
Data Science and Artificial
Intelligence for Undergraduates

Volume 3: Unsupervised Learning

Jens Flemming

Feb 04, 2024



This is a printable version of the interactive ebook available at https://www.whz.de/ jef19jdw/data-science-ai. Switch
to the online HTML version to get all features.

https://www.whz.de/~jef19jdw/data-science-ai


CONTENTS

I Unsupervised Learning 3
1 Typical Tasks 5

1.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Generative Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Quality Measures for Clustering 9
2.1 Silhouette Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Davies-Bouldin Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Centroid-based Clustering (k-Means) 13
3.1 𝑘-Means Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Naive 𝑘-Means Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Implementation from Scratch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Implementation with Scikit-Learn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Random Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 𝑘-Means++ for Initializing Centers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7 Choosing 𝑘 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.8 Per Sample Silhouette Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.9 𝑘-Means for Very Large Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.10 When to Use 𝑘-Means? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Hierarchical Clustering 31
4.1 Dendrograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Divisive Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Agglomerative Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Hierarchical Clustering with Scikit-Learn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Density-based Clustering 39
5.1 DBSCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 OPTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Distribution-based Clustering 53
6.1 Expectation Maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 The EM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3 Gaussian Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.4 Relation to 𝑘-Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.5 Choosing 𝑘 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.6 Soft Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.7 Gaussian Mixture Models with Scikit-Learn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Autoencoders 61
7.1 ANN Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2 Implementing an Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.3 Comparison to PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

i



7.4 Generating New Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.5 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.6 Convolutional Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8 Nonlinear Dimensionality Reduction Overview 75
8.1 Toy Example ‘Omega’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.2 Toy Example ‘Sphere’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.3 Toy Example ‘Cube’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.4 Toy Example ‘Clouds’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.5 PCA for Toy Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9 Kernel PCA 83
9.1 Recap of PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.2 PCA with Kernel Trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
9.3 Kernel PCA with Scikit-Learn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
9.4 Why Kernel PCA? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

10 Multidimensional Scaling 89
10.1 Abstract Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.2 Metric MDS and Sammon’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
10.3 Classical MDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
10.4 Non-Metric MDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
10.5 Isomap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

11 Locally Linear Embedding 97
11.1 Local Affine Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
11.2 Low Dimensional Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
11.3 LLE with Scikit-Learn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

12 Stochastic Neighbor Embedding 101
12.1 Basic idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
12.2 t-SNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
12.3 t-SNE with Scikit-Learn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

13 Self-Organizing Maps 105
13.1 SOM Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
13.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
13.3 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
13.4 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
13.5 SOMs with Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

II Projects 115
14 MNIST Character Recognition 117

14.1 Semisupervised Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
14.2 Generating Handwritten Digits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
14.3 Autoencoder for QMNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
14.4 t-SNE for QMNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

15 House Prices 125
15.1 House Prices SOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

16 Supermarket Customers 127
16.1 Understanding the Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
16.2 Cleaning the Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
16.3 Preparing Data for Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
16.4 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
16.5 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
16.6 Analyzing the Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

ii



17 Chinese Celadons 131
17.1 Hierarchical Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
17.2 Density-based Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

18 Color Perception 135
18.1 1d Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
18.2 2d Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
18.3 3d Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
18.4 Higher Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

19 Forest Fires 139

iii



iv



Data Science and Artificial Intelligence for Undergraduates
Volume 3: Unsupervised Learning

This book covers a wide range of topics in data science and artificial intelligence. It’s an attempt to provide self-
contained learning material for first-year students in data science related courses. Most, not all, of the material is
tought in the undergradute course on data science1 at Zwickau University of Applied Sciences2.
Starting teaching data science in 2019 the author3 faced the problem that there seems to be no text book covering
math, computer science, statistical data science, artificial intelligence and related topics in a well structured, accessible,
thorough way. Basic Python4 programming should be covered as well as state of the art deep reinforcement learning
for controlling autonomous robots. All this with hands-on experience for students, interesting real-world data sets,
and sufficiently rich theoretical background.
Classical paper books or PDF ebooks do not suit the needs for this project. Working with data requires lots of source
code, interactive visualizations, data listings, and easy to follow pointers to online resources. Jupyter Book5 is an
awesome software tool for publishing book-like interactive content. For the author writing this book is also a journey
of discovery to the possible future of publishing. Having authored two paper books the author knows the tight limits
of paper books and publishing companies. The greater his enthusiasm is for the freedom in writing and publishing
provided by Jupyter Book and its community, The Executable Books Project6.
The author expresses its gratitude towards all the more or less anonymous people developing the wonderful open
source tools used in this book and for writing the book. There are too many tools to list them here. The author also
thanks his students and colleagues at Zwickau University, especially Hendrik Weiß, who constantly find typos and
make suggestions for improving the book.
Jens Flemming7, Zwickau, February 2024
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2 https://www.fh-zwickau.de
3 https://www.fh-zwickau.de/~jef19jdw
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CHAPTER

ONE

TYPICAL TASKS

Unsupervised machine learning algorithms extract information from data sets without the need for examples of the
information to extract. The algorithm determines what to extract and humans have to interpret the extracted infor-
mation to obtain insights into the data. Thus, it’s very easy to collect data sets suitable for unsupervised learning, but
interpretation of results may be difficult.
Unsupervised learning is an extremely wide field. Here we focus on clustering and also consider dimensionality re-
duction. Further, we’ll ahve a first galnce at generative models. But there exist other subfields, too, anomaly detection
and association analysis for instance. Most techniques can be applied to different tasks.
Like for supervised learning we denote the data space by 𝑋 and the items of the data set under consideration by
𝑥1, … , 𝑥𝑛. Almost always we will have 𝑋 = ℝ𝑚. Again we need a training data set for fitting a model. Validation
and test sets are used for hyperparameter optimization and model evaluation as before.

1.1 Clustering

Clustering aims at finding subsets of similar items in large data sets.
Details depend an the application in mind.

• Do we want to find hard clusters (either a sample belongs to a cluster or not) or soft clusters (score/probability
for each combination of samples and clusters)?

• Shall all samples belong to some cluster or do we allow for outliers?
• May clusters overlap (some samples belong to more than one cluster)?

There exist many different approaches for clustering algorithms. Main classes are:
• Centroid-based algorithms represent each cluster by one point (midpoint or centroid). Which samples belong
to which clusters is determined by some rule involving those midpoints.

• Density-based algorithms look at the distances between samples and define clusters to be subsets of closely
spaced samples.

• Distribution-based algorithms represent each cluster be a probability distribution. A sample belongs to the
cluster for which the sample’s probability is highest.

• Hierarchical algorithms generate a sequence of clusterings. Either starting with as many clusters as there are
samples (and then coarsening the clustering) or starting with one cluster (and then refining).

5
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Fig. 1.1: How to define the term cluster is not as straight-forward as it seems.

6 Chapter 1. Typical Tasks
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1.2 Dimensionality Reduction

Dimensionality reduction tries to reduce the number of features without loosing too much information. We already
know principal component analysis as a linear dimensionality reduction technique. Here, ‘linear’ means that the
mapping from the high dimensional data space to the lower dimensional space is linear (a matrix).
Nonlinear dimensionality reduction techniques are more powerful, but also much more computationally expensive.

Fig. 1.2: Often data is not scattered over the whole space but lives close to a lower dimensional nonlinear manifold.

1.3 Generative Models

Unsupervised learning algorithms may not only learn to distinguish between similar and dissimilar samples. Some
algorithms yield so called generative models. Generative models contain all information necessary to automatically
create new samples similar to samples in the training data set.
Generative models can be used for generating natural looking artifical images8 or for generating art9, for instance.

8 https://en.wikipedia.org/wiki/StyleGAN
9 https://en.wikipedia.org/wiki/Edmond_de_Belamy

1.2. Dimensionality Reduction 7
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CHAPTER

TWO

QUALITY MEASURES FOR CLUSTERING

Evaluating the quality of a clustering is not as simple as it looks at first glance. Almost always we do not have a
ground truth at hand (external evaluation). Instead we can only look at size and shape of clusters themselves (internal
evaluation). There exist lots of internal evaluation metrics. Below we only consider two examples. There is no best
metric, because cluster evaluation heavily depends on the intended application. The only reliable evaluation metric is
human inspection. But human inspection is restricted to visualizations, which are not available for high dimensional
data sets. Dimensionality reduction techniques may help.
In the following we represent clusters as subsets of our data set. In other words, a cluster𝐶 is a subset of {𝑥1, … , 𝑥𝑛}.

2.1 Silhouette Score

The silhouette score relates intra-cluster distances to inter-cluster distances. It is defined for each sample of a data
set. The silhouette score of a whole data set then is the mean score of all samples.
Given some distance measure 𝑑 ∶ 𝑋×𝑋 → [0, ∞) (usually Euclidean distance) the intra-cluster distance of a sample
𝑥 and the cluster 𝐶 the sample belongs to is the mean distance of the sample to all other samples in the cluster:

intra(𝑥, 𝐶) ∶= 1
|𝐶| − 1 ∑

�̃�∈𝐶
𝑑(𝑥, ̃𝑥).

The inter-cluster distance of a sample 𝑥 to a cluster ̃𝐶 the sample does not belong to is the mean distance of the
sample and all samples in the cluster under consideration:

inter(𝑥, ̃𝐶) ∶= 1
| ̃𝐶|

∑
�̃�∈ ̃𝐶

𝑑(𝑥, ̃𝑥).

Now the silhouette score of a sample 𝑥 is the ratio of the intra-cluster distance and the smallest inter-cluster-distance:

𝑎 ∶= intra(𝑥, 𝐶), 𝑏 ∶= min
̃𝐶≠𝐶

inter(𝑥, ̃𝐶), silhouette(𝑥) ∶= 𝑏 − 𝑎
max{𝑎, 𝑏} .

If 𝑥 is the only element in 𝐶, then this formula does not work and one sets the silhouette score to zero.
Silhouette score always lie in [−1, 1]. It is the higher the lower the intra-cluster distance is and the higher the inter-
cluster distance is. Thus, high silhouette score for a sample indicates that it belongs to a cluster well separated from all
other clusters. Score close to 0 indicates that the sample belongs to overlapping clusters. A score close to -1 indicates
a missclustering (sample is closer to other clusters than to its own cluster).
Silhouette score of a data set represents the average clustering quality. Many missclustered samples result in negative
silhouette score and so on. Note, that a silhouette score close to zero may indicate that half the samples have been
missclustered as well as that there is no clustering (all clusters heavily overlap).

Important: Silhouette score depends on the chosen distance and, thus, on scaling of each feature. If some feature
has much higher numerical values than other features, then that feature will dominate the distances.

Another noteworthy point is that silhouette scores are more reliable if clusters are convex. Else inter-cluster distances
might be smaller than intra-cluster distances although clusters were correctly identified.

9
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Fig. 2.1: Silhouette scores for different clustering results.

Fig. 2.2: For non-convex clusters silhouette score may indicate bad clustering results although clusters have been
identified correctly.

10 Chapter 2. Quality Measures for Clustering
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2.2 Davies-Bouldin Index

TheDavies-Bouldin index relates cluster diameters to distances between clusters. It is defined for each pair of clusters.
The Davies-Bouldin index of a single cluster is the worst Davies-Bouldin index of each pair containing the cluster
under consideration. The Davies-Bouldin index of a whole clustering is the mean Davies-Bouldin index of all clusters.
To define the Davies-Bouldin index we need the centroid of a cluster 𝐶. It’s the coordinatewise arithmetic mean of
all samples in the cluster:

cent(𝐶) ∶= 1
|𝐶| ∑

𝑥∈𝐶
𝑥.

The cluster radius can be defined as the mean distance of samples to the cluster’s centroid:

𝑟(𝐶) ∶= 1
|𝐶| , ∑

𝑥∈𝐶
𝑑(𝑥, cent(𝐶))

with some distance measure 𝑑. Usually 𝑑 is the Euclidean distance, because the notion of centroid is based on
considerations involving Euclidean distances. For other distance measures introducing a sensible notion of centroids
is difficult. Given two clusters 𝐶1 and 𝐶2 we may define the cluster distance as the distance of their centroids:

dist(𝐶1, 𝐶2) ∶= 𝑑(cent(𝐶1), cent(𝐶2)).

The Davies-Bouldin index of two clusters 𝐶1 and 𝐶2 is

DB(𝐶1, 𝐶2) ∶= 𝑟(𝐶1) + 𝑟(𝐶2)
dist(𝐶1, 𝐶2) .

It takes values in [0, ∞) and is the closer to zero the smaller the clusters are and the higher the distance between
clusters is.

Fig. 2.3: Davies-Bouldin index relates distance between clusters to cluster diameters.

A Davies-Bouldin index above 1 indicates overlapping clusters (at least if the clusters’ shapes are close to spheres).
If clusters are not sphere shaped the Davies-Boulding index does not yield useful information.
Note that the Davies-Bouldin index of two clusters is symmetric, that is, does not depend on the ordering of the
clusters. If there are more than two clusters, the Davies-Bouldin index of each cluster is

DB(𝐶) ∶= max
̃𝐶≠𝐶

DB(𝐶, ̃𝐶)

and the Davies-Bouldin index of the whole clustering is mean Davies-Bouldin index of all clusters.

2.2. Davies-Bouldin Index 11
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Fig. 2.4: If clusters are not sphere shaped Davies-Bouldin index may indicate bad clustering although clustering is
correct.

12 Chapter 2. Quality Measures for Clustering



CHAPTER

THREE

CENTROID-BASED CLUSTERING (K-MEANS)

Centroid-based clustering algorithms represent clusters by single points in the data space (center points, mostly the
clusters’ centroids). Corresponding clusters then are given by some distance condition. All points closer to some center
point than to all others belong to one cluster, for instance. Consequently, centroid-based methods yield sphere-shaped
clusters with concrete shape depending on the chosen distance measure.
The major centroid-based clustering method is 𝑘-means. Others, not discussed here, are 𝑘-medians10 and 𝑘-
medoids11.
Related projects:

• MNIST Character Recognition (page 117)
– Semisupervised Classification (page 117)

• Supermarket Customers (page 127)

3.1 𝑘-Means Idea

Clusters obtained from 𝑘-means method are determined by center points. Given 𝑘 points 𝑢1, … , 𝑢𝑘 in ℝ𝕞 (the
centers) corresponding clusters are defined by

𝐶(𝑢𝑙) ∶= {𝑥 ∈ {𝑥1, … , 𝑥𝑛} ∶ 𝑑(𝑥, 𝑢𝑙) ≤ 𝑑(𝑥, 𝑢𝜆) for all 𝜆 ≠ 𝑙}.

A cluster contains all samples which are closer to the cluster’s center than to other clusters’ centers. In case of equality
a sample formally belongs to two or more clusters. In practice, a cluster is chosen by chance to obtain mutually disjoint
clusters.
A prescribed clustering (collection of subsets of our data set) may or may not have a set of center points, that is, a
set such that for each point in the set all points in the corresponding cluster are closer to that point than to any other
cluster’s center (simple example: one cluster belongs to the convex hull of another cluster).
Although 𝑘-means is closely related to centroids (see below), a cluster’s centroid not necessarily is a center point.
The 𝑘-means method aims at minimizing the average distance of samples to the closest cluster center. The number
𝑘 of clusters has to be provided in advance. The outcome are the cluster centers.
In formulas, we want to minimize the function

(𝑢1, … , 𝑢𝑘) ↦ 1
𝑛

𝑘
∑
𝜅=1

∑
𝑥∈𝐶(𝑢𝑙)

𝑑(𝑥, 𝑢𝑙)

with respect to all possible cluster centers {𝑢1, … , 𝑢𝑘}. The distance measure 𝑑 almost always is the squared Eu-
clidean distance.
Finding optimal cluster centers is closely related to finding optimal locations for warehouses, hospitals, fire stations,
and so on (see Voronoi diagram12).

10 https://en.wikipedia.org/wiki/K-medians_clustering
11 https://en.wikipedia.org/wiki/K-medoids
12 https://en.wikipedia.org/wiki/Voronoi_diagram

13
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Fig. 3.1: Centroids not necessarily are center points.

3.2 Naive 𝑘-Means Algorithm

Naive 𝑘-means algorithm (also known as Lloyd’s algorithm) starts with a set of initial center points 𝑢1, … , 𝑢𝑘 and
repeats the following two steps:

• Build clusters 𝐶(𝑢1), … , 𝐶(𝑢𝑘) for current centers 𝑢1, … , 𝑢𝑘.
• Update 𝑢1, … , 𝑢𝑘 to be the centroids of the current clusters.

Iteration is stopped if clusters do not change anymore. One can show that this method always converges (that is, stops)
and that the resulting center points are a local (not a global!) minimizer of the above objective function. From the
stopping criterion we immediately see, that centers computed by naive 𝑘-means always are centroids of their clusters.
The described algorithm takes two parameters:

• the number 𝑘 of clusters to find,
• initial center points 𝑢1, … , 𝑢𝑘 defining the initial clustering.

There exist several methods to choose these parameters. In some cases 𝑘 can be obtained from domain knowledge.
Else 𝑘 has to be obtained from typical hyperparameter optimization techniques. Center points may be initialized
randomly or by some specialized initialization routines (see below).

3.3 Implementation from Scratch

Before we have a closer look at different methods for choosing 𝑘 and initial centers we implement naive 𝑘-means
from scratch. Later we will use Scikit-Learn’s implementation.
First we create some synthetic data to be clustered.

import numpy as np
import matplotlib.pyplot as plt

rng = np.random.default_rng(0)

# 5 clusters in 2 dimensions

n1, n2, n3, n4, n5 = 100, 200, 20, 50, 50

(continues on next page)
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(continued from previous page)

n = n1 + n2 + n3 + n4 + n5

X1 = rng.uniform((0, 1), (2, 3), (n1, 2))
X2 = rng.multivariate_normal((-1, -2), ((0.5, 0), (0, 0.2)), n2)
X3 = np.linspace(-1, 0.5, n3).reshape(-1, 1) * np.ones((1, 2)) + np.array([[-1,␣

↪1]])
X4 = rng.multivariate_normal((-4.5, -1), ((0.2, 0.1), (0.1, 0.4)), n4)
phi = np.linspace(0, 2 * np.pi, n5).reshape(-1, 1)
X5 = np.array([[2.5, -1]]) + np.concatenate((np.cos(phi), np.sin(phi)), axis=1)

X = np.concatenate((X1, X2, X3, X4, X5))

fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1], s=5, c='b')
ax.axis('equal')
plt.show()

𝑘-means takes the number of clusters k and initial centers init_centers as parameters. Iteration is stopped if
current and previous clustering coincide. To prevent too many iteration we also set a maximum number of iterations
max_iter.
Center points will be stored rowwise in NumPy arrays (like for the samples in X). In each iteration we have to calculate
all distances between samples and center points. Those distances will be stored in an (n, k)NumPy array dists.
A clustering will be represented by a 1d NumPy array clusters of length n containing for each sample the index
of the closest center point. When updating the centers we have to keep the old centers to check the stopping criterion.
After each 𝑘-means step we plot the intermediate result.

k = 5
init_centers = np.array([[-1, -1], [0, 0], [1, 1], [-1, 1], [1, -1]], dtype=float)
#k = 4
#init_centers = np.array([[-1, -1], [1, 1], [-1, 1], [1, -1]], dtype=float)
#k = 3

(continues on next page)
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(continued from previous page)

#init_centers = np.array([[-1, -1], [-1, 1], [1, -1]], dtype=float)
#k = 6
#init_centers = np.array([[-1, -1], [0, 0], [1, 1], [-1, 1], [1, -1], [0.5, 0.5]],

↪ dtype=float)
#k = 7
#init_centers = np.array([[-1, -1], [0, 0], [1, 1], [-1, 1], [1, -1], [0.5, 0.5],␣

↪[-0.5, -0.5]], dtype=float)

max_iter = 20

print('+ is current centroid')
print('x is previous centroid')

centers = init_centers
for i in range(0, max_iter):

fig, ax = plt.subplots()

# get clusters
if i > 0:

old_clusters = clusters
dists = np.empty((n, k))
for l in range(0, k):

dists[:, l] = np.sum((X - centers[l, :]) ** 2, axis=1)
clusters = dists.argmin(axis=1)

# plot clusters and centers
ax.scatter(X[:, 0], X[:, 1], s=5, c=clusters, cmap='Set1')
ax.scatter(centers[:, 0], centers[:, 1], s=100, c=range(0, k), cmap='Set1',␣

↪marker='x', linewidth=4)

# update centers
old_centers = centers.copy()
for l in range(0, k):

if np.any(clusters == l): # update only if cluster is not empty
centers[l, :] = X[clusters == l, :].mean(axis=0)

else:
print('empty cluster')

# stopping criterion
if i > 0 and (old_clusters == clusters).all():

print('stopping criterion satisfied after {} iterations'.format(i))
break

# plot new centers
ax.scatter(centers[:, 0], centers[:, 1], s=150, c=range(0, k), cmap='Set1',␣

↪marker='+', linewidth=4)

ax.set_title('iteration ' + str(i + 1))
ax.axis('equal')

plt.show()

else:
print('max_iter reached')

+ is current centroid
x is previous centroid
empty cluster
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stopping criterion satisfied after 7 iterations

20 Chapter 3. Centroid-based Clustering (k-Means)



Data Science and Artificial Intelligence for Undergraduates
Volume 3: Unsupervised Learning

3.4 Implementation with Scikit-Learn

Scikit-Learn implements a KMeans13 class in its cluster module. The fit method generates the clustering,
resulting in a list of cluster centers. The predict method assigns cluster labels to samples. Note that fit already
computes labels for training data. So we do not have to call predict on training data.
The KMeans constructor takes several arguments described in the documentation. Values for the init parameter
will be described below. In case of random initialization n_init is the number of 𝑘-means runs. From multiple
runs Scikit-Learn chooses the result with lowest inertia, that is, with smallest sum of squared distances of samples
to their closest cluster center. Next to naive 𝑘-means Scikit-Learn supports the (often) more efficient Elkan method,
which uses the triangle inequality to avoid unnecessary distance calculations.

import sklearn.cluster as cluster

k = 5
init_centers = np.array([[-1, -1], [0, 0], [1, 1], [-1, 1], [1, -1]], dtype=float)

km = cluster.KMeans(n_clusters=k, init=init_centers, n_init=1)
km.fit(X)
centers = km.cluster_centers_
clusters = km.labels_

fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1], s=5, c=clusters, cmap='Set1')
ax.scatter(centers[:, 0], centers[:, 1], s=100, c=range(0, k), cmap='Set1',␣

↪marker='x', linewidth=4)
ax.axis('equal')
plt.show()

13 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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3.5 Random Initialization

There exist (at least) two approaches for randomly choosing initial cluster centers:
• Choosing 𝑘 random samples from the training data.
• Randomly assign samples to 𝑘 clusters and take the centroids as initial centers.

