.

# your solution

If exactly one digit of an IBAN is incorrect, then the check sum check is guaranteed to fail. For two incorrect digits,
the check almost always fails.
Task: Write a function get_iban which takes an IBAN image and returns the IBAN as string (including DE). The
returned IBAN should be valid. If the first attempt yields an invalid IBAN use probabilities returned by the model to
determine other IBANs. Proceed as follows:

• Generate a list of all IBANs which can be derived from the original one by replacing one or two digits.
• Calculate probabilities for all generated IBANs.
• Sort IBANs by probability.
• Check IBANs starting with the most probable one.

Provide the IBAN’s probability as second return value ofget_iban. Before you start: Howmany alternative IBANs
will be generated in case of an invalid first attempt?

# your solution

Task: Recognize all IBANs and calculate correct classification rate.

# your solution

Task: Plot histograms of probabilities for correctly classified and for incorrectly classified IBANs. Use logarithmic
binning.

# your solution

From the histograms we see, that it’s not (!) a goog idea to look at the probabilities for deciding whether an IBAN is
correctly recognized or not. There are correct IBANs with very small probability and incorrect IBANs with proba-
bility close to 1.
To further improve IBAN recognition one could use other checksums described in national IBAN specifications. For
German IBANs there are separate checksum for routing number and account number.
Task: Visualize all incorrectly classified IBANs together with true and recognized IBANs.
340 https://en.wikipedia.org/wiki/International_Bank_Account_Number#Validating_the_IBAN
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# your solution

16.8 SVM for QMNIST

We want to classify QMNIST images with an SVM.

16.8.1 Load Data Set

Task: Load QMNIST training and test data to NumPy arrays as required by Scikit-Learn. Center bounding boxes
of all images and crop images to 20x20 pixels.
Solution:

# your solution

16.8.2 Linear SVM

The data set is relatively small (60000 training samples) compared to the space dimension (400). So there is some
chance that classes can be separated by hyperplanes instead of nonlinear hypersurfaces.
Task: Train and evaluate a linear SVM on the QMNIST training samples with Scikit-Learn’s LinearSVC341 and
again with SGDClassifier342.
Solution:

# your solution

16.8.3 Nonlinear SVM

To reduce computation time we should apply PCA to our data set. Thus, inner products are computed in, say, ℝ15

instead of in ℝ400.
Task: Apply PCA transform with 15 components to the data. Then train a kernel SVM with rbf kernel.
Solution:

# your solution

Task: Visualize some support vectors (original images, not PCA coefficients).
Solution:

# your solution

341 https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
342 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
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SEVENTEEN

PUBLIC TRANSPORT

In this series of projects we visualize and analyze public transport networks based on open data.
• Get Data and Set Up the Environment (page 461)
• Find Connections (page 466)
• Interactive Map (page 468)

17.1 Get Data and Set Up the Environment

In this project we download public transport data and install several Python packages for its processing. Some basic
knowledge in Python programming is required for this project.

17.1.1 Download Timetable Data

Timetable data for public transport operators in Germany is available in GTFS format343.
Task: Go to gtfs.de344. Find available GTFS feeds. What types of transport are contained in each feed? What time
periods are covered by the data? Are we allowed to use the data?
Solution:

# your answers

Task: Download all available data from gtfs.de345. Note download URLs and terminal commands (if you use the
terminal).

Hint: For download via terminal in Linux use

curl URL -o DESTINATION_FILE_NAME

Solution:

# your notes

343 https://en.wikipedia.org/wiki/GTFS
344 https://www.gtfs.de
345 https://www.gtfs.de
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17.1.2 Download OpenStreetMap Data

To compute walking distances between neighboring public transport stops we’ll use data from OpenStreetMap
(OSM)346. The OSM website provides download of (too) small regions or the whole planet (about 60 GB). Geo-
fabrik GmbH347 provides regional downloads.
Task: Check OSM licence information. Then download OSM data for Europe in PBF format (Germany is not
enough, because GTFS data may contain stops in neighboring countries, if German trains cross borders). Note the
download URL and terminal commands.
Solution:

# your notes

17.1.3 Extract Region of Interest from OSM Data

Extracting walking distances from OSM data requires a lot of memory. Memory consumption grows with size of the
region under consideration. Thus, we should extract our region of interest from Europe’s OSM file.
Task: Find minimum and maximum latitude and longitude of your region of interest (go to OSM and look at the
coordinates of some object on the border of your region of interest).
Solution:

# your answer

There exist many tools for processing OSM data. A very handy one is Osmosis348. You may use it as Python package
or in terminal. The terminal command for data extraction is

osmosis --rb file=SOURCE_FILE --bb left=... right=... top=... bottom=... --wb␣
↪file=DESTINATION_FILE

Task: Extract your region of interest with Osmosis. Note the full terminal command.
Solution:

# your notes

17.1.4 Conda Environment for GTFS Processing

We want to use the gtfspy349 Python package. It’s unmaintained since 2019 (at least). Thus, installation is tricky
due to outdated dependencies. But it’s a nice package including fast public transport routing. It has been developed for
creating A collection of public transport network data sets for 25 cities350 (also see corresponding GitHub repo351).
To avoid messing up your everyday Conda environment with failed installations and broken dependencies create a
new Conda environment for this project.
Task: Create a new Conda environment gtfs. If working on Gauss352, don’t forget to create a corresponding
ipykernel for Jupyter and to switch your notebook’s kernel to the new one.
Solution:
346 https://www.osm.org
347 http://www.geofabrik.de/
348 https://wiki.openstreetmap.org/wiki/Osmosis
349 https://github.com/CxAalto/gtfspy
350 https://www.nature.com/articles/sdata201889
351 https://github.com/CxAalto/gtfs_data_pipeline
352 https://gauss.fh-zwickau.de
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# your notes