The second approach results in closely spaced initial centers, whereas the first yields initial centers scattered over the
data set. Scikit-Learn only implements the first approach, which can be activated with init='random'.
If we use random initialization the n_init parameter should be greater than one (defaults to 10). Scikit-Learn will
run the algorithm n_init times and choose the best result (lowest inertia).

k = 4

km = cluster.KMeans(n_clusters=k, init='random', n_init=10)
km.fit(X)
centers = km.cluster_centers_
clusters = km.labels_

fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1], s=5, c=clusters, cmap='Set1')
ax.scatter(centers[:, 0], centers[:, 1], s=100, c=range(0, k), cmap='Set1',␣

↪marker='x', linewidth=4)
ax.axis('equal')
plt.show()
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3.6 𝑘-Means++ for Initializing Centers

𝑘-means++ is not an improved variant of 𝑘-means, but an algorithm for choosing good initial cluster centers for
𝑘-means. Here ‘good’ means fast convergence of 𝑘-means based on the initial centers.
𝑘-means++ chooses all initial centers randomly from the training data set (like random initialization), but only the
first center is chosen uniformly at random. After the first center has been chosen the following procedure is repeated
until 𝑘 centers have been found:

• For each sample (except the ones already chosen as center point) calculate the distance to the closest center.
• Choose a sample as next center point at random with probabilities proportional to the squared distances.

Samples far away from already existing center points are more likely to become the next center. Thus, initial centers
chosen by 𝑘-means++ will be scattered over the whole data set and closely spaced centers are very unlikely.

k = 5

init_centers = np.empty((k, X.shape[1]))

# first center uniformly at random
init_centers[0, :] = X[rng.integers(0, X.shape[0]), :]

for l in range(1, k):

# calculate distances to closest center (l centers already exist)
dists = np.empty((n, l))
for j in range(0, l):

dists[:, j] = np.sum((X - init_centers[j, :]) ** 2, axis=1)
min_dists = dists.min(axis=1)

# next center with probability proportional to distance to closest center
init_centers[l, :] = rng.choice(X, 1, p=min_dists/min_dists.sum())

# plot
fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1], s=5, c='b')
ax.scatter(init_centers[:, 0], init_centers[:, 1], s=100, c='r', marker='x',␣

↪linewidth=4)
ax.axis('equal')
plt.show()
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3.7 Choosing 𝑘

𝑘-means aims to minimize the sum of distances of all samples to the closest cluster center. Thus, a suitable 𝑘 should
yield small objective function. Obviously 𝑘 = 𝑛 with each sample being a cluster center would be the best choice,
but this is not our intention when clustering data. Instead we want to have a sensible number of clusters.
Starting with 𝑘 = 2 we may run 𝑘-means for an increasing sequence of values for 𝑘. The more clusters we allow,
the smaller the objective in the above minimization problem. If 𝑘 becomes larger than the number of clusters in the
data, then the drop in the objective will be much smaller than for smaller 𝑘. If we plot the objective values against the
number of clusters we should see an elbow-like curve. The 𝑘 at the elbow should be chosen. This heuristic approach
is known as Elbow method. Often it works quite well, but especially in case of clusters not well separated the elbow
may be hard to identify. Another drawback is, that reliable automatic detection of the elbow’s position is difficult.

ks = range(2, 15)

obj_values = []
for k in ks:

km = cluster.KMeans(n_clusters=k, n_init='auto')
km.fit(X)
obj_values.append(km.inertia_)

fig, ax = plt.subplots()
ax.plot(ks, obj_values, '-ob')
ax.set_xlabel('k')
ax.set_ylabel('inertia')
plt.show()
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The elbow method here suggests 𝑘 = 4.
An alternative to the elbow method is to consider quality measures for clusterings for different 𝑘. Scikit-Learn
provides implementations for the silhouette score (silhouette_score14) and for the Davies-Bouldin index
(davies_bouldin_score15) and for many other clustering metrics16.

import sklearn.metrics as metrics

ks = range(2, 15)

sil = []
db = []
for k in ks:

km = cluster.KMeans(n_clusters=k, n_init='auto')
km.fit(X)
sil.append(metrics.silhouette_score(X, km.labels_))
db.append(metrics.davies_bouldin_score(X, km.labels_))

fig, ax = plt.subplots()
ax.plot(ks, sil, '-ob', label='silhouette score')
ax.plot(ks, db, '-or', label='Davies-Bouldin index')
ax.set_xlabel('k')
ax.legend()
plt.show()

14 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
15 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.davies_bouldin_score.html
16 https://scikit-learn.org/stable/modules/classes.html#clustering-metrics

3.7. Choosing 𝑘 25

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.davies_bouldin_score.html
https://scikit-learn.org/stable/modules/classes.html#clustering-metrics


Data Science and Artificial Intelligence for Undergraduates
Volume 3: Unsupervised Learning

Both scores suggest 𝑘 = 4.

3.8 Per Sample Silhouette Score

To judge on the quality of a clustering we may also look at each sample’s silhouette score. This way we can identify
missclusterings or samples with uncertain cluster assignment. Scikit-Learn provides silhouette_samples17
for this purpose.

k = 5

km = cluster.KMeans(n_clusters=k, n_init='auto')
km.fit(X)
centers = km.cluster_centers_
clusters = km.labels_
sil = metrics.silhouette_samples(X, km.labels_)

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
ax1.scatter(X[:, 0], X[:, 1], s=5, c=clusters, cmap='Set1')
ax1.scatter(centers[:, 0], centers[:, 1], s=100, c=range(0, k), cmap='Set1',␣

↪marker='x', linewidth=4)
ax1.axis('equal')
ax2.scatter(X[:, 0], X[:, 1], s=5, c=sil, cmap='jet')
ax2.axis('equal')
plt.show()

17 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_samples.html
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Red points (high silhouette score) clearly belong to their cluster, blue points (low silhouette score) also could belong
to a different or to no cluster.

3.9 𝑘-Means for Very Large Data Sets

𝑘-means requires as many distance computations per cluster and per iteration as there are samples in the training data
set. To reduce computation time for large data sets we may

• use only a subset of the training data in each iteration (subsets change from iteration to iteration) and
• update center points sample by sample instead of cluster by cluster.

Working with subsets obviously reduces the amount of distance calculations. Depending on the randomly chosen
subsets, cluster centers may change very much from iteration to iteration. To prevent such hopping, updates are
calculated sample by sample, resulting in slightly different update results. A side effect of the sample-by-sample
approach is a more efficient implementation of the update step. Details are given inWeb-Scale K-Means Clustering18.
Scikit-Learn implements this approach as MiniBatchKMeans19.

3.10 When to Use 𝑘-Means?

𝑘-means is very fast (at least faster than most other clustering algorithms). But it has some drawbacks one has to be
aware of.
For very high dimensional data (thousands of features, images for instance) distances between samples do not carry
useful information because all distances are almost identical (cf. discussion of curse of dimensionality in ). Thus, 𝑘-
means wont work. Resulting clusters will look like samples were assigned to clusters uniformly at random. Dimension
reduction techniques (e.g. PCA) should be applied before trying 𝑘-means.
𝑘-means prefers convex and sphere shaped clusters. Proper scaling of the data may improve results drastically,
especially if features have very different numerical ranges. Alternatively the used distance measure has to be adapted
to the data under consideration (weighted Euclidean distance, for instance).

n1, n2, n3 = 1000, 1000, 1000
n = n1 + n2 + n3

X1 = rng.multivariate_normal((0, -2), ((2, 0), (0, 0.02)), n1)
X2 = rng.multivariate_normal((0, 0), ((2, 0), (0, 0.02)), n2)
X3 = rng.multivariate_normal((0, 2), ((2, 0), (0, 0.02)), n3)

X = np.concatenate((X1, X2, X3))

18 https://web.archive.org/web/20230210073106/https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
19 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html
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k = 3

km = cluster.KMeans(n_clusters=k, n_init='auto')
km.fit(X)
centers = km.cluster_centers_
clusters = km.labels_

fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1], s=5, c=clusters, cmap='Set1')
ax.scatter(centers[:, 0], centers[:, 1], s=100, c=range(0, k), cmap='Set1',␣

↪marker='x', linewidth=4)
ax.axis('equal')
plt.show()

Due to its distance-to-center based nature 𝑘-means prefers clusters with similar spatial extent.

n = 5000
X = rng.uniform((0, 0), (1, 1), (n, 2))

k = 5

km = cluster.KMeans(n_clusters=k, n_init='auto')
km.fit(X)
centers = km.cluster_centers_
clusters = km.labels_

fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1], s=5, c=clusters, cmap='Set1')
ax.scatter(centers[:, 0], centers[:, 1], s=100, c=range(0, k), cmap='Set1',␣

↪marker='x', linewidth=4)
ax.axis('equal')
plt.show()
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CHAPTER

FOUR

HIERARCHICAL CLUSTERING

Hierarchical clustering algorithms not only yield one clustering but a series of clusterings. There are two approaches
for generating a series of clusters:

• coarse to fine or divisive (the first clustering consists of only one cluster (the whole training data set) and the
last contains as many clusters as there are samples),

• fine to coarse or agglomerative (the first clustering contains as many clusters as samples and the last clustering
has only one large cluster).

In the first case the next clustering results from splitting a cluster in the previous clustering by some rule. In the second
case two clusters are selected by some rule and than joined to form only one cluster. Both variants result in a nested
sequence of clusters, usually (not always) with increasing intercluster dissimilarity from fine to coarse.
Hierarchical clustering methods do not imply canonical prediction routines (in contrast to 𝑘-means). They only
assign labels to the training data. To add new data points to existing clusters 𝑘NN or some other supervised learning
technique has to be used.
Related projects:

• Chinese Celadons (page 131)
– Hierarchical Clustering (page 131)

4.1 Dendrograms

The aim of hierarchical clustering is not only to find a good clustering, but to better understand structures in the data
set. A dendrogram is a graphical representation of a sequence of nested clusterings. On the one hand, a dendrogram
shows relations between clusters of different clusterings. On the other hand, it provides information about dissimilarity
of clusters within one clustering.
A dendrogram is a binary (that is, two children per parent node) tree. Each node represents a subset (cluster) of the
data set. The whole data set is the root node and there are as many leaves as there are samples in the data set. Each
intermediate node represents the union of its two children. The height of a node in the tree is related to the value of
a dissimilarity measure between clusters which lead to the split or join operation.
Dendrograms can be used to determine the number of clusters in a data set. The wider the height gap between
two nodes, the better the clustering (with respect to the chosen distance). Here ‘better’ means that the clustering
corresponding to a wide gap is very stable with respect to the merging criterion, that is, contains no subclusters with
low dissimilarity. See below for an example.
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Fig. 4.1: A dendrogram and corresponding clusters.

4.2 Divisive Clustering

Divisive clustering is rarely used in practice, because good splitting stategies are computationally expensive. One
possible approach is to find the cluster with highest intracluster dissimilarity and then use 𝑘-means with 𝑘 = 2 for
splitting the cluster. Depending on the chosen dissimilarity measure dissimilarity values at subsequent splits may be
nondecreasing. Thus, height of nodes in the dendrogram cannot encode dissimilarity.

4.3 Agglomerative Clustering

For agglomerative clustering we have to choose a point-to-point distance 𝑑 (Euclidean distance, for instance) and a
distance 𝐷 between two disjoint sets. Next to some relatively uncommon variants there are three major notions for
distances between disjoint sets:

• minimum distance of points (single linkage clustering):

𝐷(𝐶, ̃𝐶) ∶= min
𝑥∈𝐶,�̃�∈ ̃𝐶

𝑑(𝑥, ̃𝑥),

• maximum distance of points (complete linkage clustering):

𝐷(𝐶, ̃𝐶) ∶= max
𝑥∈𝐶,�̃�∈ ̃𝐶

𝑑(𝑥, ̃𝑥),

• average distance of points (average linkage clustering):

𝐷(𝐶, ̃𝐶) ∶= 1
|𝐶| | ̃𝐶|

∑
𝑥∈𝐶

∑
�̃�∈ ̃𝐶

𝑑(𝑥, ̃𝑥).

Starting with the finest clustering the following steps are repeated until there is only one large cluster containing the
whole data set:

• Calculate the distance 𝐷 for each pair of clusters.
• Join the two clusters with smallest distance.

Clustering results for different distance measures may differ significantly. Single linkage clustering suffers from
chaining. That is, several (for human eyes) clearly separated clusters are joined into one because they touch at one
point. An advantage of single linkage clustering is that it finds clusters of arbitrary shape and does not prefer convex
clusters. Complete linkage prefers compact sphere shaped clusters. Average linkage is a compromise between both
extremes. Have a look at the plots of the linkage example in Scikit-Learn’s documentaion20.

20 https://scikit-learn.org/stable/auto_examples/cluster/plot_linkage_comparison.html
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4.4 Hierarchical Clustering with Scikit-Learn

Scikit-Learn only supports agglomerative clustering via AgglomerativeClustering21 class. We either have
to provide the number of clusters n_clusters or the distance distance_threshold at which to cut the
dendrogram.

import numpy as np
import matplotlib.pyplot as plt
import sklearn.cluster as cluster

rng = np.random.default_rng(0)

# 5 clusters in 2 dimensions

n1, n2, n3, n4, n5 = 100, 200, 20, 50, 50
n = n1 + n2 + n3 + n4 + n5

X1 = rng.uniform((0, 1), (2, 3), (n1, 2))
X2 = rng.multivariate_normal((-1, -2), ((0.5, 0), (0, 0.2)), n2)
X3 = np.linspace(-1, 0.5, n3).reshape(-1, 1) * np.ones((1, 2)) + np.array([[-1,␣

↪1]])
X4 = rng.multivariate_normal((-4.5, -1), ((0.2, 0.1), (0.1, 0.4)), n4)
phi = np.linspace(0, 2 * np.pi, n5).reshape(-1, 1)
X5 = np.array([[2.5, -1]]) + np.concatenate((np.cos(phi), np.sin(phi)), axis=1)

X = np.concatenate((X1, X2, X3, X4, X5))

fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1], s=5, c='b')
ax.axis('equal')
plt.show()

21 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
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ac = cluster.AgglomerativeClustering(5, linkage='single')
ac.fit(X)

fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1], s=5, c=ac.labels_, cmap='Set1')
ax.axis('equal')
plt.show()

Neither Scikit-Learn, nor Matplotlib, nor Seaborn support plotting dendrograms directly. Only SciPy22 has a den-
drogram23 function for plotting. SciPy also has the linkage24 function for agglomerative clustering. But we
would like to use Scikit-Learn for clustering although SciPy shall plot the dendrogram. Thus, we have to adapt
Scikit-Learn’s output to the needs of SciPy.

import scipy.cluster.hierarchy as scipy_ch

def plot_dendrogram(ac, ax, max_nodes=10, color_threshold=0.5):

n = ac.labels_.shape[0] # number of samples

data = np.empty((n - 1, 4))
data[:, 0:2] = ac.children_
data[:, 2] = ac.distances_

# get number of samples per node
for i in range(0, n - 1): # visit each node

c = 0

# add samples from left child
if ac.children_[i, 0] < n: # child is leaf

(continues on next page)
22 https://docs.scipy.org/doc/scipy/index.html
23 https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.dendrogram.html
24 https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
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c = c + 1
else:

c = c + data[ac.children_[i, 0] - n, 3]

# add samples from right child
if ac.children_[i, 1] < n: # child is leaf

c = c + 1
else:

c = c + data[ac.children_[i, 1] - n, 3]
data[i, 3] = c

scipy_ch.dendrogram(data, ax=ax, truncate_mode='lastp', p=max_nodes, color_
↪threshold=color_threshold)

Note that the n_clusters parameter of AgglomerativeClustering does not matter, because we are in-
terested in the dendrogram, not in a particular clustering.

ac = cluster.AgglomerativeClustering(linkage='average', compute_distances=True)
ac.fit(X)

fig, ax = plt.subplots(figsize=(12, 8))
plot_dendrogram(ac, ax, 50, 2.5)
plt.show()

From the dendrogram we see that the number of clusters in the data is 2, 4 or 5.

ac = cluster.AgglomerativeClustering(n_clusters=5, linkage='average')
ac.fit(X)

fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1], s=5, c=ac.labels_, cmap='Set1')
ax.axis('equal')

(continues on next page)
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plt.show()

If we only are interested in the number of clusters we may plot the number of clusters versus the distance threshold
and look for wide vertical gaps.

ac = cluster.AgglomerativeClustering(linkage='average', compute_distances=True)
ac.fit(X)

fig, ax = plt.subplots()

dists = ac.distances_
for i in range(dists.size - 100, dists.size):

ax.plot([0, dists.size], [dists[i], dists[i]], '-b', linewidth=1)
ax.plot(range(dists.size + 1, 1, -1), dists, 'or', markersize=3)

ax.set_xlim(0, 30)
ax.set_xlabel('clusters')
ax.set_ylabel('distance threshold')
ax.grid(axis='x')

plt.show()
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CHAPTER

FIVE

DENSITY-BASED CLUSTERING

Density-based clustering aims at finding connected regions of closely spaced points in a data set. The basic idea is
to mark core points (points with many surrounding points) and look for clusters in the set of core points. A distance
measure is only used to determine a neighborhood for each point. Thus, the choice of a concrete distance measure is
not as important as for centroid-based methods or hierarchical clustering.
There exist many ways to fill in the details of the approach. The most widely used density-based clustering algorithms
are DBSCAN and OPTICS. Both only assign cluster labels to the training data but do not imply a canonical prediction
routine. Both algorithms may yield clusters of arbitrary shape.
Another density-based clustering method, not discussed here, is mean shift25.

• DBSCAN (page 39)
• OPTICS (page 42)

Related projects:
• Chinese Celadons (page 131)

– Hierarchical Clustering (page 131)
– Density-based Clustering (page 132)

5.1 DBSCAN

The DBSCAN (density-based spatial clustering of applications with noise) algorithm takes two parameters 𝜀 > 0 and
𝑁 ∈ ℕ, which together specify what a core point is: a point 𝑥 from the training data set is a core point if the ball of
radius 𝜀 centered at 𝑥 contains at least 𝑁 points of the data set (including 𝑥). We may say that core points are points
with dense neighborhood.
In the context of DBSCAN a cluster is a subset 𝑆 of the data set with the following properties:

• 𝑆 contains at least one core point ̄𝑥0.
• For each point 𝑥 in 𝑆 there is a finite sequence of core points ̄𝑥1, … , ̄𝑥𝑘 such that ̄𝑥𝑙 belongs to the 𝜀-
neighborhood of ̄𝑥𝑙−1 for 𝑙 = 1, … , 𝑘 and 𝑥 belongs to the 𝜀-neighborhood of ̄𝑥𝑘.

Each cluster contains core points and may contain non-core points (points with few neighbors). Non-core points can
be regarded as the cluster’s edge. From the sequence property above one immediately sees that each core point of a
cluster may take the role of ̄𝑥0.
There may exist points which do not belong to any cluster. Such points are regarded as noise or outliers.
DBSCAN starts with some point of the data set. If it’s a non-core point, it is marked as visited and a new point is
chosen. If it is a core point, a new cluster is started. All points from the 𝜀-neighborhood are added to the cluster.
Then all neighborhoods of core points in the starting point’s neighborhood are added, and so on until there are no
more reachable core points. Then a new unvisited point is chosen and the cluster discovery starts again from this
new point (if it is a core point). If all points have been visited, the points not assigned to a cluster are interpreted as
outliers.

25 https://en.wikipedia.org/wiki/Mean-shift
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Fig. 5.1: DBSCAN classifies points as core points, non-core points, and outliers.

The computationally expensive part is to find all points in the 𝜀-neighborhood of a given point. There exist efficient
implementations for such range queries for data sets stored in well structured data bases.
A major advantage of DBSCAN is that we do not have to estimate the number of clusters in advance. Also results do
not depend on (random) initializations. Although assignment of non-core points to clusters depends on the processing
order of the points, clustering of core points is always the same.
Parameters 𝜀 and 𝑁 may be hard to choose. But they have a clear interpretation. The smaller 𝜀 and the higher 𝑁
the closer points have to be to form a cluster. Domain knowledge may help to choose these parameters. Another
drawback is that there is only one set of parameters for all clusters. Consequently all clusters should show comparable
density.

5.1.1 DBSCAN with Scikit-Learn

Scikit-Learn provides a DBSCAN26 class in its cluster module. Relevant parameters are eps (our 𝜀) and
min_samples (our 𝑁 ).

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
import sklearn.cluster as cluster

rng = np.random.default_rng(0)

# 5 clusters in 2 dimensions

n1, n2, n3, n4, n5 = 100, 200, 20, 50, 50
n = n1 + n2 + n3 + n4 + n5

X1 = rng.uniform((0, 1), (2, 3), (n1, 2))
X2 = rng.multivariate_normal((-1, -2), ((0.5, 0), (0, 0.2)), n2)
X3 = np.linspace(-1, 0.5, n3).reshape(-1, 1) * np.ones((1, 2)) + np.array([[-1,␣

↪1]])
X4 = rng.multivariate_normal((-4.5, -1), ((0.2, 0.1), (0.1, 0.4)), n4)
phi = np.linspace(0, 2 * np.pi, n5).reshape(-1, 1)
X5 = np.array([[2.5, -1]]) + np.concatenate((np.cos(phi), np.sin(phi)), axis=1)

X = np.concatenate((X1, X2, X3, X4, X5))

fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1], s=5, c='b')
ax.axis('equal')
plt.show()

26 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
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eps = 0.4
N = 5

dbs = cluster.DBSCAN(eps=eps, min_samples=N)
dbs.fit(X)

colors = list(mpl.colors.TABLEAU_COLORS.values())

fig, ax = plt.subplots(figsize=(12, 8))

# plot neighborhoods of core points
for i in dbs.core_sample_indices_:

color = colors[dbs.labels_[i] % len(colors)] + '20'
ax.add_artist(mpl.patches.Circle(X[i, :], eps, color=color))

# plot points
for label in np.unique(dbs.labels_):

if label == -1:
color = '#A0A0A0'

else:
color = colors[label % len(colors)]

mask = dbs.labels_ == label
ax.scatter(X[mask, 0], X[mask, 1], c=color, s=5)

ax.axis('equal')
plt.show()
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5.2 OPTICS

OPTICS (ordering points to identify the clustering structure) is an extension of DBSCAN, which automatically
chooses 𝜀 and allows for cluster-dependent 𝜀. Instead of 𝜀 OPTICS requires a parameter 𝜀max describing the maxi-
mum value to consider when choosing 𝜀. This parameter has to be chosen large enough to not miss a cluster but there
is no upper bound. The larger 𝜀max the more computation time is required while clustering results remain the same.
Thus, choosing a good 𝜀max is only important for large scale data sets.
OPTICS differs from DBSCAN as follows:

• Neighborhood radius 𝜀 depends on the point 𝑥 under consideration. It is chosen as small as possible but large
enough to have 𝑁 points (including 𝑥) in the 𝜀(𝑥)-neighborhood. In this sense every point is a core point, at
least if 𝜀max is large enough (which we assume below).