17.1.5 Install osmread

The gtfspy package depends on osmread353 package. But osmread isn’t available via Conda. Via PyPI (that
is, pip) we get an older version with outdated (unsatisfyable) dependencies. Thus, we have to install osmread from
source.
Task: Find out what the following commands do. For each line write a short comment. Then run the commands
(works on Linux, macOS and Co.; for Windows minor modifications may be required).

conda activate gtfs
pip install argparse lxml protobuf==3.20.1
git clone https://github.com/dezhin/osmread.git
cd osmread
python setup.py install
cd ..
rm -r osmread

Solution:

# your notes

17.1.6 Install gtfspy

The gtfspy package comes with outdated dependencies and several programming errors. Thus, we install it from
source as a local package in our working directory. This way we may easily fix issues when they pop up.
Task: Find out what the following commands do. Why do we need the mv commands? For each line write a short
comment. Then run the commands (works on Linux, macOS and Co.; for Windows minor modifications may be
required).

pip install pandas networkx pyshp nose Cython shapely pyproj mopy geoindex geojson␣
↪matplotlib-scalebar

git clone https://github.com/CxAalto/gtfspy.git
mv gtfspy gtfspy_gitrepo
mv gtfspy_gitrepo/gtfspy gtfspy
rm -r gtfspy_gitrepo

Solution:

# your notes

17.1.7 Patch gtfspy

The gtfspy package uses several outdated library functions (mainly from networkx package) and contains some
programming errors. Some patching is in order…
Task: Implement the modifications listed below and think about why they could be necessary (make short notes).
Solution:

# your notes

353 https://github.com/dezhin/osmread
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in gtfspy/osm_tranfer.py:
• replace (line 91)

network_nodes = walk_network.nodes(data="true")

by

network_nodes = walk_network.nodes(data=True)

• replace (line 139)

walk_network.add_path(way.nodes)

by

networkx.add_path(walk_network, way.nodes)

• replace (line 143-145)

for node, degree in walk_network.degree().items():
if degree is 0:

walk_network.remove_node(node)

by

nodes_to_remove = []
good_nodes = networkx.get_node_attributes(walk_network, 'lat').keys()
for node, degree in walk_network.degree():

if degree == 0:
nodes_to_remove.append(node)

elif node not in good_nodes:
nodes_to_remove.append(node)

for node in nodes_to_remove:
walk_network.remove_node(node)

(good_nodes contains all nodes with lat/lon data; nodes without data presumably belong to ways crossing the
map’s border (some nodes dropped by Osmosis, but way not shortened); prevents index errors when computing
edge lengths some lines below)

in gtfspy/networks.py:
• replace (lines 267-270):

events_df.drop('to_seq', 1, inplace=True)
events_df.drop('shape_id', 1, inplace=True)
events_df.drop('duration', 1, inplace=True)
events_df.drop('route_id', 1, inplace=True)

by

events_df.drop('to_seq', axis=1, inplace=True)
events_df.drop('shape_id', axis=1, inplace=True)
events_df.drop('duration', axis=1, inplace=True)
events_df.drop('route_id', axis=1, inplace=True)

gtfspy/routing/node_profile_multiobjective.py (line 78):
• replace
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assert dep_time_index is 0, "first dep_time index should be zero␣
↪(ensuring that all connections are properly handled)"

by

assert dep_time_index == 0, "first dep_time index should be zero␣
↪(ensuring that all connections are properly handled)"

17.1.8 Create GTFS Data Base

To speed up routing gtfspy stores all data in an SQLite354 data base. That’s a usual file with extension sqlite.
First step in working with gtfspy is to create the data base containing all relevant GTFS feeds.
Task: Have look at the import_gtfs function in gtfspy’s import_gtfs module. Use this function to
transfer GTFS feeds of interest to you to an SQLite data base.
Solution:

# your solution

17.1.9 Extract Region from GTFS Data Base

If imported GTFS data covers a much larger region than the region you are interested in, you should filter the created
data base by region. Else, routing becomes too expensive (in terms of computation time). The gtfspy package
provides such filtering, but it’s expensive, too. Thus, filtering should only be used if it reduces the data base’s size
significantly.
Filtering require three steps:

1. Open the data base to filter by creating a GTFS object, defined in gtfspy’s gtfs module.
2. Create a FilterExtract object, defined in gtfspy’s filter module.
3. Call the FilterExtract object’s filter method.

Task: Have look at gtfspy’s source to learn how to use the above mentioned objects and functions. Then filter the
data base by region (hint: ‘buffer zone’ in gtfspy's source is the region of interest).
Solution:

# your solution

17.1.10 Add OSM Walking Distances to Data Base

To get more realistic walking times between neighboring stops we may extract walking distances from Open-
StreetMap. This step is optional. It requires a lot of memory and computation time, because the whole walk network
(all walkable paths and streets) is extracted from the OSM file. Use OSM walking distances for small regions only.
Without OSM data Euclidean distance are used.
Task: Have look at add_walk_distances_to_db_python in gtfspy’s osm_transfer module. Then
use this function to get OSM walking distances. If your region is too large, have a look at hint below this task.
Solution:

# your solution

354 https://www.sqlite.org
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Hint: Without OSM walking distances the routing algorithm will complain about missing the key d_walk in a
dictionary. That’s presumably a bug. Workaround: Whenever you use your data base (without OSM distances) for
routing, add the following lines to your code:

for u, v, data in walk_network.edges(data=True):
data['d_walk'] = data['d']

Here walk_network is an object representing the walk network stored in the data base. It will be created as
preparative step for routing and then passed to the routing algorithm. Place the code between creation of the walk
network and passing the walk network to the routing algorithm.
If you use these two lines of code with OSM distance, OSM distances will be overwritten with Euclidean distances.

17.1.11 Use the Data Base

To use the SQLite data base we have to create a GTFS object, definded in gtfspy’s gtfs module. This object
then provides lots of methods for accessing the data.
Task: Have a look at an GTFS objects stops, get_min_date, get_max_date methods. Call them to get a
list of all stops and the date range covered by the GTFS data.
Solution:

# your solution

17.2 Find Connections

In this project we generate departure times for all stops in a region of interest for connections to one arrival stop with
fixed (latest) arrival time.
The projects uses the gtfspy data base created in the Get Data and Set Up the Environment (page 461) project.
Basic Pandas knowledge is required to solve the tasks (read , , before you start, may be of interest, too).

17.2.1 Data Base and Time Frame

Task: Connect to the data base, that is, create a gtfspy.gtfs.GTFS object.
Solution:

# your solution

The routing algorithm of gtfspy looks for public transport connections in a user-defined time frame. Start and end
time have to be provided in Unix time355.
Task: Compute Unix times for start and end of your time frame of interest. Use the GTFS object’s
get_day_start_ut method to convert a date to it’s 00:00 unix time. Then add hours and minutes to this value.

Hint: The Python standard library provides functions for getting Unix times. But GTFS.get_day_start_ut
takes care of time zone information in the GTFS data.

Solution:
355 https://en.wikipedia.org/wiki/Unix_time
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# your solution

17.2.2 Arrival Stop

The routing algorithm of gtfspy computes public transport connections from all stops in the data base to a user-
defined arrival stop. The arrival stop has to be specified by it’s GTFS ID (column 'stop_I' in the data frame
returned by GTFS.stops()).
Task: Get the stops data frame. Use column 'stop_I' (GTFS stop ID) as index. Rename the index column
to 'id' and the column 'stop_id' to 'code' (the stop’s GTFS short name). Drop all columns but 'id',
'code', 'name', 'lat', 'lon'.
Solution:

# your solution

Task: Write some code to find all stops containing some string (e.g., all stops containing 'Zwickau, Zentrum').
Use the stops’ geolocation and OpenStreetMap to decide for an arrival stop.

Hint: An advanced and very comfortable solution is to generate for each relevant stop a link to OSM (with marker
at the stop). Rendering these links as HTML in Jupyter you simply have to click the stops’ links to see where they
are on the map.

• OSM link with marker: https://www.osm.org/?mlat=MARKER_LAT&mlon=MARKER_LON
• HTML rendering for links:

import IPython.display
display(IPython.display.HTML('<a href="URL">LINK_TEXT</a>'))

Solution:

# your solution

17.2.3 Routing

The routing API of gtfspy is relatively complex and unintuitive. To generate all connections to the arrival stop
following steps are necessary:

1. Call gtfspy.routing.helpers.get_transit_connections.
2. Call gtfspy.routing.helpers.get_walk_network(G, max_walk).
3. Create a gtfspy.routing.multi_objective_pseudo_connection_scan_profiler.

MultiObjectivePseudoCSAProfiler object. Pass the results of steps 1 and 2 to the constructor
(arguments transit_events and walk_network).

4. Call the run method of the object created in step 3.
Task: Follow the above steps. Have a look at gtfspy’s source for available arguments. A good walking speed
is 1.5. With track_vehicle_legs and track_time you (presumably) can influence whether connections
with fewer transfers and lower travel time shall be preferred by the routing algorithm.
Solution:

# your solution
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17.2.4 Best Connection

The MultiObjectivePseudoCSAProfiler object now contains information about all connections to the
arrival stop in the specified time frame. The stop_profiles member variable is subscriptable with allowed
indices returned by thekeysmember function. Indices are stop IDs. If i is a stop ID, thenstop_profiles[i].
get_final_optimal_labels() returns an iterable object with one item per connection from stop i to the
arrival stop. Each item has a departure_time member containing the departure time of the connection in Unix
time.
Task: Add a column to your stops data frame, which contains the difference between latest allowed arrival time and
latest possible departure time from the considered stop in minutes. For stops without connection to the arrival stop
use -1.
Solution:

# your solution

17.2.5 Grouping Stops

In the stops data frame most stops appear multiple times, e.g., each platform of a station has its own item
in the data frame. For visualization nearby stops should be merged to one stop. The GTFS object’s
get_stops_within_distance method yields a data frame of nearby stops. The first argument is the con-
sidered stop’s ID, the second argument is the distance in meters.
Task: Think about an algorithm for grouping stops and implement it. Add a column to your stops data frame, which
contains a group ID for each stop. All stops with identical group ID are considered one and the same stop (in the
visualization to create in a follow-up project).
Solution:

# your solution

Task: How many stop groups do you have? What’s the largest group? Show all its stops.
Solution:

# your solution

17.2.6 Save Results

Task: Save your stops data frame to a CSV file.
Solution:

# your solution

17.3 Interactive Map

In this project we visualize the results of the Find Connections (page 466) project on an interactive map. Have a look
at Folium (page 59) before you start.
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17.3.1 Prepare Data

Task: Load the CSV file created in the Find Connections (page 466) project to a Pandas data frame.
Solution:

# your solution

Task: Create a data frame containing only one stop per group. In each group choose the stop with shortest travel
time. Drop groups without any stops connected to the arrival stop.
Solution:

# your solution

17.3.2 Create Map

Task: Create Folium map centered at the analyzed region with a marker (with stop name in tooltip) at the arrival
stop.
Solution:

# your solution

17.3.3 Add Departure Stops

Task: For each stop add a marker to the map showing stop name and departure time in a tooltip. Show only one stop
per stop group, the one with the lastest departure.

Hint: Use folium.plugins.FastMarkerCluster356 instead of folium.plugins.
MarkerCluster357, because the latter may be very slow if you have many stops. Because FastMark-
erCluster generates markers dynamically only for the currently visible area of the map, tooltips have to be
generated dynamically, too. For tooltip generation pass the following JavaScript function as string to FastMark-
erClusters callback argument:

function (row) {
var marker;
marker = L.marker(new L.LatLng(row[0], row[1])).bindTooltip(row[2]);
return marker;

};

The data argument then expects a list of tuples (latitude, longitude, tooltip_text) describing
the markers.