• The direct output of the OPTICS algorithm is not a clustering. Instead, to each processed point a numerical
value, the reachability distance, is assigned. These values imply a linear ordering of all processed points. From
this ordering a clustering can be deduced by several different methods (see below).

5.2.1 Basic Algorithm

During runtime of OPTICS algorithm each point is in one of three states: untouched or discovered or processed. At
the beginning all points are untouched, at the end all points will be processed (if 𝜀max is large enough).
OPTICS, like DBSCAN, starts at an arbitrary point 𝑥. For each point ̃𝑥 in the 𝜀max-neighborhood of 𝑥 then the
reachability distance is computed as

max{𝜀(𝑥), |𝑥 − ̃𝑥|},
all points but 𝑥 are appended to the list of discovered (but unprocessed) points and 𝑥 is marked as processed. Now
the following steps are repeated until no discovered but unprocessed points remain:

• The point with lowest reachability distance is chosen from the list of discovered points andmarked as processed.
• For all unprocessed points in its 𝜀max-neighborhood reachability distances with respect to the point are com-
puted.
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• If such an unprocessed neighboring point already has been discovered before, the smaller one of old and new
reachability distance is chosen. If a neighboring point has been discovered for the first time, it is added to the
list of discovered points.

5.2.2 Implementation from Scratch

Note that efficient implementation of OPTICS algorithm requires knowledge of advanced data structures. For un-
derstanding the basic principles here we only provide an inefficient implementation avoiding any use of advanced
data structures. Further we set 𝜀max = ∞, that is, instead of (large) neighborhoods we always discover the whole
data set. Consequently, there will be no untouched points after processing the starting point.

import numpy as np
import matplotlib.pyplot as plt

rng = np.random.default_rng(0)

# 5 clusters in 2 dimensions

n1, n2, n3, n4, n5 = 100, 200, 20, 50, 50
n = n1 + n2 + n3 + n4 + n5

X1 = rng.uniform((0, 1), (2, 3), (n1, 2))
X2 = rng.multivariate_normal((-1, -2), ((0.5, 0), (0, 0.2)), n2)
X3 = np.linspace(-1, 0.5, n3).reshape(-1, 1) * np.ones((1, 2)) + np.array([[-1,␣

↪1]])
X4 = rng.multivariate_normal((-4.5, -1), ((0.2, 0.1), (0.1, 0.4)), n4)
phi = np.linspace(0, 2 * np.pi, n5).reshape(-1, 1)
X5 = np.array([[2.5, -1]]) + np.concatenate((np.cos(phi), np.sin(phi)), axis=1)

X = np.concatenate((X1, X2, X3, X4, X5))

fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1], s=5, c='b')
ax.axis('equal')
plt.show()
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N = 10
start_idx = 0

n = X.shape[0]

dists = np.empty(n) # reachability distances
epss = np.empty(n) # epsilons
processed = np.full(n, False) # point already processed?
order = np.empty(n, dtype=int) # indices in the order of processing (for␣

↪identifying clusters)
previous = np.empty(n, dtype=int) # index of core point with shortest distance␣

↪(for visualization only)

# calculate pairwise distances
D = np.empty((n, n))
for l in range(0, n):

D[l, l] = 0
for ll in range(0, l):

D[l, ll] = np.sqrt(np.sum((X[l, :] - X[ll, :]) ** 2))
D[ll, l] = D[l, ll]

# calculate epsilon for each point
for l in range(0, n):

epss[l] = np.sort(D[l, :])[N]

# calculate reachability distances with respect to starting point
x = X[start_idx, :]
for l in range(0, n):

dists[l] = np.maximum(epss[start_idx], D[start_idx, l])
previous[l] = start_idx

processed[start_idx] = True
order[0] = start_idx
previous[start_idx] = -1 # no predecessor

(continues on next page)
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# process all points
for i in range(1, n):

# get next core point (the one closest to set of processed points)
dists_sort = np.argsort(dists)
idx_sorted = np.flatnonzero(processed[dists_sort] == False)[0]
idx = dists_sort[idx_sorted]
processed[idx] = True
order[i] = idx

# update reachability distances
for l in np.flatnonzero(processed == False):

new_dist = np.maximum(epss[idx], D[idx, l])
if new_dist < dists[l]:

dists[l] = new_dist
previous[l] = idx

5.2.3 Identifying Clusters

When OPTICS algorithm has finished we have the processing order and shortest reachability distances (SRD) of
all points. The SRD of a point tells us how far away the point was from the already processed points before it got
processed itself. As long as SRDs remain small while processing point by point, new points are close to previous
ones. If SRD suddenly increases, then there are no more close points left. Thus, all points of a cluster have been
processed and the processing of a new cluster starts.
If we plot SRD versus position in the processed chain of points, we may identify valleys as clusters. To extract a
clustering from OPTICS results we have to identify valleys in the plot. Points with high SRD (mountains between
valleys) can be interpreted as outliers.

fig, ax = plt.subplots(figsize=(12, 4))
ax.plot(dists[order] , '-ob', markersize=3)
ax.set_xlabel('points in order of processing')
ax.set_ylabel('shortest reachability distance')
plt.show()

There exist several algorithms for finding valleys in the plot. One could look for steep decents or ascents or one could
look for almost constant regions. Depending on the sensitivity of this valley search more of less clusters will be found.
With different levels of sensitivity we would obtain a sequence of nested clusterings. In this sense, OPTICS algorithm
is sometimes classified as hierarchical clustering method.
Here we do not go into the details of automatically identifying clusters.
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labels = np.full(n, -1, dtype=int)

labels[order[0:97]] = 0
labels[order[103:120]] = 1
labels[order[120:310]] = 2
labels[order[319:369]] = 3
labels[order[369:]] = 4

mask = labels != -1

fig, ax = plt.subplots(figsize=(12, 4))
ax.plot(dists[order] , '-b', markersize=3)
ax.scatter(np.arange(0, n)[mask[order]], dists[order][mask[order]],

s=20, c=labels[order][mask[order]], cmap='jet')
ax.set_xlabel('points in order of processing')
ax.set_ylabel('shortest reachability distance')
plt.show()

fig, ax = plt.subplots()
mask = labels != -1
ax.scatter(X[mask, 0], X[mask, 1], s=5, c=labels[mask], cmap='jet')
ax.scatter(X[mask == False, 0], X[mask == False, 1], s=5, c='#A0A0A0')
ax.axis('equal')
plt.show()
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5.2.4 Visualizing Processing Order and Reachability

For getting some more insight into OPTICS algorithm we may visualize the processing order. On the one hand we
could color each point by its position in the chain of processed points. On the other hand we could connect each point
with its closest core point, that is, with the point used in the computation of the shortest reachability distance.

fig, ax = plt.subplots(figsize=(12, 8))

# connections
for l in range(0, n):

if previous[l] != -1:
ax.plot([X[previous[l], 0], X[l, 0]], [X[previous[l], 1], X[l, 1]], '-b',␣

↪markersize=3, linewidth=0.5)

# colored points
c = np.empty(n)
c[order] = np.arange(0, n)
ax.scatter(X[:, 0], X[:, 1], s=20, c=c, cmap='jet')

# starting point
ax.plot(X[start_idx, 0], X[start_idx, 1],'-or', markersize=10)

ax.axis('equal')
plt.show()
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All connections together constitute a graph which is tree shaped and spans the data set, a so called spanning tree. This
graph may be used for further investigation of the data set, for instance, to visualize high dimensional data sets in two
dimensions without loosing too much structure.
Unfortunately there seems to be no Python package supporting tree visualization with prescribed edge lengths and
having a simple API. Thus, we write our own tree visualization function.

def plot_tree(prevs, dists, core_dists, ax, root_x=0, root_y=0):
''' Plot tree with prescribed edge lengths.
Only plots the edges, not the nodes. Node positions are
returnd as NumPy array of shape (n_samples, 2)

prevs ... 1d array with predecessor (parent) for each node (root has -1)
dists ... distance to predecessor
core_dists ... distance considered as close to the node (close leaves will

be visualized closer than prescribed by dists)
'''

# for each node create list of children
children = [[] for i in range(0, n)]
for i in range(0, n):

if prevs[i] != -1:
children[prevs[i]].append(i)

else:
root = i

# randomly permutate children of each node (for better visual impression)
for i in range(0, n):

if len(children[i]) > 0:
children[i] = list(rng.permuted(children[i]))

# array for node positions
pos = np.empty((n, 2))

# place root on stack of nodes to process

(continues on next page)
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pos[root, 0] = 0
pos[root, 1] = 0
stack = [root]

# process nodes until stack is empty
while len(stack) > 0:

node = stack.pop()
for i, child in enumerate(children[node]):

# radius (distance to parent node)
r = dists[child]
if r <= core_dists[node]:

r = 0.3 * core_dists[node]

# angle
if node == root:

# evenly distribute children around root
angle = 2 * np.pi / len(children[node]) * (i + 0.5)

else:
# evenly distribute children in a 180° region around node,
# rotate 180° region to look away from parent of current node
parent_angle = np.arctan2(pos[node, 1] - pos[prevs[node], 1],␣

↪pos[node, 0] - pos[prevs[node], 0])
angle = np.pi / len(children[node]) * (i + 0.5) - 0.5 * np.pi +␣

↪parent_angle

# child position
pos[child, 0] = pos[node, 0] + r * np.cos(angle)
pos[child, 1] = pos[node, 1] + r * np.sin(angle)
stack.append(child)

# plot edge to child
ax.plot([pos[node, 0], pos[child, 0]], [pos[node, 1], pos[child, 1]],

↪'-k', linewidth=0.5)

return pos

At the moment we only have 2d data. Thus, direct visualization of clusters is possible. Nethertheless we should have
a look at corresponding tree visualization to get an idea of how to interpret it.

fig, ax = plt.subplots(figsize=(12, 8))

pos = plot_tree(previous, dists, epss, ax)

mask = labels != -1
ax.scatter(pos[mask, 0], pos[mask, 1], s=5, c=labels[mask], cmap='jet')
ax.scatter(pos[mask == False, 0], pos[mask == False, 1], s=5, c='#A0A0A0')

ax.axis('equal')
plt.show()
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5.2.5 OPTICS Algorithm with Scikit-Learn

Scikit-Learn provides the OPTICS27 class. The only relevant parameter is min_samples (our 𝑁 ). There are two
cluster identification routines available. One based on DBSCAN (with sensitivity parameter eps) and another one
with sensitivity parameter xi. Note, that automatic cluster identification often yields poor results.

import sklearn.cluster as cluster

opt = cluster.OPTICS(min_samples=10, cluster_method='dbscan', eps=0.5)
opt.fit(X)

fig, ax = plt.subplots()
mask = opt.labels_ != -1
ax.scatter(X[mask, 0], X[mask, 1], s=5, c=opt.labels_[mask], cmap='jet')
ax.scatter(X[mask == False, 0], X[mask == False, 1], s=5, c='#A0A0A0')
ax.axis('equal')
plt.show()

27 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html
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fig, ax = plt.subplots(figsize=(12, 4))
ax.plot(opt.reachability_[opt.ordering_] , '-b', linewidth=0.5)
ax.scatter(np.arange(0, n)[mask[opt.ordering_]], opt.reachability_[opt.ordering_

↪][mask[opt.ordering_]], s=20, c=opt.labels_[opt.ordering_][mask[opt.ordering_]],
↪ cmap='jet')

ax.set_xlabel('points in order of processing')
ax.set_ylabel('shortest reachability distance')
plt.show()
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SIX

DISTRIBUTION-BASED CLUSTERING

In distribution-based clustering each cluster 1, … , 𝑘 is represented by a probability distribution. The underlying
assumption is that there exist 𝑘 probability distributions 𝑝1, … , 𝑝𝑘 from which each cluster’s data points have been
drawn. Given training data one aims to find the probability distribution for each cluster. Usually Gaussian distributions
are used, but others may be appropriate as well.
The difficulty is to derive (for fixed 𝑘) the distribution parameters from the data set and, thus, cluster positions, sizes,
shapes. Resulting model of the data set is denoted as a mixture model because the data set is represented as a mixture
of points drawn from different distributions. In case of Gaussian distributions the searched for parameters are the 𝑘
mean vectors and the 𝑘 covariance matrices. Resulting model then is a Gaussian mixture model.
Mixture models are an example of generative models, because they allow to generate new samples with similar prop-
erties like samples in the training set. Here we do not obtain a model of the training set’s clusters themselves, but a
model to generate data sets similar to the training set. From this generative model we may extract information about
clusters in the training data (distribution parameters), but partitioning of training samples into concrete clusters is an
extra step based on information extracted from the model.
Related projects:

• Generating Handwritten Digits (page 119)

6.1 Expectation Maximization

On the one handwewant to find parameters of the 𝑘 underlying distributions such that data fits well to the distributions.
On the other hand we want to label training samples (assign them to clusters). The questions are how to formalize ‘fits
well’ and how to derive the labels. A common approach is to choose parameters and labels such that the training set
is the most probable data set within all data sets which can be drawn from distributions with the chosen parameters
respecting the cluster assignments. This approach (and its algorithmic realization below) is known as expectation
maximization (EM).

6.1.1 Notation

The EM approach requires that we consider training samples 𝑥1, … , 𝑥𝑛 and labels as realizations of random variables
𝑋1, … , 𝑋𝑛 and 𝑌1, … , 𝑌𝑛, respectively. The 𝑋𝑙 are continuous random variables with values in ℝ𝑚. The 𝑌𝑙 are
discrete random variable taking values in {1, … , 𝑘}.
Clusters 1, … , 𝑘 are described by probability densities 𝑝𝑖 ∶ ℝ𝑚 → [0, ∞), 𝑖 = 1, … , 𝑘 containing parameters
𝜗1, … , 𝜗𝑘, respectively. Here, 𝜗𝑖 is a vector if the 𝑖th density has more than one parameter. If we know the cluster
of some sample 𝑙, that is, 𝑌𝑙 = 𝑦𝑙 for some 𝑦𝑙 ∈ {1, … , 𝑘}, then we know the distribution of the 𝑙th sample: it’s
𝑝𝑦𝑙

. In other words, the densities 𝑝𝑖 are our model for describing generation of random samples given preset cluster
assignments.
Note that for continuous random variables working with probability densities is much more comfortable than working
with the probability measures directly, because 𝑃(𝑋 = 𝑥) = 0 for each 𝑥, whereas 𝑝(𝑥) carries the relevant infor-
mation as long os 𝑝 is continuous, which is usually taken for granted when working with densities without explicitly
mentioning this important assumption.
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For the 𝑌𝑙 we do not specify a model. The 𝑌𝑙 are discrete random variables taking 𝑘 different values. Thus, the
distribution of each 𝑌𝑙 can be described by 𝑘 non-negative numbers:

𝑞𝑙,1 ∶= 𝑃(𝑌𝑙 = 1), … , 𝑞𝑙,𝑘 ∶= 𝑃(𝑌𝑙 = 𝑘) for 𝑙 = 1, … , 𝑛.

The 𝑞𝑙,𝑖 describe the generation of random cluster assignments for all samples. By definition they satisfy

𝑘
∑
𝑖=1

𝑞𝑙,𝑖 = 1 for 𝑙 = 1, … , 𝑛.

6.1.2 Maximization Problem

The aim is to choose all parameters describing the generation of random samples (that is, the 𝜗𝑖 and the 𝑞𝑙,𝑖) in such a
way that the probability to observe the available training data becomes maximal with respect to all possible parameter
values:

𝑝(𝑥1, … , 𝑥𝑛) → max
𝜗1,…,𝜗𝑘,𝑞1,1,…,𝑞𝑛,𝑘

.

Here, 𝑝 is the probability density function of (𝑋1, … , 𝑋𝑛).
The structure of 𝑝 is quite involved and corresponding maximization problem hard to solve, analytically as well as
numerically.

6.1.3 Idea of EM Algorithm

Solving the maximization problem with respect to all parameters is almost impossible. But if we fix the 𝑞𝑙,𝑖 to certain
special but still reasonable values then optimal 𝜗1, … , 𝜗𝑘 can be obtained in a straight-forward way. The other way
round, if we fix 𝜗1, … , 𝜗𝑘, then calculating optimal 𝑞𝑙,𝑖 becomes viable.
We may alternate both steps: Fix (initial, almost random) 𝑞𝑙,𝑖 and get optimal 𝜗𝑖. Then for those 𝜗𝑖 get optimal 𝑞𝑙,𝑖
and so on until some stopping criterion is satisfied.

6.1.4 Optimal Labels

Given some fixed values for 𝜗1, … , 𝜗𝑘 we want so solve above maximization problem with respect to the 𝑞𝑙,𝑖.
The law of total probability allows to rewrite 𝑝 as

𝑝(𝑥1, … , 𝑥𝑛) =
𝑘

∑
𝑦1=1

⋯
𝑘

∑
𝑦𝑛=1

𝑃(𝑦1, … , 𝑦𝑛) 𝑝(𝑥1, … , 𝑥𝑛 | 𝑦1, … , 𝑦𝑛),

where 𝑝(𝑥1, … , 𝑥𝑛 | 𝑦1, … , 𝑦𝑛) is the conditional probability density for (𝑋1, … , 𝑋𝑛) given conrete values 𝑦1, … , 𝑦𝑛
for 𝑌1, … , 𝑌𝑛.

Mathematical side note
The somewhat unsual mix of densities and probability measure 𝑃 is mathematically correct. This can be seen by
considering a subset 𝐴 of ℝ𝑚 instead of only one element, allowing to write everything without densities:

𝑃(𝐴) = ∑ ⋯ ∑ 𝑃(𝑦1, … , 𝑦𝑛) 𝑃 (𝐴 | 𝑦1, … , 𝑦𝑛).

Replacing 𝑃 by integrals over corresponding densities we obtain

∫
𝐴

𝑝(𝑥1, … , 𝑥𝑛) d(𝑥1, … , 𝑥𝑛) = ∑ ⋯ ∑ 𝑃(𝑦1, … , 𝑦𝑛) ∫
𝐴

𝑝(𝑥1, … , 𝑥𝑛 | 𝑦1, … , 𝑦𝑛) d(𝑥1, … , 𝑥𝑛)

= ∫
𝐴

∑ ⋯ ∑ 𝑃(𝑦1, … , 𝑦𝑛) 𝑝(𝑥1, … , 𝑥𝑛 | 𝑦1, … , 𝑦𝑛) d(𝑥1, … , 𝑥𝑛).
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This integral equation holds for all sets 𝐴. Thus, integrants on both sides are equal.

Remember
𝑃(𝑦1, … , 𝑦𝑛) = 𝑞1,𝑦1

⋯ 𝑞𝑛,𝑦𝑛

by definition of the 𝑞𝑙,𝑖. The conditional density may be rewritten in terms of conditional densities for each sample
(we reuse 𝑝 here although joint and per-sample densities are different functions):

𝑝(𝑥1, … , 𝑥𝑛 | 𝑦1, … , 𝑦𝑛) = 𝑝(𝑥1 | 𝑦1, … , 𝑦𝑛) ⋯ 𝑝(𝑥𝑛 | 𝑦1, … , 𝑦𝑛).

The distribution of 𝑋𝑙 only depends on 𝑌𝑙, not on 𝑌𝜆 for 𝜆 ≠ 𝑙. Thus,

𝑝(𝑥𝑙 | 𝑦1, … , 𝑦𝑛) = 𝑝(𝑥𝑙 | 𝑦𝑙).

The value 𝑝(𝑥𝑙 | 𝑦𝑙) is the probability of observing 𝑥𝑙 if we know that 𝑥𝑙 belongs to cluster 𝑦𝑙. With the cluster
densities 𝑝1, … , 𝑝𝑘 we thus have

𝑝(𝑥𝑙 | 𝑦1, … , 𝑦𝑛) = 𝑝𝑦𝑙
(𝑥𝑙)

The maximization problem to solve now reads
𝑘

∑
𝑦1=1

⋯
𝑘

∑
𝑦𝑛=1

𝑞1,𝑦1
⋯ 𝑞𝑛,𝑦𝑛

𝑝𝑦1
(𝑥1) ⋯ 𝑝𝑦𝑛

(𝑥𝑛) → max
𝑞1,1,…,𝑞𝑛,𝑘

.

From the properties of the 𝑞𝑙,𝑖 (non-negative, sum over 𝑖 is 1) we immediately see that 𝑞1,𝑦1
⋯ 𝑞𝑛,𝑦𝑛

≥ 0 for each
(𝑦1, … , 𝑦𝑛) and

𝑘
∑
𝑦1=1

⋯
𝑘

∑
𝑦𝑛=1

𝑞1,𝑦1
⋯ 𝑞𝑛,𝑦𝑛

= 1.

Thus, our maximization problem has the structure

∑
𝑗

𝑎𝑗 𝑧𝑗 → max
𝑎𝑗

, 𝑎𝑗 ≥ 0, ∑
𝑗

𝑎𝑗 = 1.

The solution of such problems is known (and easily verified) to be 𝑎 = (0, … , 0, 1, 0, … , 0) with the 1 at the position
of the maximal 𝑧𝑗.
In our setting: Let 𝑦∗

1, … , 𝑦∗
𝑛 be the set of labels maximizing 𝑝𝑦1

(𝑥1) ⋯ 𝑝𝑦𝑛
(𝑥𝑛). Then 𝑞1,𝑦∗

1
⋯ 𝑞𝑛,𝑦∗𝑛

has to be 1
(which is only possible if all 𝑞𝑙,𝑦∗

𝑙
equal 1) and all other 𝑞𝑙,𝑖 have to be 0. In other words, the optimal distribu-

tion of (𝑌1, … , 𝑌𝑛) is deterministic with the whole probability mass on (𝑌1, … , 𝑌𝑛) = (𝑦∗
1, … , 𝑦∗

𝑛). Note that
𝑝𝑦1

(𝑥1) ⋯ 𝑝𝑦𝑛
(𝑥𝑛) becomes maximal if each factor becomes maximal. Thus,

𝑦∗
𝑙 = argmax𝑖 𝑝𝑖(𝑥𝑙) for 𝑙 = 1, … , 𝑛.

6.1.5 Optimal Per-Cluster Distributions

Given fixed 𝑞𝑙,𝑖 we want to solve the above maximization problem with respect to the parameters 𝜗1, … , 𝜗𝑘 of the
per-cluster probability densities 𝑝1, … , 𝑝𝑘. We do not solve the maximization problem for arbitraty 𝑞𝑙,𝑖 but for 𝑞𝑙,𝑖
with the structure obtained as optimal solution in the previous subsection. That is, the 𝑞𝑙,𝑖 describe a deterministic
probability distribution with all mass on some fixed (𝑦1, … , 𝑦𝑛).
Given the concrete set of labels 𝑦1, … , 𝑦𝑛 the probability to observe our training samples 𝑥1, … , 𝑥𝑛 (that is, the
objective of the maximization problem) is

𝑝(𝑥1, … , 𝑥𝑛) =
𝑛

∏
𝑙=1

𝑝𝑦𝑙
(𝑥𝑙) =

𝑘
∏
𝑖=1

∏
𝑙∶𝑦𝑙=𝑖

𝑝𝑖(𝑥𝑙).