Solution:

# your solution

Task: Marker clusters are colored depending on their size. We want to have constant color for all clusters. Thus,
inject to following HTML snipped into your map:

356 https://python-visualization.github.io/folium/plugins.html#folium.plugins.FastMarkerCluster
357 https://python-visualization.github.io/folium/plugins.html#folium.plugins.MarkerCluster
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<style>
.marker-cluster-small div, .marker-cluster-medium div, .marker-cluster-large div {

background-color: #0000ff80;
}
.marker-cluster-small, .marker-cluster-medium, .marker-cluster-large {

background-color: #0000ff30;
}
</style>

Solution:

# your solution

17.3.4 Color-Coded Distances

To visualize travel times we may color each point of the map depending on the distance to the next stop and on the
next stop’s departure time to the arrival stop. Color scheme is as follows:

• Circular areas with radius 1 kilometer around stops with connection to the arrival stop get colored. All other
regions of the map remain uncolored.

• Color around a stop depends on departure time: green for late departure, yellow for medium departure time,
red for early departure (continuous color scale).

One possible path to follow is:
1. Choose a rectangular region of interest on the map and divide it into a grid of rectangles (cells). Edge length

should be about 100 meters.
2. For each stop identify the cell containing the stop.
3. For each cell get the latest departure time.
4. Interpret the grid of cells as ‘image’ and ‘draw’ a 1-kilometer disc of color ‘departure time’ around each cell. Ini-

tialize the image with some invalid value, then draw discs with increasing departure time (thus, late departures
will overwrite early departures).

5. Add an ImageOverlay358 to your map color coding the image of departure times.
Task: Implement the above steps or follow an alternative path for color-coding departure times.
Solution:

# your solution

358 https://python-visualization.github.io/folium/modules.html#folium.raster_layers.ImageOverlay
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EIGHTEEN

CORONA DEATHS

In this project we collect and/or compute death rates before and during the Corona pandemic in Germany. You should
read before you start.

18.1 Get some Data

We would like to have monthly death rates for an as long as possible period of time including very recent data.
Task: Download relevant data from Federal Statistical Office (Statistisches Bundesamt)359 in CSV format:

• Destatis, table 12613-0006360

• Destatis, table 12411-0001361

• Destatis, Sonderreihe mit Beiträgen für das Gebiet der ehemaligen DDR, Heft 3362

• Destatis, table 12411-0020363

For each file write a short note on its content.
Solution:

# your notes

Task: Use your favorit spreadsheet tool to compile following CSV files from the downloaded files:
• inhabitants-yearly.csv with columns year, FRG (inhabitants FRG), GDR (inhabitants GDR, 0
from 1990 on)

• inhabitants-quarterly.csv with colums date, inhabitants
• deaths-monthly.csv with columns year, months (numeric 1…12), men, women

18.2 Load Data

We want to use dates as index for data frames. Numbers of inhabitants are related to precise timestamps (end of year
or quarter). Numbers of deaths are related to periods (month).
Task: Read in the three CSV files. Use DatetimeIndex and PeriodIndex for data frames and series. In the
end you should have two series:

• inhabitants with index date (timestamp of last day in year or quarter),
• deaths with index date (monthly period aligned at last day of month).

359 https://www.destatis.de
360 https://www-genesis.destatis.de/genesis//online?operation=table&code=12613-0006
361 https://www-genesis.destatis.de/genesis//online?operation=table&code=12411-0001
362 https://www.statistischebibliothek.de/mir/servlets/MCRFileNodeServlet/DEMonografie_derivate_00000961/Heft_3.pdf
363 https://www-genesis.destatis.de/genesis//online?operation=table&code=12411-0020
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Solution:

# your solution

18.3 Death Rates

For calculating monthly death rates we have to get the number of inhabitants on amonthly basis, i.e., the mean number
of inhabitants per month. If we would have daily values for the number of inhabitants we could simply calculate the
mean. But resolution is much coarser. Thus, we have to use (linear) interpolation. A good replacement for the
monthly mean is the (interpolated) value at the 15th of the month.
Task: Use resampling to get interpolated number of inhabitants at the 15th of each month. From these values
construct a series with period index (in analogy to the deaths series’ index). Hint: instead of (integer) index based
linear interpolation you may want to use timestamp based interpolation (see docs).

# your solution

Task: Calculate monthly death rates and plot results with Series.plot().

# your solution
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NINETEEN

CHEMNITZ TREES

The aim of this project is to create an information sheet about public trees at Chemnitz. Before you start, you should
have read Matplotlib Basics (page 5).

19.1 Download and Cleaning

Information on public trees in Chemnitz are available online: Chemnitz trees data set364.
Task: Find license information. Are we allowed to create an information sheet from the data set and to publish this
information sheet?
Solution:

# your answers

Task: Download the data set in CSV format and read it into a data frame. Explore the data set (columns, data types,
numerical ranges, row count,…) and apply standard cleaning steps as appropriate (adjust types, rename columns,
drop useless columns,…).
Solution:

# your solution

19.2 Short Names

To get information about tree type distribution we have to unify tree names. Instead of full detailed names we want
to have common short names (Linde instead of Sommerlinde, Ahorn instead of Bergahorn, Flieder instead of Syringa
reticulata Ivory Pink,…).
Task: Add a column with common short names for all trees. There are many different ways to automatically derive
short names. A good idea is to define a dictionary assigning short species names to search strings. Then full species
names can be searched for those strings and, if there is a match, corresponding short names can be assigned. Find
short names for all (!) trees. Use ‘sonstige’ for trees without species name in the data set.
Solution:

# your solution

364 https://portal-chemnitz.opendata.arcgis.com/datasets/baeume
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19.3 Extract Information

Task: Get the following information from the data set:
• five oldest trees,
• list of rare species (less than 5 trees),
• list of dominant species (at least 1000 trees).

Create a pie chart365 showing the fraction of total population for each dominant species. Include one slice for all
non-dominant trees.
Create a stacked bar plot366 showing fractions for dominant species by age. Group ages by decade. The horizontal
axis shows age in decades starting with 0 (for decade 2020 till 2029) at the right. Vertical axis shows fractions (‘linear
pie chart’).
Solution:

# your solution

19.4 Presentation

Task: Create PDF file in A4 format showing all information extracted above. Use whatever software you like.
LibreOffice Write367 is a good starting point.
Pimp your pie and bar plots. Format lists of oldest and rarest trees nicely. Add some visual elements (lines, boxes,…)
to structure the document and guide the viewer’s eyes.
Feel free to add further information. For instance, try to find locations of old and rare trees.

365 https://matplotlib.org/stable/gallery/pie_and_polar_charts/pie_features.html#sphx-glr-gallery-pie-and-polar-charts-pie-features-py
366 https://matplotlib.org/stable/gallery/lines_bars_and_markers/bar_stacked.html
367 https://www.libreoffice.org
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CHAPTER

TWENTY

FORGED BANKNOTES

In this series of projects we apply several machine learning concepts and methods to automatically identify forged
banknotes.

• Detecting Forgery with k-NN (page 475)
• Quality Measures (page 477)
• Hyperparameter Optimization (page 479)
• Decision Tree (page 479)
• Random Forest (page 480)
• Support-Vector Machine (page 481)
• Naive Bayes Classification (page 481)

20.1 Detecting Forgery with k-NN

Banknotes have lots of security features, some well known (see Deutsche Bundesbank368) and some less known like
the EURion constellation369. Machine learning methods allow to investigate features not designed for human vision
or simple algorithmic evaluation.
One approach is to have a closer look at the printing quality. Banknotes are printed using a technique know as
intaglio370. That technique produces extremely sharp edges if steel plates371 are used and cannot be realized with
off-the-shelf machines. Researchers from Institut für industrielle Informationstechnik372 at Technischen Hochschule
Ostwestfalen-Lippe373 created a data set for training banknote authentication systems based on scanned images of
banknotes.

20.1.1 The Data Set

The data set374 is available from UCIMachine Learning Repository375. It comes as a simple CSV file without header.
Task: Download the data set and read it into a Pandas data frame. Get column names from UCI webpage of the
data set. Adjust data types if necessary. Look at this blog post by James D. McCaffrey376 to find out how to interpret
class labels.
Solution:
368 https://www.bundesbank.de/de/aufgaben/bargeld/falschgeld/falschgelderkennung/50-euro-europa-serie
369 https://en.wikipedia.org/wiki/EURion_constellation
370 https://en.wikipedia.org/wiki/Intaglio_(printmaking)
371 https://en.wikipedia.org/wiki/Steel_engraving
372 https://www.init-owl.de/
373 https://www.th-owl.de
374 https://archive-beta.ics.uci.edu/dataset/267/banknote+authentication
375 https://archive-beta.ics.uci.edu/
376 https://jamesmccaffrey.wordpress.com/2020/08/18/in-the-banknote-authentication-dataset-class-0-is-genuine-authentic/
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# your solution

Task: Determine class sizes.

# your solution

The data set does not contain scanned images, but some statistical information about the histograms.
Task: Read sections 1 and 2 of Banknote Authentication377 to get a rough idea of what the features in the data set
express. Note that wavelet transforms are similar to Fourier transforms.

# your notes

20.1.2 Visualization

Task: Create a pairplot of the 4 features with different colors for the two classes.

# your solution

Task: For each combination of 3 features create a 3d scatter plot (again different colors for classes).

# your solution

Note: From the 3d plots we see that variance, skewness, curtosis should suffice to separate forged from genuine
banknotes. From this point of view the entropy feature can be neglected. Further, the data set description does not
contain information on how the entropy was calculated. If we want to use a model trained on the data set to classify
new samples, we do not know how to derive model inputs from scanned images. This is a second reason to drop the
entropy feature.

20.1.3 k-NN Predictions

Task: Create model inputs and outputs in Scikit-Learn format. That is, create a NumPy array X with one row per
sample and one column per feature (do not include entropy) and a one-dimensional NumPy array with outputs for all
samples (use integers, no booleans).

# your solution

Task: Create a k-NN classifier with Scikit-Learn. For the moment we do not consider hyperparameter optimization.
Choose 𝑘 = 11 and no weighting. Test set size should be 30 per cent. Compute accuracy on test and training sets.
Get the number of missclassified samples in the test set.
Solution:

# your solution

377 https://www.researchgate.net/profile/Eugen-Gillich-2/publication/266673146_Banknote_Authentication/links/
5436b8140cf2643ab9887bca/Banknote-Authentication.pdf
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20.2 Quality Measures

In (projects:forged-banknotes:knn) we saw that k-NN works quite good for detecting forged banknotes from three
features. Now we want to compute and interpret several quality measures. To get more wrong predictions (and thus
more instructive data to play with) we reduce the number of features to two: variance and skewness.

20.2.1 Predictions

Task: Apply k-NN with 𝑘 = 11 and without weighting to the banknotes classification problem with only two features
(variance and skewness). Use test size 0.3. Print accuracy on train and test sets.
Solution:

# your solution

Task: Use predict_proba378 to get a vector of predicted probabilities for class 1 on the test set. For k-NN
classification probabilities represent class distribution in a sample’s neighborhood.
Solution:

# your solution

20.2.2 Quality Measures

Confusion Matrix

Task: Generate and print the confusion matrix for the test set. Compare results to Scikit-Learn’s confu-
sion_matrix379.