Each factor∏𝑙∶𝑦𝑙=𝑖 𝑝𝑖(𝑥𝑙) only depends on 𝜗𝑖 and not on 𝜗𝑗 for 𝑗 ≠ 𝑖. Thus, wemaymaximize factors independently.

Finding 𝜗𝑖 which maximizes ∏𝑙∶𝑦𝑙=𝑖 𝑝𝑖(𝑥𝑙) is a standard task in maximum likelihood estimation28. Depending on
the structure of 𝑝𝑖 there exist explicit solutions (see below for Gaussion densities).

28 https://en.wikipedia.org/wiki/Maximum_likelihood_estimation
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6.2 The EM Algorithm

The procedure derived above can be summarized as follows:
1. Randomly choose initial labels 𝑦1, … , 𝑦𝑛.
2. Calculate optimal 𝜗1, … , 𝜗𝑘 based on the training samples in each cluster.
3. Update labels by assigning each 𝑥𝑙 the cluster 𝑖 with the highest 𝑝𝑖(𝑥𝑙).
4. Go to 2 if stopping criterion not satisfied.

Common stopping criteria are to stop if the 𝑦𝑙 or the 𝜗𝑖 do not change anymore.
The process is known to converge to a stationary point (gradient is zero) of the original maximization problem. Thus,
it may get stuck in local maxima or even in saddle points.

6.3 Gaussian Mixtures

If 𝑝1, … , 𝑝𝑘 are Gaussian probability densities, 𝑝𝑖 has the mean vector and the covariance matrix as parameters. The
products

∏
𝑙∶𝑦𝑙=𝑖

𝑝𝑖(𝑥𝑙), 𝑖 = 1, … , 𝑘

in the above derivation are maximized with respect to the distribution parameters, if we choose mean and covariance
of

{𝑥𝑙 ∶ 𝑦𝑙 = 𝑖} (cluster 𝑖)
as parameters.
EM with Gaussian distributions is a very fast algorithm. The two alternating steps boil down to:

• calculate probabilities 𝑝𝑙,𝑖 ∶= 𝑝𝑖(𝑥𝑙) for all pairs of samples and clusters,
• for each 𝑙 set 𝑦𝑙 ∶= argmax𝑖=1,…,𝑘𝑝𝑙,𝑖,
• calculate empirical mean vectors and empirical covariance matrices for each cluster.

6.4 Relation to 𝑘-Means

The idea of alternating two steps, each solving the problem partially, is very similar to 𝑘-means:
• EM: for fixed labels get optimal parameters.𝑘-means: for fixed labels get centroid of each cluster.
• EM: for fixed parameters get optimal labels.𝑘-means: for fixed centroids get optimal labels.

One easily verifies that the training of Gaussian mixture models with identity covariance matrices is equivalent to
𝑘-means clustering.

6.5 Choosing 𝑘

Like for 𝑘-means the number of clusters has to be known in advance. The larger 𝑘, the better the data can be
represented by the model, but interpretation of clusters becomes more difficult (overfitting).
Silhouette score and Davies-Bouldin index may help choosing 𝑘. For elbow method one can use the optimal value of
the objective function from the above maximization problem. Another approach is known as Bayesian information
criterion. Here one chooses 𝑘 to minimize

𝑡 log𝑛 − log 𝑝(𝑥1, … , 𝑥𝑛).
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The second summand is the negative logarithm of the optimal value of the original maximization problem and the
first summand is a penalty containing the number 𝑡 of model parameters. Obviously, 𝑡 is a multiple of 𝑘 if all 𝑘
distributions are of equal type (e.g., Gaussian). The more clusters the model has, the higher 𝑡 and the larger the
penalty. Minimizing the sum yields a value for 𝑘 which is a compromise between number of clusters and fitting error.
For more detailed motivation of BIC see Wikipedia on BIC29.

6.6 Soft Clustering

EM allows for soft clustering, that is, each sample we may assign probabilities to belong to the different clusters. The
𝑝𝑖(𝑥𝑙) can be interpreted as score for 𝑥𝑙 to belong to cluster 𝑖. Probability-like scores can be obtained the usual way
as

𝑝𝑖(𝑥𝑙)
𝑝1(𝑥𝑙) + ⋯ + 𝑝𝑘(𝑥𝑙)

.

6.7 Gaussian Mixture Models with Scikit-Learn

Scikit-Learn provides the GaussianMixture30 class in its mixture module. The only relevant parameter is
n_components (our 𝑘).

import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
import sklearn.mixture as mixture
import sklearn.metrics as metrics

rng = np.random.default_rng(0)

# 5 clusters in 2 dimensions

n1, n2, n3, n4, n5 = 100, 200, 20, 50, 50
n = n1 + n2 + n3 + n4 + n5

X1 = rng.uniform((0, 1), (2, 3), (n1, 2))
X2 = rng.multivariate_normal((-1, -2), ((0.5, 0), (0, 0.2)), n2)
X3 = np.linspace(-1, 0.5, n3).reshape(-1, 1) * np.ones((1, 2)) + np.array([[-1,␣

↪1]])
X4 = rng.multivariate_normal((-4.5, -1), ((0.2, 0.1), (0.1, 0.4)), n4)
phi = np.linspace(0, 2 * np.pi, n5).reshape(-1, 1)
X5 = np.array([[2.5, -1]]) + np.concatenate((np.cos(phi), np.sin(phi)), axis=1)

X = np.concatenate((X1, X2, X3, X4, X5))

fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1], s=5, c='b')
ax.axis('equal')
plt.show()

29 https://en.wikipedia.org/wiki/Bayesian_information_criterion
30 https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html
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ks = range(2, 10)

obj = []
sil = []
db = []
bic = []
for k in ks:

print(k)

gm = mixture.GaussianMixture(n_components=k)
gm.fit(X)

labels = gm.predict(X)
obj.append(gm.lower_bound_)
sil.append(metrics.silhouette_score(X, labels))
db.append(metrics.davies_bouldin_score(X, labels))
bic.append(gm.bic(X))

obj = np.array(obj)
sil = np.array(sil)
db = np.array(db)
bic = np.array(bic)

fig, (ax1, ax2, ax3, ax4) = plt.subplots(1, 4, figsize=(12, 3))
ax1.plot(ks, obj, '-ob')
ax2.plot(ks, sil, '-or')
ax3.plot(ks, db, '-og')
ax4.plot(ks, bic, '-om')
ax1.set_xlabel('k')
ax2.set_xlabel('k')
ax3.set_xlabel('k')
ax4.set_xlabel('k')
ax1.set_title('inertia')

(continues on next page)
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(continued from previous page)

ax2.set_title('silhouette score')
ax3.set_title('Davies-Bouldin index')
ax4.set_title('Bayesian information')
plt.show()

2
3
4
5
6
7
8
9

import matplotlib as mpl

k = 5

gm = mixture.GaussianMixture(k)
gm.fit(X)

colors = list(mpl.colors.TABLEAU_COLORS.values())

fig, ax = plt.subplots(figsize=(12, 8))

for label in range(0, k):
mean = gm.means_[label, :]
cov = gm.covariances_[label, :, :]

# do some calculations for drawing an ellipse
evals, evecs = np.linalg.eigh(cov)
if evecs[0, 0] == 0:

angle = 0.5 * np.pi
else:

angle = np.arctan(evecs[1, 0] / evecs[0, 0])

# draw ellipses (level sets of Gaussian density)
for fac in range(1, 10):

ell = mpl.patches.Ellipse(mean, fac * evals[0], fac * evals[1],␣
↪angle=angle / np.pi * 180,

color=colors[label] + '10')
ax.add_artist(ell)

# plot cluster
labels = gm.predict(X)

(continues on next page)
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(continued from previous page)

mask = labels == label
ax.scatter(X[mask, 0], X[mask, 1], s=5, c=colors[label])

ax.axis('equal')
plt.show()
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CHAPTER

SEVEN

AUTOENCODERS

An autoencoder is a special ANN mainly used for dimensionality reduction and anomaly detection. In principle,
autoencoders can be used for generating new samples similar to training samples (generative model), but there exist
much better generative models nowadays. We introduce autoencoders here, because they are a relatively simple
ancestor of variational autoencoders, one of two very prominent generative machine learning techniques (the other
prominent technique are generative adversarial networks).
Related projects:

• MNIST Character Recognition (page 117)
– Autoencoder for QMNIST (page 120)

7.1 ANN Structure

Like PCA, autoencoders aim at reducing feature space dimension without loosing relevant information. PCA follows
a clear mathematical reasoning to reduce feature space dimension. In particular, for PCA the transform between
original and reduced feature space is linear (multiplication by a matrix). Autoencoders use ANNs for transforming
features and also for the inverse transform. Thus, transformation may be highly nonlinear and, thus, much more
flexible.
Encoder ANN and decoder ANN are trained simultaneously by joining them to form one large ANN. The input
neurons of the decoder are connected to the output neurons of the encoder. Training data consists of (unlabeled)
samples which are used both as inputs and as outputs of the ANN. So the ANN learns to reproduce its inputs!
The output of the encoder sometimes is denoted as code. If the number of encoder output neurons (dimension of
reduced feature space or code space) is smaller than the original feature space dimension, then the ANN is forced to
drop information not relevant for reproducing inputs.
There is nothing special about training an autoencoder. Usually mean squared error is used as loss. Regularization
may be used to enforce certain special properties of the codes. An example are sparse codes (resulting from ℓ1-
penalty), which may be used together with high dimensional code spaces to identify most relevant original features.

7.2 Implementing an Autoencoder

Scikit-Learn does not offer autoencoders (at the moment), so we have to use Keras and create an ANN with special
autoencoder structure manually.
We first create a simple toy data set for demonstration.

import numpy as np
import matplotlib.pyplot as plt

rng = np.random.default_rng(0)
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Fig. 7.1: Autoencoders are ANNs with as many outputs as inputs.
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n = 100

t = rng.uniform(0, 1, n)
X = np.empty((n, 2))
X[:, 0] = (t + 1) * np.cos(5 * t + 1.5)
X[:, 1] = (t + 1) * np.sin(5 * t + 1.5)

fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1], c='b', s=3)
ax.axis('equal')
plt.show()

Original data space has two dimensions here. Human eye immediately sees that the data set lives on a one dimensional
manifold. Thus, we could unwind the curve to map the data set into a one dimensional space without loss of infor-
mation. So code space should have one dimension and the encoder ANN has to learn the unwinding operation. We
give it a try with two small layers. Using only one layer would yield a more or less linear transform, which obviously
cannot unwind the curve.

# disable GPU if TensorFlow with GPU causes problems
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"

import tensorflow.keras as keras

2023-10-13 05:39:50.963324: I tensorflow/core/platform/cpu_feature_guard.
↪cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network␣
↪Library (oneDNN) to use the following CPU instructions in performance-
↪critical operations: SSE4.1 SSE4.2 AVX AVX2 FMA

To enable them in other operations, rebuild TensorFlow with the appropriate␣
↪compiler flags.

7.2. Implementing an Autoencoder 63



Data Science and Artificial Intelligence for Undergraduates
Volume 3: Unsupervised Learning

encoder = keras.Sequential(name='encoder')
encoder.add(keras.Input(shape=(2,)))
encoder.add(keras.layers.Dense(10, activation='relu', name='enc1'))
encoder.add(keras.layers.Dense(10, activation='relu', name='enc2'))
encoder.add(keras.layers.Dense(1, activation='linear', name='code'))

encoder.summary()

Model: "encoder"
_________________________________________________________________
Layer (type) Output Shape Param #

=================================================================
enc1 (Dense) (None, 10) 30

enc2 (Dense) (None, 10) 110

code (Dense) (None, 1) 11

=================================================================
Total params: 151
Trainable params: 151
Non-trainable params: 0
_________________________________________________________________

2023-10-13 05:39:52.663649: E tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪driver.cc:267] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable␣
↪device is detected

2023-10-13 05:39:52.663688: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪diagnostics.cc:169] retrieving CUDA diagnostic information for host: WHZ-46349

2023-10-13 05:39:52.663696: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪diagnostics.cc:176] hostname: WHZ-46349

2023-10-13 05:39:52.663862: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪diagnostics.cc:200] libcuda reported version is: 525.125.6

2023-10-13 05:39:52.663889: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪diagnostics.cc:204] kernel reported version is: 525.125.6

2023-10-13 05:39:52.663895: I tensorflow/compiler/xla/stream_executor/cuda/cuda_
↪diagnostics.cc:310] kernel version seems to match DSO: 525.125.6

2023-10-13 05:39:52.664376: I tensorflow/core/platform/cpu_feature_guard.
↪cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network␣
↪Library (oneDNN) to use the following CPU instructions in performance-
↪critical operations: SSE4.1 SSE4.2 AVX AVX2 FMA

To enable them in other operations, rebuild TensorFlow with the appropriate␣
↪compiler flags.

The decoder ANN looks the same because it as to learn the inverse of the encoder. So complexity of the mappings
to learn by encoder and decoder is comparable.

decoder = keras.Sequential(name='decoder')
decoder.add(keras.Input(shape=(1,)))
decoder.add(keras.layers.Dense(10, activation='relu', name='dec1'))
decoder.add(keras.layers.Dense(10, activation='relu', name='dec2'))
decoder.add(keras.layers.Dense(2, activation='linear', name='reconstruction'))

decoder.summary()

Model: "decoder"
_________________________________________________________________
Layer (type) Output Shape Param #

=================================================================

(continues on next page)
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dec1 (Dense) (None, 10) 20

dec2 (Dense) (None, 10) 110

reconstruction (Dense) (None, 2) 22

=================================================================
Total params: 152
Trainable params: 152
Non-trainable params: 0
_________________________________________________________________

Now we join encoder and decoder. Keras models can be used as layers of a new model. So we only have to cre-
ate a sequential model with encoder and decoder as layers. Important: all three models use the same underlying
computation graph.

autoencoder = keras.Sequential(name='autoencoder')
autoencoder.add(keras.Input(shape=(2,)))
autoencoder.add(encoder)
autoencoder.add(decoder)

autoencoder.summary()

Model: "autoencoder"
_________________________________________________________________
Layer (type) Output Shape Param #

=================================================================
encoder (Sequential) (None, 1) 151

decoder (Sequential) (None, 2) 152

=================================================================
Total params: 303
Trainable params: 303
Non-trainable params: 0
_________________________________________________________________

We see that the number of weights equals the sum of the weights of encoder and decoder. The autoencoder model
shares weights with encoder and decoder models. If we train the autoencoder the weights of encoder and decoder get
modified, too (because there is only one computation graph).

autoencoder.compile(loss='mean_squared_error')

loss = []

history = autoencoder.fit(X, X, epochs=1000, verbose=0)

loss.extend(history.history['loss'])

fig, ax = plt.subplots()
ax.plot(loss, '-b', label='training loss')
ax.legend()
plt.show()
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To see whether training has been successful we may calculate root mean squared error and plot original and recon-
structed data.

X_pred = autoencoder.predict(X)

print('RMSE:', np.sqrt(((X - X_pred) ** 2).sum() / n))

fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1], c='b', s=3, label='original')
ax.scatter(X_pred[:, 0], X_pred[:, 1], c='r', s=3, label='reconstructed')
ax.axis('equal')
ax.legend()
plt.show()

4/4 [==============================] - 0s 1ms/step
RMSE: 0.048846450064516586
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Codes live in one dimension. To visualize the mapping of original data to codes we embed the one dimensional code
space into the original data space and connect each sample with its code by a line.

C = encoder.predict(X)

fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1], c='b', s=3, label='original')
ax.scatter(C, np.zeros_like(C), c='r', s=3, label='codes')
for l in range(0, n):

ax.plot([X[l, 0], C[l, 0]], [X[l, 1], 0], 'k', linewidth=0.1)
ax.axis('equal')
ax.legend()
plt.show()

4/4 [==============================] - 0s 1ms/step
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From the visualization we see that the autoencoder preserves order. This is not (!) a general property of autoencoders,
but here it works.

7.3 Comparison to PCA

For comparison we use PCA to reduce feature space dimesion.

import sklearn.decomposition as decomposition

pca = decomposition.PCA(1)
C_pca = pca.fit_transform(X) # encoder
X_pca = pca.inverse_transform(C_pca) # decoder

print('RMSE:', np.sqrt(((X - X_pca) ** 2).sum() / n))

fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1], c='b', s=3, label='original')
ax.scatter(X_pca[:, 0], X_pca[:, 1], c='r', s=3, label='reconstructed (PCA)')
ax.axis('equal')
ax.legend()
plt.show()

RMSE: 0.9049436506773132
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fig, ax = plt.subplots()
ax.scatter(X[:, 0], X[:, 1], c='b', s=3, label='original')
ax.scatter(C_pca, np.zeros_like(C_pca), c='r', s=3, label='codes')
for l in range(0, n):

ax.plot([X[l, 0], C_pca[l, 0]], [X[l, 1], 0], 'k', linewidth=0.1)
ax.axis('equal')
ax.legend()
plt.show()
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PCA maps distant points to similar codes because PCA maps original data to codes by orthogonal projection.

7.4 Generating New Samples

Autoencoders can be used as generative models. If we feed some input (code) into the decoder, it will yield some
output. At least if the input is in the range of codes generated from training data output should be close to original
data, that is, similar to training samples.

C_new = np.array([[-1]])
#C_new = np.linspace(-10, 10, 100).reshape(-1, 1)

X_new = decoder.predict(C_new)

fig, ax = plt.subplots()
ax.scatter(X_new[:, 0], X_new[:, 1], c='y', s=50)
ax.scatter(X[:, 0], X[:, 1], c='b', s=3)
ax.axis('equal')
plt.show()

1/1 [==============================] - 0s 20ms/step
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7.5 Anomaly Detection

Autoencoders typically yield good reconstructions only on data similar to training data. If we feed an autoencoder
with samples very different from training data reconstructions won’t look like inputs. This behavior can be used for
anomaly detection. If an autoencoder is trained on ‘positive’ data only (legitimate credit card transactions for instance)
it is likely to yield bad reconstructions on ‘negative’ samples (fraudulent credit card transactions).

X_bad = np.array([[1, 1]])
#X_bad = np.array([[-1, -1]])

X_bad_pred = autoencoder.predict(X_bad)

print('RMSE:', np.sqrt(((X_bad - X_bad_pred) ** 2).sum() / n))

fig, ax = plt.subplots()
ax.scatter(X_bad[:, 0], X_bad[:, 1], c='b', s=50)
ax.scatter(X_bad_pred[:, 0], X_bad_pred[:, 1], c='r', s=50)
ax.scatter(X[:, 0], X[:, 1], c='#a0a0ff', s=3)
ax.axis('equal')
plt.show()

1/1 [==============================] - 0s 20ms/step
RMSE: 0.29520192221997077
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Calculating RMSE between original and reconstructed samples for a grid of samples we get a visual impression of
the autoencoder mapping.

n_grid = 200

u, v = np.meshgrid(np.linspace(-4, 4, n_grid), np.linspace(-3, 3, n_grid))
X_grid = np.concatenate((u.reshape(-1, 1), v.reshape(-1, 1)), axis=1)

X_grid_pred = autoencoder.predict(X_grid)

errors = np.sqrt(((X_grid - X_grid_pred) ** 2).sum(axis=1) / n)

fig, ax = plt.subplots()
ax.contourf(u, v, errors.reshape(n_grid, n_grid), cmap='jet', levels=200)
ax.scatter(X[:, 0], X[:, 1], c='w', s=1)
ax.axis('equal')
plt.show()

1250/1250 [==============================] - 1s 817us/step
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7.6 Convolutional Autoencoders

For image processing task CNNs (convolutional ANNs) are known to perform much better than fully connected
CNNs. Using a CNN as encoder is straight forward, but how to ‘invert’ a CNN for decoding? The decoder has to
upsample the code until the original image size is reached. For this upsampling process we have to options:

• simple upsampling (e.g. duplicating each pixel),
• transposed convolution, also known as backward convolution.

A transposed convolution layer has inverse structure of a convolution layer (inputs and outputs switched). Like a
usual convolutional layer, it is defined by a stack of filters (shared weights) and a stride value (step size for moving the
filter to the next position). Note that a transposed convolution layer only inverts the structure (connections between
neurons), not the calculation. So chaining convolution and transposed convolution is not the identity, but only the
chain’s input shape equals its output shape.
From the computation scheme we see that transposed convolution can be regarded as usual convolution with zero
padded inputs (add zeros on left and right side).
While stride is applied to inputs for usual convolution, for transposed convolution stride is applied to the outputs.
A decoder symmetric to a CNN encoder can be constructed by inverting the encoder’s layer stack and replacing pool-
ing by upsampling and convolutions by transposed convolutions. Corresponding Keras layers are UpSampling2D31
and Conv2DTranspose32. 1d and 2d variants exist as well, but Conv1DTranspose not before TensorFlow
2.3.

31 https://keras.io/api/layers/reshaping_layers/up_sampling2d
32 https://keras.io/api/layers/convolution_layers/convolution2d_transpose
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Fig. 7.2: Transposed convolutions do NOT invert convolutions but corresponding shapes only.

Fig. 7.3: Striding for transposed convolutions is realized such that resulting that input and output shapes match ouput
and input shapes of corresponding usual convolution.
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EIGHT

NONLINEAR DIMENSIONALITY REDUCTION OVERVIEW

Up to now we only considered PCA and autoencoders for dimensionality reduction. PCA is a linear technique, that is,
it applies a linear transform (matrix multiplication) to the data. Autoencoders are nonlinear and, thus, more flexible.
There exist many other nonlinear techniques for dimensionality reduction. Dimensionality reduction is very important
for visualizing high dimensional data. Some of them turned out to be more or less equivalent, some are different
realizations of the same idea. The following scheme provides an overview:

Fig. 8.1: Nonlinear dimensionality reduction is a wide field, but several methods turn out to be equivalent after careful
inspection.

8.1 Toy Example ‘Omega’

The first toy example for testing nonlinear dimensionality reduction is an Ω-shaped two dimensional manifold in ℝ3.
Data points lie (up to some noise) on this nonlinear manifold.
To each generated sample we assign a different color. Thus, after embedding the manifold into 2d space we can
reconstruct from where in 3d space the sample came.

import numpy as np
import plotly.graph_objects as go

rng = np.random.default_rng()

n1 = 75 # number of grid points in first dimension
n2 = 40 # number of gird points in second dimension
noise = 0.005 # noise level for moving samples away from the manifold

(continues on next page)
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# parameter space
S, T = np.meshgrid(np.linspace(0, 1, n1), np.linspace(0, 1, n2))
S = S.reshape(-1)
T = T.reshape(-1)

# noise in parameter space to destroy rigid grid structure
S = S + rng.normal(0, 1 / (2 * n1), S.size)
T = T + rng.normal(0, 1 / (2 * n2), T.size)

# cut-off to keep parameters in [0, 1]
S = np.clip(S, 0, 1)
T = np.clip(T, 0, 1)

# samples in 3d
x = S + 0.15 * np.sin(4 * np.pi * S)
y = T
z = 5 * np.maximum(0, -np.abs(S - 0.5) + 0.5) ** 1 + 1 * T ** 2

# colors
red = np.sin(4 * np.pi * S)
green = np.sin(2 * np.pi * T)
blue = np.sin(2 * np.pi * (S + T))
red = (255 * (red - red.min()) / (red - red.min()).max()).astype(int)
green = (255 * (green - green.min()) / (green - green.min()).max()).astype(int)
blue = (255 * (blue - blue.min()) / (blue - blue.min()).max()).astype(int)

# some noise
x = x + rng.normal(0, noise, x.size)
y = y + rng.normal(0, noise, y.size)
z = z + rng.normal(0, noise, z.size)

# plot
fig = go.Figure(layout_width=800, layout_height=600, layout_scene_aspectmode='cube

↪')
fig.add_trace(go.Scatter3d(

x=x, y=y, z=z,
mode='markers',
marker={'size': 2, 'color': [f'rgb({r},{g},{b})' for r, g, b in zip(red,␣

↪green, blue)]},
hoverinfo = 'none'

))
fig.show()

<IPython.core.display.HTML object>

np.savez('omega.npz', x=x, y=y, z=z, red=red, green=green, blue=blue)

8.2 Toy Example ‘Sphere’

The next toy example is a sphere shaped 2d manifold in 3d space. This manifold cannot be mapped into 2d space
without cuts or overlaps.

n = 40 # number of stacked circles
noise = 0.05 # noise level for moving samples away from the manifold

# phi is latitude angle

(continues on next page)
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# theta is longitude angle
# number of longitudes depends on latitude (more points per latitude on equator␣

↪than near poles)
x = []
y = []
z = []
red = []
green = []
blue = []
for phi in np.linspace(0, np.pi, n + 2)[1:-1]:

m = int(2 * n * np.abs(np.sin(phi)))
for i in range(0, m):

phi_noisy = phi + rng.normal(0, np.pi / (2 * n))
r = np.sin(phi_noisy)
theta = i * 2 * np.pi / m + rng.normal(0, np.pi / m)
x.append(r * np.cos(theta))
y.append(r * np.sin(theta))
z.append(np.cos(phi_noisy))
red.append(np.sin(2 * phi_noisy))
green.append(np.sin(2 * theta))
blue.append(np.sin(2 * (phi_noisy + theta)))

x = np.array(x)
y = np.array(y)
z = np.array(z)

red = np.array(red)
green = np.array(green)
blue = np.array(blue)
red = (255 * (red - red.min()) / (red - red.min()).max()).astype(int)
green = (255 * (green - green.min()) / (green - green.min()).max()).astype(int)
blue = (255 * (blue - blue.min()) / (blue - blue.min()).max()).astype(int)

# some noise
x = x + rng.normal(0, noise, x.size)
y = y + rng.normal(0, noise, y.size)
z = z + rng.normal(0, noise, z.size)

# plot
fig = go.Figure(layout_width=800, layout_height=600, layout_scene_aspectmode='cube

↪')
fig.add_trace(go.Scatter3d(

x=x, y=y, z=z,
mode='markers',
marker={'size': 2, 'color': [f'rgb({r},{g},{b})' for r, g, b in zip(red,␣

↪green, blue)]},
hoverinfo = 'none'

))
fig.show()

<IPython.core.display.HTML object>

np.savez('sphere.npz', x=x, y=y, z=z, red=red, green=green, blue=blue)

8.2. Toy Example ‘Sphere’ 77



Data Science and Artificial Intelligence for Undergraduates
Volume 3: Unsupervised Learning

8.3 Toy Example ‘Cube’

The next example is a filled 3d cube, which cannot be mapped into two dimensions without destroying its structure.

n = 15 # number of grid points per axis

x, y, z = np.meshgrid(np.linspace(0, 1, n), np.linspace(0, 1, n), np.linspace(0,␣
↪1, n))

x = x.reshape(-1)
y = y.reshape(-1)
z = z.reshape(-1)

# some noise
x = x + rng.normal(0, 1 / (2 * n), x.size)
y = y + rng.normal(0, 1 / (2 * n), y.size)
z = z + rng.normal(0, 1 / (2 * n), z.size)

# colors
red = np.cos(2 * np.pi * x)
green = np.cos(2 * np.pi * y)
blue = np.cos(2 * np.pi * z)
red = (255 * (red - red.min()) / (red - red.min()).max()).astype(int)
green = (255 * (green - green.min()) / (green - green.min()).max()).astype(int)
blue = (255 * (blue - blue.min()) / (blue - blue.min()).max()).astype(int)

# plot
fig = go.Figure(layout_width=800, layout_height=600, layout_scene_aspectmode='cube

↪')
fig.add_trace(go.Scatter3d(

x=x, y=y, z=z,
mode='markers',
marker={'size': 2, 'color': [f'rgb({r},{g},{b})' for r, g, b in zip(red,␣

↪green, blue)]},
hoverinfo = 'none'

))
fig.show()

<IPython.core.display.HTML object>

np.savez('cube.npz', x=x, y=y, z=z, red=red, green=green, blue=blue)

8.4 Toy Example ‘Clouds’

The next example data set consists of four 2d point clouds in 3d space. With this data set we can investigate the
behavior of nonlinear dimensionality reduction techniques for nonconnected data sets.

X1 = rng.multivariate_normal((-1, -1, -1), ((0.1, 0.1, 0.01), (0.1, 0.2, 0.1), (0.
↪01, 0.1, 0.1)), 300)

X2 = rng.multivariate_normal((1, 1, 1), ((0.1, 0.09, 0.01), (0.09, 0.2, 0.08), (0.
↪01, 0.08, 0.05)), 300)

X3 = rng.multivariate_normal((-1, 1, -1), ((0.2, 0.1, 0.1), (0.1, 0.4, 0.1), (0.1,
↪ 0.1, 0.08)), 500)

X4 = rng.multivariate_normal((1, 1, -1), ((0.1, 0.1, 0.01), (0.1, 0.2, 0.1), (0.
↪01, 0.1, 0.1)), 300)

X1 = (1 + X1 / np.abs(X1).max()) / 2
X2 = (1 + X2 / np.abs(X2).max()) / 2

(continues on next page)
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X3 = (1 + X3 / np.abs(X3).max()) / 2
X4 = (1 + X4 / np.abs(X4).max()) / 2

X = np.concatenate((X1, X2, X3, X4))
x = X[:, 0]
y = X[:, 1]
z = X[:, 2]

dists1 = np.sum(np.abs(X1 - X1.mean(axis=0)) ** 0.8, axis=1)
dists2 = np.sum(np.abs(X2 - X2.mean(axis=0)) ** 0.8, axis=1)
dists3 = np.sum(np.abs(X3 - X3.mean(axis=0)) ** 0.8, axis=1)
dists4 = np.sum(np.abs(X4 - X4.mean(axis=0)) ** 0.8, axis=1)

red1 = 1 - dists1 / dists1.max()
green1 = np.ones(X1.shape[0])
blue1 = np.zeros(X1.shape[0])

red2 = np.zeros(X2.shape[0])
green2 = 1 - dists2 / dists2.max()
blue2 = np.ones(X2.shape[0])

red3 = np.ones(X3.shape[0])
green3 = np.zeros(X3.shape[0])
blue3 = 1 - dists3 / dists3.max()

red4 = np.ones(X4.shape[0])
green4 = 1 - dists4 / dists4.max()
blue4 = np.zeros(X4.shape[0])

red = np.concatenate((red1.reshape(-1, 1), red2.reshape(-1, 1), red3.reshape(-1,␣
↪1), red4.reshape(-1, 1)), axis=0).reshape(-1)

green = np.concatenate((green1.reshape(-1, 1), green2.reshape(-1, 1), green3.
↪reshape(-1, 1), green4.reshape(-1, 1)), axis=0).reshape(-1)

blue = np.concatenate((blue1.reshape(-1, 1), blue2.reshape(-1, 1), blue3.reshape(-
↪1, 1), blue4.reshape(-1, 1)), axis=0).reshape(-1)

red = (255 * (red - red.min()) / (red - red.min()).max()).astype(int)
green = (255 * (green - green.min()) / (green - green.min()).max()).astype(int)
blue = (255 * (blue - blue.min()) / (blue - blue.min()).max()).astype(int)

# some noise
x = x + rng.normal(0, noise, x.size)
y = y + rng.normal(0, noise, y.size)
z = z + rng.normal(0, noise, z.size)

# plot
fig = go.Figure(layout_width=800, layout_height=600, layout_scene_aspectmode='cube

↪')
fig.add_trace(go.Scatter3d(

x=x, y=y, z=z,
mode='markers',
marker={'size': 2, 'color': [f'rgb({r},{g},{b})' for r, g, b in zip(red,␣

↪green, blue)]},
hoverinfo = 'none'

))
fig.show()

<IPython.core.display.HTML object>
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np.savez('clouds.npz', x=x, y=y, z=z, red=red, green=green, blue=blue)

8.5 PCA for Toy Examples

To compare results from nonlinear dimensionality reduction to the linear standard technique PCA we plot 2d PCA
projections for all toy examples.

import sklearn.decomposition as decomposition
from sklearn.preprocessing import StandardScaler
from plotly.subplots import make_subplots

data_files = ['omega.npz', 'sphere.npz', 'cube.npz', 'clouds.npz']

for file in data_files:

loaded = np.load(file)
x = loaded['x']
y = loaded['y']
z = loaded['z']
red = loaded['red']
green = loaded['green']
blue = loaded['blue']

pca = decomposition.PCA(2)
U = pca.fit_transform(StandardScaler().fit_transform(np.stack((x, y, z),␣

↪axis=1)))

fig = make_subplots(rows=1, cols=2, specs=[[{'type': 'scatter3d'}, {'type':
↪'xy'}]])

fig.update_layout(width=1000, height=600, scene_aspectmode='cube')
fig.add_trace(go.Scatter3d(

x=x, y=y, z=z,
mode='markers',
marker={'size': 1.5, 'color': [f'rgb({r},{g},{b})' for r, g, b in zip(red,

↪ green, blue)]},
hoverinfo = 'none',
showlegend=False

), row=1, col=1)
fig.add_trace(go.Scatter(

x=U[:, 0], y=U[:, 1],
mode='markers',
marker={'size': 5, 'color': [f'rgb({r},{g},{b})' for r, g, b in zip(red,␣

↪green, blue)]},
hoverinfo = 'none',
showlegend=False

), row=1, col=2)
fig.show()

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>
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<IPython.core.display.HTML object>
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CHAPTER

NINE

KERNEL PCA

Principal component analysis (PCA) contructs a new coordinate system in the data space such that variance is maximal
along the first axis of this new coordinate system. Variance along the other axes decreases with increasing axis index.
Coordinates of the data set with respect to the new coordinate system have zero covariance.
Such data adapted coordinate system at hand data dimensionality can be reduced by dropping axes of low variance
or, in other words, by projecting onto the subspace spanned by the first few axes.
While classical PCA is a linear technique (data transformation by matrix multiplication) kernel PCA extends the basic
idea to nonlinear transforms by exploiting the kernel trick. We already met the kernel trick when discussing support
vector machines. In theory data is (nonlinearly) embedded into a higher dimensional space and PCA together with
corresponding dimensionality reduction is performed there. But in practice, all computations are carried out in the
original space by replacing inner products in high dimensions by special kernel functions.
In the following we always count eigenvalues with their multiplicity. So each real symmetric matrix has as many
eigenvalues as it has rows and columns.

9.1 Recap of PCA

Denote by 𝑋 ∈ ℝ𝑛×𝑚 the matrix containing all samples 𝑥1, … , 𝑥𝑛 as rows. Here 𝑚 is the dimension of the data
space. We assume that data is centered, that is,

𝑛
∑
𝑙=1

𝑥𝑙 = 0.

The (up to a factor 1
𝑛−1 ) covariance matrix 𝑋T 𝑋 ∈ ℝ𝑚×𝑚 is symmetric and positive semi-definite. Thus, there

exist 𝑚 nonnegative numbers
𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑚 ≥ 0 (eigenvalues)

and 𝑚 mutually orthogonal normalized vectors 𝑎1, … , 𝑎𝑚 (eigenvectors) such that

𝑋T 𝑋 𝑎𝑘 = 𝜆𝑘 𝑎𝑘 for 𝑘 = 1, … , 𝑚.

The vectors 𝑎𝑘 form the coordinate axes of the PCA coordinate system and the values 𝜆𝑘 are the variances (up to
a factor 1

𝑛−1 ) of the data set along those axes. Denoting by 𝐴 ∈ ℝ𝑚×𝑚 the orthogonal matrix of eigenvectors (as
columns) the coordinate matrix �̃� with respect to the new coordinate system is given by

�̃� = 𝑋 𝐴.

Equivalently, for each sample 𝑥𝑙 and its transformed variant ̃𝑥𝑙 we have the relations

̃𝑥𝑙 = ⎡⎢
⎣

𝑥𝑙
T 𝑎1
⋮

𝑥𝑙
T 𝑎𝑚

⎤⎥
⎦

and 𝑥𝑙 = ̃𝑥(1)
𝑙 𝑎1 + ⋯ + ̃𝑥(𝑚)

𝑙 𝑎𝑚.

Dimensionality reduction now boils down to replacing vectors 𝑎𝑘 corresponding to small 𝜆𝑘 by zero vcetors. The
transform from 𝑥𝑙 to ̃𝑥𝑙 and back to 𝑥𝑙 then does not yield 𝑥𝑙 again, but its projection onto the subspace spanned by
the remaining 𝑎𝑘.
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9.2 PCA with Kernel Trick

Kernel PCA appeared first in the 1996 report Nonlinear Component Analysis as a Kernel Eigenvalue Problem33.
Introducing a (nonlinear) mappingΦ ∶ ℝ𝑚 → ℝ𝑞 from the𝑚 dimensional data space into a much higher dimensional
embedding space of dimension 𝑞 with 𝑞 ≥ 𝑚 the authors propose to perform PCA based dimensionality reduction
for {Φ(𝑥1), … , Φ(𝑥𝑛)}, the embedded data set. They have shown that PCA transformed data (in the 𝑞 dimensional
space) can be computed without touching 𝑞 dimensional vectors and without expensive computations in 𝑞 dimensions.

9.2.1 The Kernel PCA Theorem

Given the embedding function Φ as above we define the kernel matrix 𝐾 ∈ ℝ𝑛×𝑛 by

𝐾𝑙,𝜆 ∶= Φ(𝑥𝑙)T Φ(𝑥𝜆).

By 𝑈 ∈ ℝ𝑛×𝑞 we denote the matrix containing Φ(𝑥1), … , Φ(𝑥𝑛) as rows (by analogy with 𝑋 for usual PCA in data
space). Then one can show (and we will do this below) that

• the eigenvalues of 𝑈T 𝑈 and 𝐾 coincide,
• the eigenvectors of 𝐾 contain the coordinates of Φ(𝑥1), … , Φ(𝑥𝑛) with respect to the PCA coordinate
system in the 𝑞 dimensional space.

In other words, we only have to compute eigenvalues and eigenvectors of the kernel matrix 𝐾 when performing PCA
for the embedded data. Size of𝐾 depends on number of samples, which might be large, but often much smaller than
𝑞. Remember: for polynomial kernel of degree 2 and 1000 dimensional data (images!) we would have 𝑞 = 501501
(see chapter on SVMs).
The first statement above requires some clarifying remarks.

• The (up to a factor) covariance matrix𝑈T 𝑈 is of size 𝑞×𝑞. Thus, PCA yields 𝑞 eigenvalues and 𝑞 eigenvectors.
But the embedded data lives in a subspace of dimension atmost𝑛. Thus, there are atmost𝑛 nonzero eigenvalues
for 𝑈T 𝑈 .

• Writing 𝐾 = 𝑈 𝑈T we see that 𝐾 is a symmetric matrix. Thus, the number of nonzero eigenvalues equals the
rank of𝐾 (standard math result). Because 𝑈 𝑈T and 𝑈T 𝑈 have identical rank (another standard math result),
𝐾 and 𝑈T 𝑈 have the same number of nonzero eigenvalues.

• The maximum number of nonzero eigenvalues of 𝐾 and 𝑈T 𝑈 , and thus also the maximum number of non-
trivial features after dimensionality reduction via kernel PCA, is min{𝑛, 𝑞}.

The second statement above on the eigenvectors of 𝐾 requires some clarification, too. In addition, we should formu-
late it more precisely.

• The new data adapted coordinate system in 𝑞 dimensions has 𝑞 axes.
• Embedded data {Φ(𝑥1), … , Φ(𝑥𝑛)} uses not more than the first min{𝑛, 𝑞} axes. Coordinates for remaining
axes are zero.

• In context of dimensionality reduction we are interested in the coordinates with respect to the first 𝑝 axes only.
Here 𝑝 is small, in particular 𝑝 ≤ min{𝑛, 𝑞}.

• If 𝐵 ∈ ℝ𝑞×𝑞 contains the eigenvectors of 𝑈T 𝑈 (in columns), then by analogy to usual PCA the coordinates
with respect to the new coordinate system are given by

̃𝑈 ∶= 𝑈 𝐵.
• From the previous two items we see that the desired result from dimensionality reduction via kernel PCA is
contained in the first 𝑝 columns of ̃𝑈 .

• The kernel PCA theorem states that the columns of ̃𝑈 are the eigenvectors of 𝐾.
Before we come to the proof, we have to think about centering embedded data. Remember: PCA is sensible for
centered data only.

33 https://www.face-rec.org/algorithms/Kernel/kernelPCA_scholkopf.pdf
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9.2.2 Centering Embedded Data

Before applying PCA we have to center the data. Given the embedding function Φ we have to apply PCA to data

Φ(𝑥1) − 1
𝑛

𝑛
∑
𝑙=1

Φ(𝑥𝑙) , … , Φ(𝑥𝑛) − 1
𝑛

𝑛
∑
𝑙=1

Φ(𝑥𝑙).

The new embedding function

Φcenter(𝑥) ∶= Φ(𝑥) − 1
𝑛

𝑛
∑
𝑙=1

Φ(𝑥𝑙)

automatically yields centered embedded data.
We may rewrite this as

Φcenter(𝑥) ∶= Φ(𝑥) − 𝑈T ⎡⎢
⎣

1
𝑛
⋮
1
𝑛

⎤⎥
⎦

and introducing the matrix

𝑀 ∶= ⎡⎢
⎣

1
𝑛 ⋯ 1

𝑛
⋮ ⋮
1
𝑛 ⋯ 1

𝑛

⎤⎥
⎦

∈ ℝ𝑛×𝑛

we obtain
𝑈center

T = 𝑈T − 𝑈T 𝑀 = 𝑈T (𝐼 − 𝑀).
The kernel corresponding to Φcenter then is

𝐾center = 𝑈center 𝑈center
T = (𝐼 − 𝑀) 𝑈 𝑈T (𝐼 − 𝑀) = (𝐼 − 𝑀) 𝐾 (𝐼 − 𝑀).

Centering the embedded data reduces to a simple transform of the kernel. If the kernel 𝐾 is positive semi-definite
(which is a standard assumption), then the new kernel𝐾center is positive semi-definite, too. So centering the embedded
data set does not imply any troubles. The kernel trick still works.
Passing remark: The matrix 𝐼 − 𝑀 is known as centering matrix. Multiplying a Matrix 𝐾 from the right by 𝐼 − 𝑀
centers its columns (sum of all columns is zero vector). Multiplication from the left centers its rows (sum of all rows
is zero vector). Applying both multiplications yields the double centered version of 𝐾. The mean over all entries of
a double centered matrix is zero, too.

9.2.3 Proof of Kernel PCA Theorem

We assume 𝑛 ≤ 𝑞 (which is the typical situation in practice) to avoid repreated use of min{𝑛, 𝑞} in the formulas.
But the proof also works for 𝑛 > 𝑞 if most 𝑛 are replaced by min{𝑛, 𝑞}. Further we assume that 𝐾 has rank 𝑛, that
is, all eigenvalues are nonzero. So we may write 𝑛 instead of rank𝐾 to simplify formulas. All arguments also work
for rank below 𝑛 if considerations are restricted to nonzero eigenvalues of 𝐾.
Denoting the nonzero eigenvalues of the kernel matrix 𝐾 by 𝜇1, … , 𝜇𝑛 and corresponding eigenvectors by
𝜔1, … , 𝜔𝑛 ∈ ℝ𝑛 we define vectors 𝑏1, … , 𝑏𝑛 ∈ ℝ𝑞 by

𝑏𝑖 ∶= 1
𝜇𝑖

𝑛
∑
𝑙=1

𝜔(𝑙)
𝑖 Φ(𝑥𝑙), 𝑖 = 1, … , 𝑛.

To proof the theorem it suffices to show that
• 𝑏1, … , 𝑏𝑛 are eigenvectors of 𝑈T 𝑈 and 𝜇1, … , 𝜇𝑛 are corresponding eigenvalues,
• 𝜔1, … , 𝜔𝑛 contain the transformed coordinates, more precisely,

𝜔𝑖 = 𝑈 𝑏𝑖, 𝑖 = 1, … , 𝑛.
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For the first statement we have to show 𝑈T 𝑈 𝑏𝑖 = 𝜇𝑖 𝑏𝑖. This follows from the definition of 𝑏𝑖, some simple manip-
ulations and the fact that 𝜔𝑖 is an eigenvector of 𝐾 to eigenvalue 𝜇𝑖:

𝑈T 𝑈 𝑏𝑖 = 1
𝜇𝑖

𝑛
∑
𝑙=1

𝜔(𝑙)
𝑖 𝑈T 𝑈 Φ(𝑥𝑙) = 1

𝜇𝑖

𝑛
∑
𝑙=1

𝜔(𝑙)
𝑖 𝑈T ⎡⎢

⎣

Φ(𝑥1)T Φ(𝑥𝑙)
⋮

Φ(𝑥𝑛)T Φ(𝑥𝑙)
⎤⎥
⎦

= 1
𝜇𝑖

𝑛
∑
𝑙=1

𝜔(𝑙)
𝑖

𝑛
∑
𝜆=1

Φ(𝑥𝜆)T Φ(𝑥𝑙)⏟⏟⏟⏟⏟
∈ℝ

Φ(𝑥𝜆)

= 1
𝜇𝑖

𝑛
∑
𝑙=1

𝑛
∑
𝜆=1

𝜔(𝑙)
𝑖 Φ(𝑥𝜆)T Φ(𝑥𝑙) Φ(𝑥𝜆)

= 1
𝜇𝑖

𝑛
∑
𝜆=1

(
𝑛

∑
𝑙=1

𝜔(𝑙)
𝑖 Φ(𝑥𝜆)T Φ(𝑥𝑙)) Φ(𝑥𝜆) = 1

𝜇𝑖

𝑛
∑
𝜆=1

(
𝑛

∑
𝑙=1

𝐾𝜆,𝑙 𝜔(𝑙)
𝑖 ) Φ(𝑥𝜆)

= 1
𝜇𝑖

𝑛
∑
𝜆=1

[𝐾 𝜔𝑖]𝜆 Φ(𝑥𝜆)

= 1
𝜇𝑖

𝑛
∑
𝜆=1

𝜇𝑖 𝜔(𝜆)
𝑖 Φ(𝑥𝜆) = 𝜇𝑖 𝑏𝑖.