# your solution

Accuracy and Balanced Accuracy

Task: Calculate unbalanced and balanced accuracy on the test set. Compare results to Scikit-Learn’s accu-
racy_score380 and balanced_accuracy_score381.
Solution:

# your solution

378 https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier.
predict_proba
379 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
380 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
381 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html
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Precision, Recall, F1-score

Task: Calculate and print precision, recall and F1-score on the test set. Compare results to Scikit-Learn’s preci-
sion_score382, recall_score383, f1_score384.
Solution:

# your solution

Task: Think about precision and recall from a practical point of view. What do models with low or high values for
precision or recall imply for banknote authentication?
Solution:

# your answers

Log Loss

Task: Calculate and print the log loss on the test set. Compare results to Scikit-Learn’s log_loss385.

# your solution

Task: What is the log loss for perfect predictions (with your implementation and with Scikit-Learn)?

# your solution

AUC

Task: Calculate and plot false positive rate as well as true positive rate for the test set depending on the threshold 𝑡,
where a sample is labeled ‘positive’ if the predicted probability is strictly greater than 𝑡. Remember that both functions
are step functions. Use Matplotlib’s step386. Compare results to Scikit-Learn’s roc_curve387.

# your solution

Task: Plot the ROC curve for the test set. Compare results to Scikit-Learn’s RocCurveDisplay.
from_predictions388.

# your solution

Task: Calculate and print AUC for the test set. Compare results to Scikit-Learn’s roc_auc_score389.

# your solution

382 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
383 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
384 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
385 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html
386 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.step.html
387 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html
388 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.RocCurveDisplay.html#sklearn.metrics.RocCurveDisplay.from_

predictions
389 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
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20.3 Hyperparameter Optimization

In this project we revisit Detecting Forgery with k-NN (page 475) and add hyperparameter optimization.

20.3.1 Load Data Set

Task: Load the banknotes data set (cf. Detecting Forgery with k-NN (page 475)). Drop the entropy column.

# your solution

20.3.2 Grid Search with Cross Validation

Task: Create a 𝑘-NN model with Scikit-Learn’s KNeighborsClassifier390. Use hyperparameter optimiza-
tion based on accuracy for choosing 𝑘 and to find appropriate weights (uniform or inverse distance). Evaluate the
model on a test set. Print optimal parameters and accuracy on the test set.
Solution:

# your solution

20.3.3 Decision Surface

Task: Train a second model based on variance and skewness only. Plot the decision surface (the surface separating
the classes) with Matplotlib’s contour391 or contourf392.
Solution:

# your solution

20.4 Decision Tree

In this project we solve the banknote classification task with a decision tree.

20.4.1 Load Data Set

Task: Load the banknotes data set (cf. Detecting Forgery with k-NN (page 475)). Drop the entropy column.

# your solution

390 https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
391 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.contour.html
392 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.contourf.html
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20.4.2 Decision Tree

Task: Train and evaluate a decision tree for banknote classification. Use cost-complexity pruning with corresponding
parameter chosen by hyperparameter optimization.
Solution:

# your solution

20.4.3 Decision Surface

Task: Train a second model based on variance and skewness only. Plot the decision surface (the surface separating
the classes) with Matplotlib’s contour393 or contourf394.
Solution:

# your solution

20.5 Random Forest

In this project we solve the banknote classification task with a random forest.

20.5.1 Load Data Set

Task: Load the banknotes data set (cf. Detecting Forgery with k-NN (page 475)). Drop the entropy column.

# your solution

20.5.2 Random Forest

Task: Train and evaluate a random forest with 50 trees. Use fixed depth to restrict tree sizes. Choose the depth by
hyperparameter optimization.
Solution:

# your solution

20.5.3 Decision Surface

Task: Train a second forest based on variance and skewness only. Plot the decision surface (the surface separating
the classes) with Matplotlib’s contour395 or contourf396.
Solution:

# your solution

393 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.contour.html
394 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.contourf.html
395 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.contour.html
396 https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.contourf.html
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20.6 Support-Vector Machine

We want to train a kernel SVM for banknote authentication. Without kernel the decision surface will be a hyperplane
more or less identical to the hyperplane obtained from logistic regression. Separation by a hyperplane works, but
for both classes there are samples very close to the hyperplane. Looking for nonlinear separation should yield fewer
ambiguous samples.

20.6.1 Load Data Set

Task: Load the banknotes data set (cf. Detecting Forgery with k-NN (page 475)). Drop the entropy column.

# your solution

20.6.2 SVM

Task: Use Scikit-Learns’s SVC397 to create a model for banknote authentication. Try different kernels (RBF, poly-
nomials of different degrees). Use hyperparameter optimization for choosing the parameter C.
Solution:

# your solution

20.6.3 Decision Surface

Task: Train a second model based on variance and skewness only. Plot the decision surface (the surface separating
the classes).Highlight all support vectors.
Solution:

# your solution

20.7 Naive Bayes Classification

20.7.1 Load Data Set

Task: Load the banknotes data set (cf. Detecting Forgery with k-NN (page 475)). Drop the entropy column.

# your solution

397 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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20.7.2 Naive Bayes

Task: Use Scikit-Learns’s GaussianNB398 to create a model for banknote authentication.
Solution:

# your solution

20.7.3 Decision Surface and Distributions

Task: Train a second model which only uses variance and skewness. Plot the training data set and the decision curve
as well as the two Gaussian densities estimated from the training samples by the naive Bayes classifier.
Solution:

# your solution

398 https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
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CHAPTER

TWENTYONE

HOUSE PRICES

This series of projects extends the results obtained in Worked Example: House Prices I (page 142) and Worked
Example: House Prices II (page 175).

• House Prices GUI (page 483)
• House Prices ANN (page 484)
• A Random Forest for House Prices (page 485)

21.1 House Prices GUI

The aim of this project is to create a graphical user interface (GUI) for house price predictions based on the model
trained inWorked Example: House Prices II (page 175).

21.1.1 The Model

In Worked Example: House Prices II (page 175) we saw that not all features or of importance for price prediction.
Thus, here we restrict our attention to the important features only.
Task: Train a Ridge regression model for house price prediction based on following features:

• region’s average land prices and income,
• lot size and living space,
• build and renovation year
• number of rooms and bath rooms,
• building type (duplex, villa, other).