The second statement is a direct consequence of the definition of 𝑏𝑖:

𝑈 𝑏𝑖 = 1
𝜇𝑖

𝑛
∑
𝑙=1

𝜔(𝑙)
𝑖 𝑈 Φ(𝑥𝑙) = 1

𝜇𝑖

𝑛
∑
𝑙=1

𝜔(𝑙)
𝑖 𝐾•,𝑙 = 1

𝜇𝑖
𝐾 𝜔𝑖 = 𝜔𝑖.

9.3 Kernel PCA with Scikit-Learn

Scikit-Learn provides the KernelPCA34 class in its decomposition module.

import numpy as np
import sklearn.decomposition as decomposition
import plotly.graph_objects as go
from plotly.subplots import make_subplots

data_files = ['omega.npz', 'sphere.npz', 'cube.npz', 'clouds.npz']

for file in data_files:

loaded = np.load(file)
x = loaded['x']
y = loaded['y']
z = loaded['z']
red = loaded['red']
green = loaded['green']
blue = loaded['blue']

kpca = decomposition.KernelPCA(2, kernel='rbf', gamma=5)
U = kpca.fit_transform(np.stack((x, y, z), axis=1))

fig = make_subplots(rows=1, cols=2, specs=[[{'type': 'scatter3d'}, {'type':
↪'xy'}]])

fig.update_layout(width=1000, height=600, scene_aspectmode='cube')
fig.add_trace(go.Scatter3d(

x=x, y=y, z=z,
mode='markers',

(continues on next page)
34 https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.KernelPCA.html
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(continued from previous page)

marker={'size': 1.5, 'color': [f'rgb({r},{g},{b})' for r, g, b in zip(red,
↪ green, blue)]},

hoverinfo = 'none',
showlegend=False

), row=1, col=1)
fig.add_trace(go.Scatter(

x=U[:, 0], y=U[:, 1],
mode='markers',
marker={'size': 5, 'color': [f'rgb({r},{g},{b})' for r, g, b in zip(red,␣

↪green, blue)]},
hoverinfo = 'none',
showlegend=False

), row=1, col=2)
fig.show()

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

9.4 Why Kernel PCA?

Kernel PCA only yields useful results if the embedding map Φ somehow unroles the nonlinear structure of the data
set such that in higher dimensions the data set is almost linear. Kernel PCA is rarely used in practise, because one
does not know how to choose the kernel. But we will see in subsequent chapters that other nonlinear dimensionality
reduction techniques turn out to be equivalent to kernel PCA with specific data set adapted kernel.
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CHAPTER

TEN

MULTIDIMENSIONAL SCALING

We already considered techniques for dimensionality reduction in the context of feature reduction. There the aim
was to construct more expressive features and to remove unnecessary ones. Now the focus is on visualization, that
is, reduction of data sets to 2 or 3 dimensions. This way me may get a better understanding of a data set and we also
may check results obtained from clustering methods.
We already met two techniques for dimensionality reduction:

• (Kernel) principal component analysis (PCA), which simply projects a data set orthogonally onto a lower di-
mensional linear manifold,

• Autoencoders, which try to find two mappings between the high and a low dimensional space such that their
composition resamples the data set in the high dimensional space as good as possible.

PCA is a linear dimensionality reduction technique, because it performs a linear transform (multiplication by matrix).
Kernel PCA and autoencoders are nonlinear dimensionality reduction techniques, because the mapping from high to
low dimensions cannot be expressed by matrix multiplication.
Multidimensional scaling (MDS) refers to a third fundamental concept for dimensionality reduction. Here we try to
find a set of points in low dimensions such that pairwise distances are as close as possible to pairwise distances in the
high dimensional space. MDS comes in several variants differing in the choice of the distance measure and also in
the weighting of pairwise distances.
Related projects:

• Color Perception (page 135)
• Forest Fires (page 139)

10.1 Abstract Mathematical Formulation

To make things precise, denote by (𝑥1, … , 𝑥𝑛) the data set in the high dimensional space ℝ𝑚 and by (𝑢1, … , 𝑢𝑛)
a set of points in a lower dimensional space ℝ𝑝. Note that both sets are of equal size 𝑛. Further let 𝑑𝑚 and 𝑑𝑝 be
similarity measures in high and low dimensions, respectively. By 𝑤𝑙,𝜆 ∈ (0, ∞), 𝑙, 𝜆 = 1, … , 𝑛 we denote some
weights. Then MDS aims at solving

𝑛
∑
𝑙=1

𝑛
∑
𝜆=1

𝑤𝑙,𝜆 (𝑑𝑚(𝑥𝑙, 𝑥𝜆) − 𝑑𝑝(𝑢𝑙, 𝑢𝜆))2 → min
𝑢1,…,𝑢𝑛

.

Squaring is somewhat arbitrary here. We could apply any positive and increasing function to the difference of pairwise
distances. But in each conrete MDS variant the square is the most fortunate choice, because it ensures differentiability
and simplifies computation of gradients.
MDS solely relies on similarities 𝑑𝑚(𝑥𝑙, 𝑥𝜆) between samples and does not touch samples directly. This observation
allows for applications with arbitrary types of data (text data, for instance) as long as there is some notion of similarity.
In addition, the similarity measure in high dimensions is not required to be some precise mathematical construct.
Human scoring is possible, too, for instance.
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10.2 Metric MDS and Sammon’s Method

In metric MDS the low dimensional similarity measure is the squared Euclidean distance
𝑑𝑝(𝑢𝑙, 𝑢𝜆) = |𝑢𝑙 − 𝑢𝜆|2.

So metric MDS tries to preserve pairwise Euclidean distances (if distances in high dimensions are Euclidean, too).
The minimization problem has to be solved numerically by gradient descent or Newton-type methods (iterative meth-
ods using second order derivatives). Results may be inaccurate due to local minima or saddle points. Starting guess
may be determined by PCA or chosen at random.
Without weights (all weights set to 1) large distances will dominate the objective, because an error in distance fitting
of 10 per cent has more influence on the objective for large distances than for small distances. Thus, without weights
the local structure of the data set is not well reconstructed in low dimensions.
Usually one is more interested in the local structure than in the global one. For instance, the shape of a cluster or the
boundary region between closely spaced clusters are more interesting than the correct distance between clusters far
apart from each other.
Weighting by inverse distances solves this issue and puts emphasis on local structures. Typically, weights are

𝑤𝑙,𝜆 = 1
𝑑𝑚(𝑥𝑙, 𝑥𝜆) .

This weighted variant of metric MDS is known as Sammon’s method.

import numpy as np
import sklearn.manifold as manifold
import plotly.graph_objects as go
from plotly.subplots import make_subplots

data_files = ['omega.npz', 'sphere.npz', 'cube.npz', 'clouds.npz']

for file in data_files:

loaded = np.load(file)
x = loaded['x']
y = loaded['y']
z = loaded['z']
red = loaded['red']
green = loaded['green']
blue = loaded['blue']

mds = manifold.MDS(2, normalized_stress='auto')
U = mds.fit_transform(np.stack((x, y, z), axis=1))

fig = make_subplots(rows=1, cols=2, specs=[[{'type': 'scatter3d'}, {'type':
↪'xy'}]])

fig.update_layout(width=1000, height=600, scene_aspectmode='cube')
fig.add_trace(go.Scatter3d(

x=x, y=y, z=z,
mode='markers',
marker={'size': 1.5, 'color': [f'rgb({r},{g},{b})' for r, g, b in zip(red,

↪ green, blue)]},
hoverinfo = 'none',
showlegend=False

), row=1, col=1)
fig.add_trace(go.Scatter(

x=U[:, 0], y=U[:, 1],
mode='markers',
marker={'size': 5, 'color': [f'rgb({r},{g},{b})' for r, g, b in zip(red,␣

↪green, blue)]},

(continues on next page)

90 Chapter 10. Multidimensional Scaling



Data Science and Artificial Intelligence for Undergraduates
Volume 3: Unsupervised Learning

(continued from previous page)

hoverinfo = 'none',
showlegend=False

), row=1, col=2)
fig.show()

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>
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10.3 Classical MDS

Like metric MDS classical MDS aims at fitting Euclidean distances, but avoids iterative minimization. We will see
that applying a linear transform to the Euclidean distance matrices in both low and high dimensions before fitting
allows for analytical minimization. Here, by Euclidean distance matrix we denote a matrix containing in row 𝑖 and
column 𝑗 the squared Euclidean distance between sample 𝑖 and sample 𝑗.
We will discuss several aspects step by step:

• the transform applied to Euclidean distances to simplify minimization,
• reconstruction of (the lower dimensional) data set from transformed distances
• formulation and solution of the minimization problem,
• modifications to allow for non-Euclidean distances in high dimensions,
• relations to PCA and kernel PCA.

10.3.1 From Distances to Inner Products

Let 𝑧1, … , 𝑧𝑛 ∈ ℝ𝑞 be a collection of points in 𝑞 dimensions, think of 𝑞 = 𝑚 with 𝑧𝑙 = 𝑥𝑙 or 𝑞 = 𝑝 with 𝑧𝑙 = 𝑢𝑙.
Corresponding Euclidean distance matrix 𝐷 ∈ ℝ𝑛×𝑛 is given by

𝐷𝑙,𝜆 ∶= |𝑧𝑙 − 𝑧𝜆|2

and the inner product matrix 𝑆 ∈ ℝ𝑛 of the centered data set 𝑧1 − 𝑧, … , 𝑧𝑛 − ̄𝑧 with ̄𝑧 ∶= 1
𝑛 ∑𝑛

𝑙=1 𝑧𝑙 is defined by

𝑆𝑙,𝜆 ∶= (𝑧𝑙 − ̄𝑧)T (𝑧𝜆 − ̄𝑧).

With

𝑀 ∶= ⎡⎢
⎣

1
𝑛 ⋯ 1

𝑛
⋮ ⋮
1
𝑛 ⋯ 1

𝑛

⎤⎥
⎦

∈ ℝ𝑛×𝑛

we now show
𝑆 = −1

2 (𝐼 − 𝑀) 𝐷 (𝐼 − 𝑀),

that is, double centering the Euclidean distance matrix yields the inner product matrix of the centered data set (up to
some constant factor).
From the definition of matrix multiplication and then from

|𝑧𝑙 − 𝑧𝜆|2 = |𝑧𝑙|2 + |𝑧𝜆|2 − 2 𝑧𝑙
T 𝑧𝜆
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we see

[(𝐼 − 𝑀) 𝐷 (𝐼 − 𝑀)]𝑙,𝜆 = 𝐷𝑙,𝜆 − [𝑀 𝐷]𝑙,𝜆 − [𝐷 𝑀]𝑙,𝜆 + [𝑀 𝐷 𝑀]𝑙,𝜆

= 𝐷𝑙,𝜆 − 1
𝑛

𝑛
∑
𝑖=1

𝐷𝑖,𝜆 − 1
𝑛

𝑛
∑
𝑗=1

𝐷𝑙,𝑗 + 1
𝑛2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝐷𝑖,𝑗

= |𝑧𝑙|2 + |𝑧𝜆|2 − 2 𝑧𝑙
T 𝑧𝜆 − (|𝑧𝜆|2 + 1

𝑛
𝑛

∑
𝑖=1

(|𝑧𝑖|2 − 2 𝑧𝑖
T 𝑧𝜆))

− (|𝑧𝑙|2 + 1
𝑛

𝑛
∑
𝑗=1

(|𝑧𝑗|2 − 2 𝑧𝑙
T 𝑧𝑗)) + 1

𝑛2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

(|𝑧𝑖|2 + |𝑧𝑗|2 − 2 𝑧𝑖
T 𝑧𝑗).

Summands |𝑧𝑙|2 and |𝑧𝜆|2 each appear twice with different sign, thus vanish. The double sum can be simplified to

1
𝑛2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

(|𝑧𝑖|2 + |𝑧𝑗|2 − 2 𝑧𝑖
T 𝑧𝑗) = 1

𝑛2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

|𝑧𝑖|2 + 1
𝑛2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

|𝑧𝑗|2 − 2
𝑛2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑧𝑖
T 𝑧𝑗

= 1
𝑛

𝑛
∑
𝑖=1

|𝑧𝑖|2 + 1
𝑛

𝑛
∑
𝑗=1

|𝑧𝑗|2 − 2 ( 1
𝑛

𝑛
∑
𝑖=1

𝑧𝑖)
T

( 1
𝑛

𝑛
∑
𝑗=1

𝑧𝑗) ,

so that the sums over |𝑧𝑖|2 and |𝑧𝑗|2 cancel out, too. Thus, we have

[(𝐼 − 𝑀) 𝐷 (𝐼 − 𝑀)]𝑙,𝜆 = −2 𝑧𝑙
T 𝑧𝜆 + 2

𝑛
𝑛

∑
𝑖=1

𝑧𝑖
T 𝑧𝜆 + 2

𝑛
𝑛

∑
𝑗=1

𝑧𝑙
T 𝑧𝑗 − 2 ̄𝑧T ̄𝑧

= −2 𝑧𝑙
T 𝑧𝜆 + 2 ̄𝑧T 𝑧𝜆 + 2 𝑧𝑙

T ̄𝑧 − 2 ̄𝑧T ̄𝑧
= −2 (𝑧𝑙 − ̄𝑧)T (𝑧𝜆 − ̄𝑧) = −2 𝑆𝑙,𝜆.

10.3.2 From Inner Products to Data

From an inner product matrix 𝑆 we want to reconstruct original data 𝑧1, … , 𝑧𝑛. As we will see, the mean ̄𝑧 cannot
be reconstructed from 𝑆. Choosing an arbitrary ̄𝑧 amounts in a translation of the whole data compared to the original
one. In addition there will be some freedom in rotating and mirrowing the reconstructed data set.
The data set can be reconstructed from the eigendecomposition of 𝑆. The matrix 𝑆 is symmetric and positive semi-
definite. So there exist 𝑛 nonnegative numbers 𝜆1 ≥ … ≥ 𝜆𝑛 ≥ 0 (eigenvalues of 𝑆) and 𝑛 vectors 𝑎1, … , 𝑎𝑛 ∈ ℝ𝑛

(eigenvectors of 𝑆) with
𝑆 = 𝐴 Λ 𝐴T,

where 𝐴 contains the eigenvectors as columns and Λ is the diagonal matrix of eigenvalues.
If 𝑍 ∈ ℝ𝑛×𝑞 contains 𝑧1, … , 𝑧𝑛 as rows, then we have

𝑆 = ((𝐼 − 𝑀) 𝑍) ((𝐼 − 𝑀) 𝑍)T = (𝐼 − 𝑀) 𝑍 𝑍T (𝐼 − 𝑀).

The rank of 𝑍 is at most 𝑞 and, thus, the rank of 𝑆 is at most 𝑞, too. So all but the first 𝑞 eigenvalues of 𝑆 are zero.
Here we assume 𝑞 ≤ 𝑛. The case 𝑞 > 𝑛 is not of interest to us, because for MDS we will have 𝑞 = 𝑝 (dimension of
low dimensional space, in practice 2 or 3).
With an arbitrary orthonormal matrix 𝑅 ∈ ℝ𝑞×𝑞 (rotation and/or mirrowing) we set

̃𝑧𝑙 ∶= 𝑅 ⎡
⎢
⎣

√𝜆1 𝑎(𝑙)
1

⋮
√𝜆𝑞 𝑎(𝑙)

𝑞

⎤
⎥
⎦

for 𝑙 = 1, … , 𝑛.

Denoting the diagonal matrix of square roots of the eigenvalues by 𝜆 1
2 we see

̃𝑍 = 𝐴 Λ 1
2 𝑅T
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and
̃𝑍 ̃𝑍T = 𝐴 Λ 1

2 𝑅T 𝑅 Λ 1
2 𝐴T = 𝐴 Λ 𝐴T = 𝑆.

That is, 𝑆 is the inner product matrix of ̃𝑧1, … , ̃𝑧𝑛.
Now from

| ̃𝑧𝑙 − ̃𝑧𝜆|2 = | ̃𝑧𝑙|2 + | ̃𝑧𝜆|2 − 2 ̃𝑧T𝑙 ̃𝑧𝜆 = 𝑆𝑙,𝑙 + 𝑆𝜆,𝜆 − 2 𝑆𝑙,𝜆 = |𝑧𝑙 − ̄𝑧 − (𝑧𝜆 − ̄𝑧)|2 = |𝑧𝑙 − 𝑧𝜆|2

we see that the reconstructed data set ̃𝑧1, … , ̃𝑧𝑛 and the original data set 𝑧1, … , 𝑧𝑛 have identical distance matrices.

10.3.3 The Minimization Problem

Classical MDS fits inner products, not distances. The following steps lead from a Euclidean distance matrix 𝐷 ∈
ℝ𝑛×𝑛 in high dimensions to a set of points 𝑢1, … , 𝑢𝑛 ∈ ℝ𝑝 in low dimensions:

• Calculate the inner products matrix 𝑆 ∈ ℝ𝑛×𝑛 in high dimensions:

𝑆 = −1
2 (𝐼 − 𝑀) 𝐷 (𝐼 − 𝑀).

Here we do not have to know the underlying data set 𝑥1, … , 𝑥𝑛 ∈ ℝ𝑚 explicitly, because inner products are deter-
mined by pairwise Euclidean distances (up to centering).

• Solve
𝑛

∑
𝑙=1

𝑛
∑
𝜆=1

(𝑆𝑙,𝜆 − 𝑇𝑙,𝜆)2 → min
𝑇 ∈ℝ𝑛×𝑛

considering only symmetric 𝑇 of rank 𝑝.

• Interpret the optimal 𝑇 as inner product matrix of 𝑛 points in ℝ𝑝 and reconstruct corresponding points
𝑢1, … , 𝑢𝑛.

In contrast to metric MDS classical MDS does not fit pairwise distances directly, but transforms distances to inner
products and fits those inner products. Distance matrices and inner product matrices carry identical information (up
to translation, rotation, mirrowing of the data set), but due to different objective functions both variants of MDS yield
different results. Metric MDS minimizes the means squared error (MSE) of pairwise distances:

𝑛
∑
𝑙=1

𝑛
∑
𝜆=1

(|𝑥𝑙 − 𝑥𝜆|2 − |𝑢𝑙 − 𝑢𝜆|2)2.

Classical MDS minimizes (assuming centered data in high dimensions):
𝑛

∑
𝑙=1

(|𝑥𝑙|2 − |𝑢𝑙|2)2 +
𝑛

∑
𝑙=1

𝑛
∑
𝜆=1
𝜆≠𝑙

(𝑥𝑙
T 𝑥𝜆 − 𝑢𝑙

T 𝑢𝜆)2,

which is the MSE of vetor lengths (diagonal of inner product matrix) plus the MSE of angles (inner products are
cosines of angles multiplied by both vector lengths).
It remains to answer the question how to solve the above minimization problem. We aim at a set of points in ℝ𝑝.
So corresponding inner product matrix has rank of at most 𝑝. That’s the reason why we restrict optimization to
symmetric matrices of rank 𝑝. A standard result from linear algebra (Eckart-Young-Mirsky theorem)35 tells us, that
we have to look at the eigendecomposition of 𝑆:

𝑆 = 𝐴 Λ 𝐴T cf. above.

Then the optimal 𝑇 is (assuming 𝑝 ≤ 𝑛)
𝑇 = 𝐵 Θ 𝐵T,

where𝐵 ∈ ℝ𝑛×𝑝 contains the first 𝑝 eigenvectors of 𝑆 as columns andΘ ∈ ℝ𝑝×𝑝 is the diagonal matrix of the highest
𝑝 eigenvalues of 𝑆. So solving the minimization problem reduces to an eigenvalue problem for 𝑆.
As a by by-product of minimization we get the eigendecomposition of 𝑇 , which is required for reconstructing the
data set 𝑢1, … , 𝑢𝑛 in low dimensions from 𝑇 . Eigenvalues and eigenvectors of 𝑇 coincide with the first 𝑝 eigenvalues
and eigenvectors of 𝑆.

35 https://en.wikipedia.org/wiki/Low-rank_approximation#Basic_low-rank_approximation_problem
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10.3.4 Non-Euclidean Distances

Classical MDS solely relies on the distance matrix𝐷 in high dimensions. The assumption that distances are Euclidean
ensures that the transformed distance matrix 𝑆 = − 1

2 (𝐼 − 𝑀) 𝐷 (𝐼 − 𝑀) is symmetric and positive semi-definite.
So wemay replace the assumption of Euclidean distances by the more direct assumption that the transformed distance
matrix 𝑆 is symmetric and positive semi-definite.
𝐷may contain arbitrary (non-Euclidean) pairwise distances as long as− 1

2 𝐷 is symmetric and positive semi-definite.
So it can be regarded as a kernel matrix resulting from inner products of nonlinearly transformed data. The transform
from − 1

2 𝐷 to 𝑆 is simple double centering, which is equivalent to centering the transformed data set.
We may even drop the assumption that 𝑆 has to be positive semi-definite. If 𝑆 is non-definite, some eigenvalues will
be negative. When approximating 𝑆 by some 𝑇 of rank 𝑝 we only consider the 𝑝 largest positive eigenvalues. As long
as the absolute values of negative eigenvalues is small, the error induced by ignoring them is not higher than the error
resulting from low-rank approximation (that is, from dropping small positive eigenvalues). If 𝐷 is based on some
kind of distance, possible negative eigenvalues will be small.
As long as 𝐷 is symmetric and is related to some almost arbitrary kind of distance classical MDS is applicable.

10.3.5 Relation to PCA and Kernel PCA

For centered data and Euclidean distances we have 𝑆 = 𝑋 𝑋T. Else, 𝑆 can be regarded as a double centered kernel
matrix originating from a kernel matrix − 1

2 𝐷. The transform from 𝑆 to 𝑢1, … , 𝑢𝑛 in classical MDS coincides with
the transform from 𝐾 to the data set’s first 𝑝 coordinates w.r.t. to the kernel PCA coordinate system. In both cases
we use the same parts of the eigendecomposition of 𝑆 or 𝐾, respectively.
Classical MDS and kernel PCA are two different motivations for one and the same algorithm. In case of centered
data and Euclidean distances classical MDS and (non-kernel) PCA coincide. Classical Euclidean MDS originated in
the 1950s. Kernel PCA appeared in 1996 and the connection to classical MDS had been discovered a few years later.

10.4 Non-Metric MDS

For the sake of completeness we mention a third variant of MDS known as non-metric MDS, but we do not go into
the details. Non-metric MDS does not focus on getting the distances right, but only on preserving the ordering of
distances.
The similarity measure in low dimensions is

𝑑(𝑢𝑙, 𝑢𝜆) = 𝑓(|𝑢𝑙 − 𝑢𝜆|2).

with some monotonically increasing function 𝑓 .
Next to 𝑢1, … , 𝑢𝑛 the function 𝑓 is a variable in the optimization process. A typical numerical approach is to alternate
optimization steps for 𝑢1, … , 𝑢𝑛 and 𝑓 . Concrete algorithms following this idea are smallest space analysis (SSA) and
Shepard-Kruskal algorithm36 (German Wikipedia).

10.5 Isomap

Isomap assumes that the data set lies on low dimensional manifold in the high dimensional space. Instead of Euclidean
distances it calculates (approximate) geodesic distances with respect to the manifold. In other words, it looks for the
shortest distance between two points if a traveller between both points is not allowed to leave the manifold. Pairwise
geodesic distances at hand classical MDS is applied to the distance matrix.
The only thing we have to discuss is how to find (approximate) geodesic distances. This requires two steps:

36 https://de.wikipedia.org/wiki/Multidimensionale_Skalierung#Shepard-Kruskal_Algorithmus
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• Create a neighborhood graph. The nodes are the samples. A node is connected to another node by an (undi-
rected) edge if the other node belongs to the 𝑘 nearest neighbors of the first one for some prescribed 𝑘. Each
edge is assigned a weight, which equals the Euclidean distance between samples connected by the edge.

• Get length of shortest path in neighborhood graph between each pair of nodes. Length of a path is the sum of
all edge weights belonging to the path. Finding shortest paths in a graph is a standard task and can be solved
by Dijkstra’s algorithm37.

Fig. 10.1: Isomap uses approximate geodesic distances instead of Euclidean distances.

An alternative to the 𝑘 nearest neighbors is to connect a node to all other nodes within a prescribed distance.
Next to high computational costs a major problem with Isomap is that there may be so called short-circuit errors. That
is, the neighborhood graph contains edges betwenn non-neighboring points on the manifold. This happens especially
for large 𝑘 or sparse data sets.

Fig. 10.2: Isomap may suffer from short-circuit errors.

Scikit-Learn has the Isomap38 class in the manifold module.

data_files = ['omega.npz', 'sphere.npz', 'cube.npz', 'clouds.npz']

for file in data_files:

loaded = np.load(file)
x = loaded['x']
y = loaded['y']
z = loaded['z']
red = loaded['red']
green = loaded['green']
blue = loaded['blue']

im = manifold.Isomap(n_components=2, n_neighbors=5)
U = im.fit_transform(np.stack((x, y, z), axis=1))

fig = make_subplots(rows=1, cols=2, specs=[[{'type': 'scatter3d'}, {'type':
↪'xy'}]])

fig.update_layout(width=1000, height=600, scene_aspectmode='cube')
fig.add_trace(go.Scatter3d(

x=x, y=y, z=z,

(continues on next page)
37 https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
38 https://scikit-learn.org/stable/modules/generated/sklearn.manifold.Isomap.html
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(continued from previous page)

mode='markers',
marker={'size': 1.5, 'color': [f'rgb({r},{g},{b})' for r, g, b in zip(red,

↪ green, blue)]},
hoverinfo = 'none',
showlegend=False

), row=1, col=1)
fig.add_trace(go.Scatter(

x=U[:, 0], y=U[:, 1],
mode='markers',
marker={'size': 5, 'color': [f'rgb({r},{g},{b})' for r, g, b in zip(red,␣

↪green, blue)]},
hoverinfo = 'none',
showlegend=False

), row=1, col=2)
fig.show()

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

/home/jef19jdw/anaconda3/envs/ds_book/lib/python3.10/site-packages/sklearn/
↪manifold/_isomap.py:373: UserWarning:

The number of connected components of the neighbors graph is 2 > 1. Completing␣
↪the graph to fit Isomap might be slow. Increase the number of neighbors to␣
↪avoid this issue.

/home/jef19jdw/anaconda3/envs/ds_book/lib/python3.10/site-packages/scipy/sparse/
↪_index.py:103: SparseEfficiencyWarning:

Changing the sparsity structure of a csr_matrix is expensive. lil_matrix is␣
↪more efficient.

<IPython.core.display.HTML object>
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CHAPTER

ELEVEN

LOCALLY LINEAR EMBEDDING

The idea of locally linear embedding (LLE) appeared at the same time (and journal) as Isomap, uses Euclidean dis-
tances locally only like Isomap, and results in an eigenvalue problem (again, like Isomap). But details and motivation
differ.
The basic assumption is, that the data set lies on a low dimensional manifold which can be decomposed into (ap-
proximately) linear snippets. LLE tries to arange those snippets in low (often 2) dimensions without modifying their
neighborhood relations.
Finding an LLE requires two steps:

• Represent each sample as an affine combination of its neighbors.
• Arrange low dimensional points such that they can be represented by the same affine combination of neighbors
as in high dimensions.

11.1 Local Affine Combinations

For each sample 𝑥𝑙 the 𝑘 nearest neighbors 𝑥𝜆1
, … , 𝑥𝜆𝑘

are determined. These neighbors span an affine manifold
(that is, a translated subspace)

{𝑎1 𝑥𝜆1
+ ⋯ + 𝑎𝑘 𝑥𝜆𝑘

∶ 𝑎1, … , 𝑎𝑘 ∈ ℝ, 𝑎1 + … + 𝑎𝑘 = 1}.

Fig. 11.1: Two vectors may span a two-dimensional subspace or a one-dimensional affine manifold depending on the
set of coefficients considered.

Projecting 𝑥𝑙 orthogonally onto the affine manifold spanned by its neighbors yields representation

𝑥𝑙 ≈ 𝑤𝑙,𝜆1
𝑥𝜆1

+ ⋯ + 𝑤𝑙,𝜆𝑘
𝑥𝜆𝑘

.
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Fig. 11.2: All coefficients in an affine combination are nonnegative if and only if the resulting point belongs to the
convec hull of the points being combined.

The coefficients 𝑤𝑙,𝜆1
, … , 𝑤𝑙,𝜆𝑘

may be regarded as weights, because their sum is 1 and often they are positive if 𝑥𝑙
is surrounded by its neighbors (more precicely, if 𝑥𝑙 lies in the convex hull of its neighbors.
If the data set is ‘locally linear’, then 𝑥𝑙 equals the weighted sum and the error induced by representing samples as
weighted sums of their neighbors is zero. The more nonlinear a data set behaves locally, the less reliable the low
dimensional representation obtained via LLE.
This first step of LLE yields at most 𝑛2 weights𝑤𝑙,𝜆. Weights𝑤𝑙,𝜆 for which corresponding samples aren’t neighbors
are set to zero. Weights are not symmetric, that is, 𝑤𝑙,𝜆 ≠ 𝑤𝜆,𝑙 in general.
To get the weights one first determines the indices 𝜆1(𝑙), … , 𝜆𝑘(𝑙) of the 𝑘 nearest neightbors for all samples 𝑥𝑙.
Then one solves the constrained minimization problem

𝑛
∑
𝑙=1

(𝑤𝑙,𝜆1(𝑙) 𝑥𝜆1(𝑙) + ⋯ + 𝑤𝑙,𝜆𝑘(𝑙) 𝑥𝜆𝑘(𝑙) − 𝑥𝑙)
2 → min

𝑤𝑙,𝜆

with constraints 𝑤𝑙,𝜆1(𝑙) + ⋯ + 𝑤𝑙,𝜆𝑘(𝑙) = 1 for 𝑙 = 1, … , 𝑛
(unused 𝑤𝑙,𝜆 are set to zero).

This minimization problem is quadratic and can be solved numerically in different efficient ways, for instance, by
solving a system of linear equations.

11.2 Low Dimensional Fitting

Given weights 𝑤𝑙,𝜆 the second step of LLE is to find points 𝑢1, … , 𝑢𝑛 ∈ ℝ𝑝 in low dimensions which solve

𝑛
∑
𝑙=1

(𝑤𝑙,𝜆1(𝑙) 𝑢𝜆1(𝑙) + ⋯ + 𝑤𝑙,𝜆𝑘(𝑙) 𝑢𝜆𝑘(𝑙) − 𝑢𝑙)
2 → min

𝑤𝑙,𝜆

with constraints 𝑢1 + ⋯ + 𝑢𝑛 = 0 and covariance matrix is identity.

The objective is the same as in the first step, but now in low dimensions and with fixed weights. Thus, LLE tries
to reconstruct the local linear structure from high dimensions in low dimensions. Without constraints choosing all
low dimensional points to be zero would solve the minimization problem. The covariance constraint excludes such
trivial solutions by requiring that featurewise variance is 1. Thus, solutions have to be scattered in space to some
extent. Covariance of zero prevents some other trivial solutions and avoids solution non-uniqueness due to rotations.
Non-uniqueness due to translations is avoided by the mean zero contraint.
The solution to the minimization problem can be obtained from an eigenvalue problem similar to kernel PCA.
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11.3 LLE with Scikit-Learn

Scikit-Learn has the LocallyLinearEmbedding39 class in the manifold module.

import numpy as np
import sklearn.manifold as manifold
import plotly.graph_objects as go
from plotly.subplots import make_subplots

data_files = ['omega.npz', 'sphere.npz', 'cube.npz', 'clouds.npz']

for file in data_files:

loaded = np.load(file)
x = loaded['x']
y = loaded['y']
z = loaded['z']
red = loaded['red']
green = loaded['green']
blue = loaded['blue']

lle = manifold.LocallyLinearEmbedding(n_components=2, n_neighbors=30)
U = lle.fit_transform(np.stack((x, y, z), axis=1))

fig = make_subplots(rows=1, cols=2, specs=[[{'type': 'scatter3d'}, {'type':
↪'xy'}]])

fig.update_layout(width=1000, height=600, scene_aspectmode='cube')
fig.add_trace(go.Scatter3d(

x=x, y=y, z=z,
mode='markers',
marker={'size': 1.5, 'color': [f'rgb({r},{g},{b})' for r, g, b in zip(red,

↪ green, blue)]},
hoverinfo = 'none',
showlegend=False

), row=1, col=1)
fig.add_trace(go.Scatter(

x=U[:, 0], y=U[:, 1],
mode='markers',
marker={'size': 5, 'color': [f'rgb({r},{g},{b})' for r, g, b in zip(red,␣

↪green, blue)]},
hoverinfo = 'none',
showlegend=False

), row=1, col=2)
fig.show()

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

39 https://scikit-learn.org/stable/modules/generated/sklearn.manifold.LocallyLinearEmbedding.html
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CHAPTER

TWELVE

STOCHASTIC NEIGHBOR EMBEDDING

Up to now we only considered deterministic dimensionality reduction methods. Stochastic neighbor embedding
(SNE) does not use neighborhood relations and distances directly. Instead it estimates the probability that two samples
are neighbors in high dimensions from pairwise distances. Then it tries to find points in low dimensions which yield
identical neighborhood probabilities.
SNE appeared in 2002 and several variants have been developed since then. The most prominent one is known as t-
SNE and originated in 2008. LikeMDS, SNE does not require direct knowledge of the underlying data set 𝑥1, … , 𝑥𝑛,
but only uses pairwise distances.
Related projects:

• MNIST Character Recognition (page 117)
– t-SNE for QMNIST (page 122)

12.1 Basic idea

12.1.1 Probabilities in High Dimensions

Given pairwise distances 𝐷𝑙,𝜆 (𝑙, 𝜆 = 1, … , 𝑛) in high dimensions we may fix a sample 𝑥𝑙 and assign to all other
samples probabilities ̃𝑝𝑙,𝜆 reflecting the neighborhood relations to 𝑥𝜆. The closer 𝑥𝜆 to 𝑥𝑙 the higher ̃𝑝𝑙,𝜆. We may
use Gaussian probabilities:

̃𝑝𝑙,𝜆 ∶= e
−(𝑥𝑙−𝑥𝜆)2

2 𝜎2
𝑙

𝑛
∑
𝑖=1
𝑖≠𝑙

e
−(𝑥𝑙−𝑥𝑖)2

2 𝜎2
𝑙

, 𝜆 ≠ 𝑙 and ̃𝑝𝑙,𝑙 ∶= 0.

The parameter 𝜎𝑙 is chosen numerically (by bisection, for instance) to fix the entropy of the neighborhood distribution
of 𝑥𝑙 at some prescribed value, which is independent of 𝑙. The entropy here is

−
𝑛

∑
𝜆=1

̃𝑝𝑙,𝜆 log ̃𝑝𝑙,𝜆.

If 𝜎𝑙 is too small there will be only few neighbors of 𝑥𝑙 with high probabilities. Then entropy is very low. If 𝜎𝑙
is too large many neighbors of 𝑥𝑙 will have similar probabilities. Then entropy is high. Adjusting 𝜎𝑙 to get some
prescibed medium entropy ensures that the probability distribution for the neighbors takes the data set’s local density
into account.
In general ̃𝑝𝑙,𝜆 ≠ ̃𝑝𝜆,𝑙. To enforce symmetry (which simplifies some computations) we set

𝑝𝑙,𝜆 ∶= ̃𝑝𝑙,𝜆 + ̃𝑝𝜆,𝑙
2 𝑛 .

The sum of all these 𝑛2 values equals 1. Instead of 𝑛 probability distributions (one for each 𝑙) we now only have one
distribution and this distribution is symmetric.
All in all we converted pairwise distances to pairwise probabilities that two samples are neighbors. But the conversions
is not direct by proportionality, but also takes local density of the data set into account.
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12.1.2 Probabilities in Low Dimensions

Given points 𝑢1, … , 𝑢𝑛 in low dimensions we may use the same construction as in high dimensions to obtain proba-
bilities 𝑞𝑙,𝜆. Distances are Euclidean and 𝜎-values can be set to one to get uniform local densities in low dimensions.
There exist different involved reasons to choose non-Gaussian probabilities in low dimensions. Several choices have
been proposed yielding a range of different SNE variants. Below we give the details for a variant known as t-SNE.

12.1.3 Fitting Probabilites

SNE tries to find low dimensional points 𝑢1, … , 𝑢𝑛 such that the corresponding probability distribution fits the high
dimensional probability distribution as good as possible. Instead of using MSE of both sets of probability values SNE
prefers the Kullback-Leibler divergence40:

𝑛
∑
𝑙=2

𝑙−1
∑
𝜆=1

𝑝𝑙,𝜆 log
𝑝𝑙,𝜆

𝑞𝑙,𝜆(𝑢1, … , 𝑢𝑛) → min
𝑢1,…,𝑢𝑛

.

This minimization problem can be solved numerically via gradient descent. There also exist some more efficient
methods adapted to the specifics of SNE.

12.2 t-SNE

The t-SNE variant of SNE defines low dimensional probabilites 𝑞𝑙,𝜆 based on the Student’s t-distribution41. There
are two reasons for this choice:

• It’s computationally more efficient because no exponentiation is required.
• Student’s t-distribution decays slower than a Gaussian distribution, which compensates (to some degree) for
effects caused by the curse of dimensionality. A ball around a sample in high dimensions has much higher
volume than a same sized ball (same radius) in low dimensions. To get similar sample densities (neighbors
per volume) in both high and low dimensions in low dimensions we have to assign higher probabilities to more
distant samples than in high dimensions. Else the lower dimensional embedding would look much denser than
the original data set and clusters may get indistinguishable.

Fig. 12.1: Identical number of neighbors yields higher neighbor density in low dimensions than in high dimensions.

40 https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
41 https://en.wikipedia.org/wiki/Student%27s_t-distribution
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12.3 t-SNE with Scikit-Learn

Scikit-Learn has the TSNE42 class in the manifold module. The perplexity parameter controls the desired
entropy. Entropy is the base 2 logarithm of perplexity.

import numpy as np
import sklearn.manifold as manifold
import plotly.graph_objects as go
from plotly.subplots import make_subplots

data_files = ['omega.npz', 'sphere.npz', 'cube.npz', 'clouds.npz']

for file in data_files:

loaded = np.load(file)
x = loaded['x']
y = loaded['y']
z = loaded['z']
red = loaded['red']
green = loaded['green']
blue = loaded['blue']

sne = manifold.TSNE(n_components=2, perplexity=30)
U = sne.fit_transform(np.stack((x, y, z), axis=1))

fig = make_subplots(rows=1, cols=2, specs=[[{'type': 'scatter3d'}, {'type':
↪'xy'}]])

fig.update_layout(width=1000, height=600, scene_aspectmode='cube')
fig.add_trace(go.Scatter3d(

x=x, y=y, z=z,
mode='markers',
marker={'size': 1.5, 'color': [f'rgb({r},{g},{b})' for r, g, b in zip(red,

↪ green, blue)]},
hoverinfo = 'none',
showlegend=False

), row=1, col=1)
fig.add_trace(go.Scatter(

x=U[:, 0], y=U[:, 1],
mode='markers',
marker={'size': 5, 'color': [f'rgb({r},{g},{b})' for r, g, b in zip(red,␣

↪green, blue)]},
hoverinfo = 'none',
showlegend=False

), row=1, col=2)
fig.show()

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

42 https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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CHAPTER

THIRTEEN

SELF-ORGANIZING MAPS

Self-organizing maps (SOMs), also known as Kohonen networks, appeared in the 1980s. In contrast to all other
dimensionality reduction techniques discussed up to now, SOMs drop the requirement that the low dimensional
version of a data set has to have as many points as the original data set. Instead, SOMs allow to choose the number of
points in low dimensions and then try to find a topology preserving mapping between low and high dimensional data.
Here, preservation of topology means preservation of neighborhood relations. Neighboring points in low dimensions
are mapped to neighboring points in high dimensions.
A motivation for SOMs can be found in biology. Like artificial neural networks they are inspired by insights into the
human brain, see lateral inhibition43 for details. For this reason some people classify SOMs as a kind of ANNs, but
structure and training differ a lot from usual ANNs.

13.1 SOM Structure

Let 𝑝 be the dimension of the low dimensional space (almost always 𝑝 = 2, sometimes 𝑝 = 1 or 𝑝 = 3) and let 𝑞 be
the desired number of data points 𝑢1, … , 𝑢𝑞 ∈ ℝ𝑝 in low dimensions. Assign fixed locations to all low dimensional
points in ℝ𝑝. Usually, the 𝑢1, … , 𝑢𝑞 are arranged in a regular rectangular or hexagonal grid. These positions will
never change.
A SOM maps each 𝑢𝑖 into the high dimensional data space by assigning a corresponding weight 𝑤𝑖 ∈ ℝ𝑚. Although
the images of the 𝑢𝑖 are called weight, the 𝑤𝑖 simply are points in the high dimensional data space. The aim of SOM
training is to choose weights scattered over the whole high dimensional data set, but preserving the low dimensional
neighborhood relations.

Fig. 13.1: SOMS approxiate high dimensional data by a low dimensional grid of points.

The 𝑢𝑖 do not contain any information about the data set. To visualize a SOM we have to visualize properties of the
weights 𝑤𝑖 in the regular grid defined by the 𝑢𝑖 (see below).

43 https://en.wikipedia.org/wiki/Lateral_inhibition
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13.2 Training

Fitting weights 𝑤1, … , 𝑤𝑞 to the data set 𝑥1, … , 𝑥𝑛 is done iteratively:
• Choose random initial weights (or create a grid in the 𝑝 dimensional PCA manifold).
• Iterate over all samples:

– Find the 𝑤𝑖 closest to the current sample.
– Move the best matching 𝑤𝑖 and its neighbors closer to the current sample.

• Stop iteration if change of weights is small.
Moving weights towards the current sample is done via a neighborhood function ℎ ∶ ℝ𝑝 → ℝ, which typically takes
values in [0, 1] but in some cases may attain small negative values, too. Examples are Gaussian bells or the Mexican
hat44. If 𝑤𝑖 is the best matching weight for the current sample 𝑥𝑙, the update rule for all weights is

𝑤new
𝑗 ∶= 𝑤old

𝑗 + 𝛼 ℎ (1
𝑟 (𝑢𝑗 − 𝑢𝑖)) (𝑥𝑙 − 𝑤old

𝑗 ).

The parameter 𝑟 > 0 controls the size of the neighborhood. The parameter 𝛼 ∈ (0, 1] controls the attracting force
of 𝑥𝑙.
Training usually starts with high values for 𝑟 and 𝛼 to capture the data set’s rough structure in few iterations. Then
both values are decreased to allow for accurate fitting of the SOM to the data.
Batch training is possible, too. Here several samples are processed at once. For each sample the closest weight is
determined. Then all weights are updated.

13.3 Prediction

With a trained SOM we may assign high dimensional data points to low dimensional grid points. This is also true
for data not available during training. The chosen grid point is the one with weight closest to the sample under
consideration.
Each low dimensional grid point may be regarded as a cluster of high dimensional points. The described mapping
from high to low dimensions simply is 1-NN with the weights as training data.

13.4 Visualization

A straight forward SOM visualization is to color code a selected feature (component of the weights) in the low
dimensional grid. This yields as many visualizations as there are dimensions in the data space.
To get some distance information from a SOM one may calculate Euclidean distances between weights of neighboring
grid points and visualize those distances on the grid. The result is known as unified distance matrix (U-matrix). Dark
(low values) areas indicate samples belonging to one cluster and light (high values) areas indicate boundaries between
clusters. From the U-matrix one may extract clusters by applying standard image processing algorithms.
Many other kinds of visualizations may be useful, but details depend on the data set under consideration.

44 https://en.wikipedia.org/wiki/Ricker_wavelet
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13.5 SOMs with Python

Scikit-Learn does not support SOMs. But there are lots of Python modules for SOMs, for instance
• sklearn-som45,
• MiniSom46,
• SOMPY47,
• SimpSOM48,
• somoclu49.