Find optimal hyperparameters.
Solution:

# your solution

Task: Train the model with optimal hyperparameters on the full data set. Save the trained model to a file (use
pickle module).
Solution:

# your solution
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21.1.2 GUI

We use the ipywidgets399 module to create a GUI in Jupyter Lab. Have a look at the following documentation
pages:

• Simple Widget Introduction400

• Text401

• Combobox402

• RadioButtons403

• Button404

• Output405

Task: Load the model saved above. Create all required input fields and a button which starts the prediction process.
After clicking the button the user should see the predicted house price (in an output widget). To simplify input of
the region’s land prices and income you could use a combobox for selecting a region.
Solution:

# your solution

21.2 House Prices ANN

In this project we solve the house price prediction problem from Worked Example: House Prices II (page 175) with
an ANN. Read ANN Basics (page 207) and Training ANNs (page 216) before your start.

21.2.1 The ANN

In Worked Example: House Prices II (page 175) we saw that not all features or of importance for price prediction.
Thus, here we restrict our attention to the important features only.
Task: Train an ANN for house price prediction based on following features:

• region’s average land prices and income,
• lot size and living space,
• build and renovation year
• number of rooms and bath rooms,
• building type (duplex, villa, other).

Apply regularization (parameter choice via Scikit-Learn’s hyperparameter optimization methods) and try different
ANN sizes (number of layers, number of neurons per layer) as well as different activation functions.
Solution:

# your solution

399 https://ipywidgets.readthedocs.io/en/stable/
400 https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20Basics.html
401 https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20List.html#text
402 https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20List.html#combobox
403 https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20List.html#radiobuttons
404 https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20List.html#button
405 https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20List.html#output
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21.2.2 Some Theory

Task: Think about implications of very small batch sizes in case of noisy data. Are small batches good or bad here?
Solution:

# your notes

21.3 A Random Forest for House Prices

In this project we solve the house price prediction problem from Worked Example: House Prices II (page 175) with
a random forest. Read Bagging (page 354) before you start.
Task: Use the extended and preprocessed German housing data set to predict house prices. Train a random forest
regressor with Scikit-Learn. Try to get similar or better prediction quality as for Ridge regression.

# your solution

Task: Show feature importances based on RandomForestRegressor.feature_importances_.

# your solution

Task: Visualize one of the trees in the forest. Only show the first few depth levels.

# your solution
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CHAPTER

TWENTYTWO

HYPERPARAMETER OPTIMIZATION FOR CATS AND DOGS

In CNNs with Keras (page 265) we trained a CNN for classifying images of cats and dogs. Using the knownledge
from ANNs with Keras (page 233) abuot hyperparameter optimization we may improve prediction quality.
Task: Find a CNN for classifying cats and dogs using hyperparameter optimization for Keras. Do not use data
augmentation or pre-trained ANNs. Try to get at least 85 percent classification accuracy.
Solution:

# your answer
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CHAPTER

TWENTYTHREE

BLOGS

In this series of projects we analyze a large corpus of blogs from the world-wide web.
• Blog Author Classification (Training) (page 489)
• Blog Author Classification (Test) (page 492)

23.1 Blog Author Classification (Training)

Instead of deriving author information from single blog posts like in Text Classification (page 381) we want to use all
posts of a blog to derive age, gender and industry of the author from text data. We train three independent models
for the three output variables.
Working with text data requires heavy preprocessing. If we want to apply a machine learning model to new data (see
project Blog Author Classification (Test) (page 492)), we have to preprocess the new data in the same way as training
data. This means that not only the model has to be saved for later use, but also the parameters of all preprocessing
steps have to be accessible to the user of the trained model. This issue will be addressed in this project, too.

23.1.1 Getting the Data

We have to load blog author data and posts. All posts of a blog have to be joined to one long text.
Task: Load blog author data.
Solution:

# your solution

Task: Load the lemmatized blog posts. We only need blog IDs and lemmatized texts.
Solution:

# your solution

Task: Join all posts of one blog to a long string. Add a new column text to the blogs data frame containing blog
texts. Then remove the posts data frame from memory to free some 100 MB of memory.
Solution:

# your solution
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23.1.2 Model Inputs and Outputs

Gender, age and industry values have to be converted to integers. Conversion rules will be needed again for getting
human readable outputs from our model. Thus, we should create some data structure holding the conversion rules.
If we use integers starting from 0, 1, 2,… lists do the job. For unknown industry we should use the highest integer,
because samples with unknown industry will be excluded from training the industry model.
Task: Convert gender (2 classes), age (3 classes) and industry (many classes) to integer values. Create 3 lists for
converting integers to human readable strings.

# your solution

Task: Create a NumPy array with all outputs (3 columns).
Solution:

# your solution

Task: Create a NumPy array with all texts (1 column of type object).
Solution:

# your solution

23.1.3 Train-Test Split

Task: Split the data set into training (80 per cent) and test sets (20 per cent).
Solution:

# your solution

For training the industry model we will drop all samples with unknown industry. Here we have to take care, that this
removel has similar influence on training and test sets. Else we would have to first remove the samples and then split
the data, which would yield more complicated code than one split for all three models.
Task: Check that unknown industry got equally distributed to training and test sets.
Solution:

# your solution

23.1.4 Text to Numbers

Task: Use Scikit-Learn’s TFidfVectorizer406 to convert text data to numerical data.
Solution:

# your solution

We have to save the mapping from words to numbers if we want to use some model trained on the preprocessed data.
The vocabulary (maps words to indices) is accessible through tfidf_vect.vocabulary_ and can be passed to
a fresh TfidfVectorizer object via the vocabulary argument. But vectorization also requires knowledge of
the inverse document frequencies. These are accessible through tfidf_vect.idf_, but there is no way to pass
them to a fresh TfidfVectorizer object. Thus, we have to save the whole object.
Task: Save the three lists with human readable labels and the vectorizer object to a file. Use the pickle module.
406 https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
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Solution:

# your solution

23.1.5 Gender Model

Task: Train and evaluate a multinomial naive Bayes classifier for predicting blog authors’ gender with Scikit-Learn.
Solution:

# your solution

Task: Try a linear SVM for gender prediction.
Solution:

# your solution

23.1.6 Age Model

Task: Train naive Bayes and SVM models for age prediction.
Solution:

# your solution

23.1.7 Industry Model

Task: Select all training and test samples with kown industry.
Solution:

# your solution

Task: Train naive Bayes and SVM models for industry prediction.
Solution:

# your solution

Task: Calculate the accuracy for a model which always predicts ‘Student’ as industry.
Solution:

# your solution
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23.1.8 Saving Models

Scikit-Learn does not provide functions for saving trained models (in contrast to Keras). But pickling Scikit-Learn
objects should work.
Task: Save the three SVM models to a file.
Solution:

# your solution

Task: Why is the file containing three SVM models so small? Or: What has to be saved to fully specify a SVM
model?
Solution:

# your answer

Task: What’s the expected file size for a 𝑘-NN model?
Solution:

# your answer

23.2 Blog Author Classification (Test)

We want to write a script which takes a list of URLs to blog posts and yields predictions for gender, age and industry
of the blog author. For this purpose we have to load our trained models from project Blog Author Classification
(Training) (page 489) and we have to apply all the necessary preprocessing steps to the downloaded posts.

23.2.1 Getting some Blog Posts

Task: Collect URLs of posts of some blog in a list. Take a blog for which you know gender, age and industry of the
author. So we will see whether our models yield good predictions.
Solution:

# your solution

Task: Download all webpages in the list. Strip HTML tags with Beautiful Soup’s get_text407 and join all posts
to one string.
Solution:

# your solution

407 https://www.crummy.com/software/BeautifulSoup/bs4/doc/#get-text
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23.2.2 Preprocessing

Task: Repeat all preprocessing steps from part 1 of the text processing chapter (remove punctuation, tokenize,
lemmatize).
Solution:

# your solution

Task: Load the three label lists and the vectorizer.
Solution:

# your solution

Task: Vectorize the lemmatized text.
Solution:

# your solution

23.2.3 Prediction

Task: Load the three saved SVC models.
Solution:

# your solution

Task: Predict the blog author’s gender, age and industry. Provide the result in human readable form.
Solution:

# your solution
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Part V

Computer Science
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CHAPTER

TWENTYFOUR

CLOUD COMPUTING

Almost all modern computers have several CPUs and one or more GPUs. CPUs are made for general purpose
computations, GPUs are specialized chips for fast floating point computations and for matrix operations. Initially,
GPUs were used for rendering 3d graphics, but they turned out to be very useful for training machine learning models.
Training on a GPU is much faster than training on CPUs.
Powerful GPUs are very expensive and having several of them is even more expensive. Thus, training complex ma-
chine learning models should be done on remote computers operated by companies or research institutions. Compute
time can be bought from Amazon, Google, Microsoft and many others.

24.1 Different Approaches for Remote Execution

There exist different techniques for executing programs on remote computers. Here we discuss three of them. To
understand differences and implications we first have to have a closer look at the relationships between a program and
the operating system.

24.1.1 Libraries

Each program uses some libraries (called ‘modules’ or ‘packages’ in Python). When shipping a program to the end
user or to the cloud we have to decide whether and how to ship the libraries. We could include all libraries into our
program (known as static linkage), but this would yield a very large program. Alternatively, we could ask the user or
the cloud provider to install required libraries before running our program (dynamic linkage). This way we have a
smaller program and libraries can be used in common by many different programs.
Static linkage is relatively rare nowadays. Dynamic linkage is the standard approach. The major drawback is that we
cannot be sure that our program can be executed on the destination system. Even if we provide all required libraries
for prior install, some libraries may conflict with ones already installed on the destination system. Concerning the
question of how to handle such library problems, there exist three major techniques for executing programs on remote
computers.

24.1.2 Physical Machine with Full Control

If we have full control over the remote computer, then we may install everything we need to run our programs. On
modern multi-user systems like Linux and macOS (and to some extent also Windows) different users may work in
parallel without influencing each other. Some of the libraries are available for all users, but each user may install user
specific libraries, too.
Advantages are relatively simple administration and efficient program execution. A disadvantage is that users are
forced to use the operating system installed on the remote computer.
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Fig. 24.1: Programs and libraries on a physical machine.

24.1.3 Virtual Machine

The cloud provider may install virtual machines. A virtual machine is a program simulating a whole computer. On
such a simulated computer one may install a different operating system than the one installed on the underlying real
computer. Several virtual machines may run in parallel and isolated from each other. Every user gets access to a
different virtual machine and can do whatever he or she wants to do.

Fig. 24.2: Programs and libraries on two virtual machines.

This technique is rarely seen in practise because virtual machines run relatively slow and require lots of hardware
resources. A typical use case is to run Linux software on a Windows machine and vice versa.
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24.1.4 Containers (Docker)

Non-Windows operating systems allow for a third technique combining the advantages of direct access to a physical
machine and virtual machines. A program and all required libraries can be packaged into a container for shipment.
This container is then executed by the operating system in an isolated environment very similar to virtual machines,
but much more efficiently.

Fig. 24.3: Programs and libraries in two containers.

Docker is a widely used containerization software. Corresponding containers are created from so called Docker
images (an image is a blueprint for a container). All major cloud providers can process Docker images. There exist
several other containerization tools, Podman for instance.
Containerization uses specific features of non-Windows systems. Docker is available for Windows, too. But the
installer installs a virtual machine containing a Linux system and then installs Docker in the virtual Linux.
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