The first one focuses on clustering and lacks some more general features like direct access to the weights. MiniSam
and SOMPY come without documentation. Usage has to be deduced from provided code examples. SimpSOM has
at least some basic documention, but implementation is incomplete. The last one, somoclu, is a Python wrapper
for an advanced stand-alone SOM software. It’s well documented, so we use somoclu here. Implementation details
may be found in somoclu: An Efficient Parallel Library for Self-Organizing Maps50.

import numpy as np
import matplotlib.pyplot as plt
import plotly.graph_objects as go

import somoclu

file = 'clouds.npz'

loaded = np.load(file)
x = loaded['x']
y = loaded['y']
z = loaded['z']
red = loaded['red']
green = loaded['green']
blue = loaded['blue']

fig = go.Figure(layout_width=800, layout_height=600, layout_scene_aspectmode='cube
↪')

fig.add_trace(go.Scatter3d(
x=x, y=y, z=z,
mode='markers',
marker={'size': 2, 'color': [f'rgb({r},{g},{b})' for r, g, b in zip(red,␣

↪green, blue)]},
hoverinfo = 'none'

))
fig.show()

<IPython.core.display.HTML object>

cols = 30
rows = 30

som = somoclu.Somoclu(cols, rows, initialization='pca')
som.train(np.stack((x, y, z), axis=1), epochs=1000)

45 https://pypi.org/project/sklearn-som/
46 https://github.com/JustGlowing/minisom
47 https://github.com/sevamoo/SOMPY
48 https://github.com/fcomitani/simpsom
49 https://somoclu.readthedocs.io/en/stable/index.html
50 https://www.jstatsoft.org/article/download/v078i09/1125
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Warning: data was not float32. A 32-bit copy was made

print('U-matrix')
som.view_umatrix(colormap='jet')

print('3x components of weight vectors')
som.view_component_planes(colormap='jet')

U-matrix

3x components of weight vectors
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<module 'matplotlib.pyplot' from '/home/jef19jdw/anaconda3/envs/ds_book/lib/
↪python3.10/site-packages/matplotlib/pyplot.py'>

The view_activation_map computes the distance of a sample to all weights and visualizes corresponding
matrix.

print('activation map')
som.view_activation_map(np.array([[x[700], y[700], z[700]]]), colormap='jet')

activation map
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<module 'matplotlib.pyplot' from '/home/jef19jdw/anaconda3/envs/ds_book/lib/
↪python3.10/site-packages/matplotlib/pyplot.py'>

The codebook member variable contains the 3d NumPy array of the SOM’s weights (rows x columns x features).

fig = go.Figure(layout_width=800, layout_height=600, layout_scene_aspectmode='cube
↪')

fig.add_trace(go.Scatter3d(
x=x, y=y, z=z,
mode='markers',
marker={'size': 2, 'color': [f'rgb({r},{g},{b})' for r, g, b in zip(red,␣

↪green, blue)]},
hoverinfo = 'none'

))

for r in range(0, rows):
fig.add_trace(go.Scatter3d(

x=som.codebook[r, :, 0], y=som.codebook[r, :, 1], z=som.codebook[r, :, 2],
mode='lines',
line={'color': 'rgb(0,0,0)'},

(continues on next page)
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(continued from previous page)

hoverinfo = 'none'
))

for c in range(0, cols):
fig.add_trace(go.Scatter3d(

x=som.codebook[:, c, 0], y=som.codebook[:, c, 1], z=som.codebook[:, c, 2],
mode='lines',
line={'color': 'rgb(0,0,0)'},
hoverinfo = 'none'

))

fig.show()

<IPython.core.display.HTML object>

The get_surface_state methods yields the distances between each pair of weight vector and training sample.
Return values is a 2d NumPy array (samples x weights). We may use it to visualize weights in 2d by assigning to each
weight the closest training sample.

closest_sample = np.argmin(som.get_surface_state(), axis=0).reshape(rows, cols)

u1, u2 = np.meshgrid(np.linspace(0, 1, cols), np.linspace(1, 0, rows))
u1 = u1.reshape(-1)
u2 = u2.reshape(-1)

fig, ax = plt.subplots(figsize=(8, 8))
colors = np.stack((red[closest_sample].reshape(-1), green[closest_sample].

↪reshape(-1), blue[closest_sample].reshape(-1)), axis=1) / 255
ax.scatter(u1, u2, c=colors, s=100)
ax.axis('equal')
ax.axis('off')
plt.show()
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CHAPTER

FOURTEEN

MNIST CHARACTER RECOGNITION

A major application of data science and artificial intelligence is recognition of handwritten characters. I a series of
projects we will implement different techniques for this task based on the famous MNIST data set (and related data
sets) for training recognition systems. MNIST is provided by the National Institute of Standards and Technology51

• Semisupervised Classification (page 117)
• Generating Handwritten Digits (page 119)
• Autoencoder for QMNIST (page 120)
• t-SNE for QMNIST (page 122)

14.1 Semisupervised Classification

The QMNIST data set contains 120000 labeled images of handwritten digits. It was created to train digit recognition
systems via supervised learning methods. Obtaining such a massiv amount of labeled samples is an expensive and
time consuming work. The creators designed forms for writing prescribed digits, which were filled in by hundreds
of people. Then the forms were scanned and digits separated. Hopefully every writer wrote the correct digit in each
field.
In the project we want to train a digit recognitionmodel based anQMNIST images without using any labels. Obtaining
scanned images of handwritten digits is cheap and simple. One does not need forms with prescribed digits and nobody
has to manually label scanned images. There are lots of pages with handwritten digits out there. We would have to
scan them and separate digits by standard image processing routines.
Of course, having only unlabeled data at hand we cannot use supervised learning methods. Unsupervised methods do
not yield labels, but only unlabeled clusters of similar images. The obvious idea is to do some unsupervised clustering
and thenmanually label each cluster. Adding (a small amount of) manual labels to an unsupervised learning procedure
is known as semi-supervised learning.

14.1.1 Preprocessing

Task: Load QMNIST training images (without labels). Center and crop images to 20x20.
Solution:

# your solution

We have a 400 dimensional data space. This might be t0o much to obtain useful results from 𝑘-means (curse of
dimensionality). Maybe we have to use PCA.
Task: Check whether our data suffers from the curse of dimensionality (don’t use all samples!). Why isn’t this the
case?
Solution:

51 https://www.nist.gov
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# your solution

14.1.2 Clustering

Although we know that there are 10 different classes there might be much more clusters. A cluster contains similar
samples, but different people tend to write the same digits in several different ways. From this point of view it is not
clear how many cluster we can expect.
We have to choose 𝑘 by elbow method or silhouette score or Davies-Bouldin index. Calculating silhouette scores is
very slow for large data sets (why?), so we calculate it only for a subset. We also should use mini-batch 𝑘-means to
save computation time.
Task: Apply 𝑘-means to the data and find the best 𝑘 based on elbow method, silhouette score (10000 samples) and
Davies-Bouldin index. Make a first run with 𝑘 = 5, 10, 15, … , 100. Then choose a smaller intervall for 𝑘 and run
𝑘-means for each 𝑘 in this interval.
Solution:

# your solution

Task: Choose a good 𝑘 and visualize all cluster centers together with cluster sizes (samples per cluster). Write a
function for visualizing the cluster centers. The function shall take a NumPy array of cluster centers and a list of title
strings as arguments.
Solution:

# your solution

14.1.3 Prediction

To use our model (set of cluster centers) for recognizing digits we have to label the cluster centers manually. For
testing the prediction quality of our model we use QMNIST test images and labels.
Task: Load and preprocess QMNIST test images and labels.
Solution:

# your solution

Task: Create a mapping (1d array) from cluster labels (indices) to digit labels (manual labeling). Then label all test
images and calculate correct classifiaction rate.
Solution:

# your solution

14.1.4 Inspection

Task: Calculate correct classification rate per cluster and show results together with corresponding cluster centroids.
Solution:

# your solution
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14.1.5 More clusters?

Task: What do you think about using more clusters than suggested by silouette score and Davies-Bouldin-index?
Solution:

# your answer

Task: Try 𝑘 = 100.
Task: What happens for 𝑘 = 60000.
Solution:

# your answer

14.1.6 Random cluster centers

𝑘-means with 𝑘 manually labeled cluster centers is equivalent to 1NN with the cluster centers as training set. The
idea behind 𝑘-means is that the cluster centers are not chosen at random, but much more sensible.
Task: Try 1NN with 100 randomly choosen and manually labeled training samples. Calculate correct classification
rate on the test set.
Solution:

# your solution

14.2 Generating Handwritten Digits

Gaussian mixture models are generative models, that is, we may use a trained model to generate new samples looking
similar to the training samples. If we train a Gaussian mixture model on QMNIST, then it should be possible to
generate images of handwritten digits, which are not exactly equal to one of the QMNIST images.

14.2.1 Loading and Preprocessing Data

Task: Load QMNIST training images, labels and writer IDs. Center bounding boxes and crop images to 20x20
pixels.
Solution:

# your solution

Task: Use PCA with 50 components to reduce dimensionality of the data space. Else training the model will take
too long. Show some image together with its projection onto the 50 dimensional subspace constructed by PCA.
Solution:

# your solution
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14.2.2 Training the Model

Task: Fit a Gaussian mixture model to the data. What’s a sensible number of clusters.
Solution:

# your solution

14.2.3 Generating Images

Task: Use GaussianMixture.sample52 to generate 100 new images showing handwritten digits. Show all images.
Solution:

# your solution

14.2.4 Gaussian Mixture Unmixed

If we already know the clusters and only want to generate new images, we may fit a Gaussian distribution to each
cluster manually. That is, for each cluster we compute mean vector and covariance matrix.
Task: Find the writer with the highest number of images available. Show all images for this writer.
Solution:

# your solution

Task: Get means and covariances for the ten classes of digitis written by the writer.
Solution:

# your solution

Task: Use NumPy’s random number generator to generate 10 new images per class.
Solution:

# your solution

14.3 Autoencoder for QMNIST

When clustering QMNIST images with Gaussian mixtures we had to apply PCA to get acceptable computation times.
Now we have a nonlinear dimensionality reduction technique at hand which might yield lower quality loss than PCA.
Task: Load QMNIST training images (without further preprocessing).
Solution:

# your solution

52 https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html#sklearn.mixture.GaussianMixture.sample
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14.3.1 Autoencoder Training

We use the following encoder model:

# disable GPU if TensorFlow with GPU causes problems
#import os
#os.environ["CUDA_VISIBLE_DEVICES"] = "-1"

import tensorflow.keras as keras

encoder = keras.Sequential(name='encoder')

encoder.add(keras.Input(shape=(28, 28, 1)))
encoder.add(keras.layers.Conv2D(4, 3, activation='relu', name='conv1'))
encoder.add(keras.layers.Conv2D(4, 3, activation='relu', name='conv2'))
encoder.add(keras.layers.MaxPooling2D(name='pool1'))
encoder.add(keras.layers.Conv2D(8, 3, activation='relu', name='conv3'))
encoder.add(keras.layers.Conv2D(8, 3, activation='relu', name='conv4'))
encoder.add(keras.layers.MaxPooling2D(name='pool2'))
encoder.add(keras.layers.Conv2D(12, 3, activation='relu', name='conv5'))

encoder.summary()

Task: Create a symmetric decoder and the autoencoder model.
Solution:

# your solution

Task: Train the autoencoder.
Solution:

# your solution

14.3.2 Evaluation

Code space has 48 dimensions. So we could compare results to PCA with 48 components to see whether the autoen-
coder yields better results than PCA.
Task: Transform all images with PCA with 48 components. Visualize for some samples original image, autoencoder
reconstruction and PCA transformed image. Compute RMSE for autoencoder and PCA results.
Solution:

# your solution

Visualizing codes provides some information on how well clusters can be separated by looking at the codes.
Task: Load training labels and visualize 300 codes for each digit.
Solution:

# your solution
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14.3.3 Anomaly Detection

Looking at RMSE for each image we may identify images not similar to most other images. Removing such outliers
from the data set could increase training success for supervised learning methods.
Task: Calculate RMSE for each image (autoencoder only) and plot images with highest RMSE.
Solution:

# your solution

14.3.4 Generating New Images

Task: Generate images from random codes.
Solution:

# your solution

Task: Generate images from random perturbations of a training image’s code.
Solution:

# your solution

Task: Generate a transition from one training image to another training image
• by interpolating images directly and
• by interpolating their codes.

Solution:

# your solution

Task: Create an animation of the code based transition.
Solution:

# your solution

14.4 t-SNE for QMNIST

Many projects ago we used PCA to get 2d and 3d visualization of QMNIST training images. Now we have more
powerful dimensionality reduction techniques at hand. Let’s try t-SNE.
Task: Load QMNIST training images, center bounding boxes, and crop images to 20x20.
Solution:

# your solution

Task: Use t-SNE to get a 2d visualization of QMNIST images.
Solution:

# your solution
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Task: Load QMNIST training labels and color the 2d plot according to the labels.
Solution:

# your solution
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CHAPTER

FIFTEEN

HOUSE PRICES

This series of projects extends the results obtained in and .
• House Prices SOM (page 125)

15.1 House Prices SOM

We already used regression techniques to predict house prices. Now it’s time to visualize the underlying data set using
SOMs.
Task: Load the preprocessedGerman housing data set generated in . Convert categorical features to numeric features.
For one hot encoding use as many code features as there are categories (do not drop one of them). Why?

# your solution

Task: Create a list of feature names, which we will use below to label plots. Create a NumPy array holding the data
set.

# your solution

Task: Train a SOM on the data. Don’t forget to standardize data.

# your solution

Task: Plot the U-matrix.

# your solution

Task: Visualize each (high dimensional) feature in 2d. Arrange all plots in a 4 by 6 grid.

# your solution

Task: Create a new sample and get its position (best matching unit) in the SOM. Show corresponding activation map
and mark the best matching unit in the map.

# your solution
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CHAPTER

SIXTEEN

SUPERMARKET CUSTOMERS

To understand general customer behavior and for targeted advertising supermarket companies have to identify groups
of customers with similar behavior. Sending all customers identical advertisments fails most customers needs. Pro-
ducing individual advertisements for each potential customer would be too expensive. Thus, clustering customers
into a handful of groups should be a sensible middle ground.
There are several data sets for supermarkets available. We use the one provided at Michele Coscia’s website53. It is
sufficiently ridge and has simple structure. The data set is free to use (private communication with M. Coscia). Data
comes from italian Coop supermarkets. In Explaining the Product Range Effect in Purchase Data54 the data set is
described in more detail.

16.1 Understanding the Data Set

Task: Get the data set. Read section III of the accompanying paper till the end of the left column on page 3. Answer
the following questions:

• How many shops?
• How many customers?
• Are there customers missing in the data?
• Which time interval?
• What’s the detail level of products?
• How many products?

Solution:

# your answer

Task: Load prices and purchases data.
Solution:

# your solution

Task: Collect following product information:
• number of shops selling the product,
• total quantity sold,
• number of customers who bought the product,
• maximum quantity bought by one customer.

53 https://www.michelecoscia.com/?page_id=379
54 https://www.michelecoscia.com/wp-content/uploads/2013/09/geocoop.pdf
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Get minimum, average, maximum for all values.
Solution:

# your solution

Task: Collect following customer information:
• number of shops visited,
• total number of items bought,
• number of different products bought.

Get minimum, average, maximum for all values.
Solution:

# your solution

16.2 Cleaning the Data Set

The aim of this project is to cluster the set of customers into a handful of groups for targeted advertising. Outliers
are not of interest because else the number of groups would become to large and advertising too expensive.
We only are interested in average customers and products. For example, products bought only by very few customers
or not available in all shops should be removed from the data set. Customers buying only occasionally at the shops
should be removed, too.
Task: Remove all products, customers, purchases such that remaining data satisfies the following conditions:

• each product has been sold in all shops,
• each product has been sold at least 1000 times,
• each product has been bought by at least 100 different customers,
• each product has been bought at least 4 times by at least one customer,
• each customer bought at least 10 items per month (on average),
• each customer bought at least 20 different products.

How many products, customers, purchases do we have now?
Solution:

# your solution

16.3 Preparing Data for Clustering

We want to use Scikit-Learn’s 𝑘-means implementation for clustering. Thus, we have to bring our data into the right
shape.
Task: Create a NumPy array with one row per customer and one column per product. Store quantities of products
bought by each customer in the array. Sort customers descending with respect to the total number of items they
bought and products descending with respect to the total quantity sold (sorting may simplify visualization later on).
Solution:

# your solution
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16.4 Scaling

Scaling the data will influence the clustering process. We have several options:
• Without scaling data, products sold in large quantities will dominate the Euclidean distance between the product
vectors of two customers. Thus, customers will have small distance if the products they bought most often do
coincide.

• Standardization per product ensures that the total quantity sold of a product does not matter. The distance
between two product vectors is themean squared difference of per product quantities bought by both customers.
Customers buying similar quantities of each product will have small distance.

• If we are more interested in the selection of products of each customer than in the quantities bought, we
should normalize the product vectors. Then the total quantity bought by each customer is identical and data
only contains information on the composition of each customers shopping cart. Here ℓ1-norm should be used.
Then all product quantities will sum to 1 and can be interpreted as probability that a product is bought by the
customer.

Task: Prepare productwise standardized data and customerwise normalized data.
Solution:

# your solution

16.5 Clustering

Task: Cluster the data set with 𝑘-means for unscaled, standardized, and normalized data. Choose some good 𝑘 for
each variant. Keep the three KMeans objects with best 𝑘 for further analysis.
Solution:

# your solution

16.6 Analyzing the Clusters

Now that we have identified groups of customers with similar behavior, it’s time to understand those groups. Re-
member, that we want to adapt our advertising campaign to customer behavior.
Task: Visualize cluster centers in a quantity versus product index plot. Don’t forget to back scale the data.
Solution:

# your solution

Each cluster center can be regarded as a prototype customer of the cluster.
Task: Characterize the prototype customers for unscaled and standardized data in words a person designing adver-
tising campaigns understands.
Solution:

# your answer

The first two clusterings are more or less trivial and useless for targeted advertising. The third cluster deserves further
investigation.
Task: Get the 100 most popular products (highest average per customer quantity) per cluster for the third clustering.
By how many products differ the top 100 products? Do the same for the first clustering and for a random clustering.
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Solution:

# your solution

Task: Consider the third clustering only. Does one of the customer groups buy higher quantities than the other?
Visualize the answer to this question for different price regions.
Solution:

# your solution
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CHAPTER

SEVENTEEN

CHINESE CELADONS

This series of projects investigates the relations between different types of Chinese celadons (early porcelains).
• Hierarchical Clustering (page 131)
• Density-based Clustering (page 132)

17.1 Hierarchical Clustering

We want to find clusters in a set of celadons (early porcelains). A data set with material properties of a number
of celadons found in China is available from UCI Machine Learning Repository55. The data set originates from
research work published in Data-driven research on chemical features of Jingdezhen and Longquan celadon by energy
dispersive X-ray fluorescence56 by Ziyang He, Maolin Zhang, Haozhe Zhang. A free preprint PDF file57 is available,
too.
Task: Read (at least) the last paragraph of section 1 and section 2 of the afore mentioned preprint. How many
celadon sample do you expect in the data set after reading?
Solution:

# your answer

17.1.1 Understanding the data

Data comes as a CSV file.
Task: Load the data to a data frame. Why are there so many samples?
Solution:

# your solution

Task: Create a NumPy array holding the data with one row per sample and one column per feature.
Solution:

# your solution

Task: Create a list of sample names.
Solution:

# your solution

55 https://archive.ics.uci.edu/ml/datasets/Chemical+Composition+of+Ceramic+Samples
56 https://www.sciencedirect.com/science/article/pii/S0272884215023135
57 https://arxiv.org/pdf/1511.07825.pdf
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17.1.2 Preprocessing

Units of measurement are weight per cent for body features and parts per million for glaze features. Since all fea-
tures are equally important for finding similar celadons we should standardize features independently. Maybe the
assumption of equal importance is not correct, but without further domain knowledge we cannot do better.
Task: Standardize all features.
Solution:

# your solution

17.1.3 Hierarchical Clustering

Task: Plot a dendrogram and determine a sensible number of clusters.
Solution:

# your solution

Task: Cluster data into the chosen number of clusters.
Solution:

# your solution

17.1.4 𝑘-Means Clustering

Task: Use 𝑘-means for clustering. Determine a good 𝑘.
Solution:

# your solution

Task: Compare results from hierarchical and 𝑘-means clustering.
Solution:

# your solution

17.2 Density-based Clustering

Task: Load, rearrange, standardize the celadons data set.
Solution:

# your solution

Task: Plot a histogram of pairwise distances to get a feeling for distances in the data set.
Solution:

# your solution

Task: Use DBSCAN algorithm for clustering. Print sample names for each cluster (and outliers).
Solution:
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# your solution

Task: Use OPTICS algorithm for clustering. Choose clusters manually.
Solution:

# your solution

Task: Visualize the data set exploiting the tree structure generated by OPTICS algorithm. Label each node with the
sample name.
Solution:

# your solution
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CHAPTER

EIGHTEEN

COLOR PERCEPTION

Human color perception is not as trivial as it may look at first glance. The number of independent colors recognizable
by humans, and thus the dimension of the human color space, is not obvious. In the project we want to use MDS to
get some insights into human color perception.
The data set we want to analyze is from 1954 and can be found in a table on page 2 of Dimensions of Color Vision58.
Corresponding CSV file ships with this project’s notebook. It contains similarity scores for pairs of colors (light of
different wave lengths).
Task: Read the following excerpt from Ekman’s 1954 paper (‘Table 1’ is in the CSV file). How did Ekman obtaine
the similarity scores?
Solution:

# your notes

Task: Load the data set. Create a list of wave lengths (for labeling plots below) and a distance (!) matrix.
Solution:

# your solution

18.1 1d Embedding

Wave lengths are real numbers and, thus, contained in a one dimensional linear manifold. If human perception of
color differences is proportional to wave length, then the color space should have a nice embedding into 1d space.
Task: Use metric MDS to get a 1d embedding of the data set.
Solution:

# your solution

Task: Get the distance matrix of the embedded data set. Visualize (dis)similarity of both distance matrices.
Solution:

# your solution

58 https://doi.org/10.1080/00223980.1954.9712953
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Fig. 18.1: Data table in Ekman’s 1954 paper. The opposite of ‘big data’.
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18.2 2d Embedding

Task: Repeat steps from above for a 2d embedding.
Solution:

# your solution

18.3 3d Embedding

Task: Repeat steps from above for a 3d embedding.

# your solution

18.4 Higher Dimensions

Task: Use PCA to determine the number of dimensions needed to accurately model the space of human perceivable
colors.
Solution:

# your solution
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CHAPTER

NINETEEN

FOREST FIRES

In this project we want to obtain some insight into different types of forest fires in a Portuguese national park. Data is
available at the Website of Paulo Cortez59. It covers forest fires from January 2000 till December 2003 and provides
several numerical features of soil moisture and weather.
Task: Get the data and have a look at Data Mining Approach to Predict Forest Firesusing Meteorological Data60.
What are FFMC, DMC, DC, ISI?
Solution:

# your answer

Task: Load the data. Remove outliers. Scale data where necessary. Create a NumPy array containing for all samples
FFMC, DMC, DC, ISI.
Solution:

# your solution

Task: Visualize data with 2d Isomap. Interpret the 2d embedding. Use visualizations of all the other features (not
only FFMC, DMC, DC, ISI). Can you identify clusters or any other useful structure? Describe different types of
forest fires.
Solution:

# your solution

Task: Use PCA to project data into 2 dimensions. Can you see different fire types here, too?
Solution:

# your solution

59 http://www3.dsi.uminho.pt/pcortez/forestfires/
60 https://core.ac.uk/download/pdf/55609027.pdf
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