
A simple linear time algorithm for smallest

enclosing circles on the (hemi)sphere

Jens Flemming∗

July 30, 2024

Key words: smallest enclosing circle, largest empty circle, 1-center problem,
minimax location problem, maximin location problem, pole of inaccessibility

Abstract

Based on Welzl’s algorithm for smallest circles and spheres we de-
velop a simple linear time algorithm for finding the smallest circle
enclosing a point cloud on a sphere. The algorithm yields correct re-
sults as long as the point cloud is contained in a hemisphere, but the
hemisphere does not have to be known in advance and the algorithm
automatically detects whether the hemisphere assumption is met.

For the full-sphere case, that is, if the point cloud is not contained in
a hemisphere, we provide hints on how to adapt existing linearithmic
time algorithms for spherical Voronoi diagrams to find the smallest
enclosing circle.

1 Problem statement and applications

Given n points on a sphere in R3 we want to find a smallest circle on the
sphere enclosing all points. This is a well-known problem in the plane, see
[14] for some early references, and has been studied on the sphere at least
since the 1980s, see [5] and references therein.

In operations research the smallest circle problem appears in facility
planning. How to place a facility to minimize the distance to the most
remote of several demand points? In this context the smallest circle problem
is known as 1-center problem or minimax location problem. It may be

∗Zwickau University of Applied Sciences, Faculty of Physical Engineering/Computer
Sciences , D-08012 Zwickau, Germany, jens.flemming@fh-zwickau.de.

1

ar
X

iv
:2

40
7.

19
84

0v
1

 [
cs

.C
G

]
 2

9
Ju

l 2
02

4

considered in the plane or on the sphere, where the latter is common in case
of large areas to cover.

Given a region of interest, in cartography one may ask for a map pro-
jection minimizing maximum distortion in that region. In case of azimuthal
equidistant projections optimal mapping parameters are given by the solu-
tion of the smallest circle problem with respect to the vertices of the region’s
boundary polygon.

Taking into account the obvious fact that on a sphere the smallest en-
closing circle is equivalent to the largest empty circle (see [5, Theorem 1]
for a formal proof) several other applications arise. For instance, the then
so called maximin location problem is solved in operations research to find
locations for facilities as far away from a set of points as possible. The
facility could be a toxic waste dump, a new restaurant avoiding too much
competition, or a military site as far away from enemy positions as possible.

In geography the largest empty circle problem is solved to determine
so called poles of inaccessibility, that is, locations farthest from some topo-
graphical feature (landmass or sea, for instance).

Especially for geodata applications fast algorithms for solving the small-
est circle problem on the sphere or, equivalently, the largest empty circle
problem are of importance, because geodata usually comes as large point
clouds or polygons with lots of vertices. For instance, in the OpenStreetMap
data base [11] a national border may be a polygon with more than 100 000
vertices (France 101 751, Germany 159 625, [10]). Considering larger regions
may result in millions of points to process.

2 Algorithms in the literature

To our best knowledge the oldest attempt to solve the smallest circle prob-
lem on a sphere is [5] by Drezner and Wesolowsky. There the problem is
approximately solved based on steepest descent for a minimization problem.
This yields local minima only. Thus, a relatively complex procedure is pro-
posed in [5] to obtain global solutions from local ones. There is no time
complexity analysis, but numerical results in [5] indicate that time complex-
ity is worse than linear. Solution accuracy seems to be in the order of 5 to
6 decimal digits.

In [12] Patel derives a system of nonlinear equations from the KKT opti-
mality conditions of a minimization problem equivalent to the smallest circle
problem and suggests a concrete numerical method for approximately solv-
ing that system. Regarding the restriction of our algorithm to point clouds

2

contained in a hemisphere (cf. below) it’s noteworthy that [12] discusses
simplifications for a special hemispherical case.

Xue and Sun for the first time propose a linear time algorithm for the
spherical smallest circle problem in [15]. Their algorithm is exact, that is, no
numerical approximation techniques are used. They formulate a quadratic
optimization problem equivalent to the smallest circle problem and show
that there exists a uniquely determined minimizer if the point cloud is
contained in a hemisphere. For solving that quadratic problem in linear
time they sketch some reformulations and refer to the general approach of
Megiddo in [9] (and also to Dyer [6]), who for quadratic problems then refers
to [8]. How to handle or even detect the full-sphere case is not considered.
They only show that for the full-sphere case the smallest circle problem may
have several solutions. Our algorithm proposed below will be based on the
ideas of Megiddo, too. But we will give a simple concrete algorithm, which
in addition is able to automatically detect the full-sphere case.

The authors of [2] present a concrete exact algorithm for solving the
smallest circle problem on a hemisphere in quadratic time. Obviously they
are not aware of the linear time solution in [15] published several years
before, although the introduction of [2] contains many valuable references
to previous approaches to the problem. In [3] same authors extend their
ideas to point clouds not contained in a hemisphere. Time complexity then
is cubic.

3 The algorithm

At the end of this section we state our algorithm for finding the smallest
enclosing circle of a point cloud on a sphere assuming the point cloud is
contained in an unknown hemisphere. We prepare this result by recalling
Welzl’s algorithm and by discussing a tight relation between smallest spher-
ical circles and smallest spheres in 3d space. Based on this discussion we
derive a simple condition to check whether we left the hemisphere while
processing the point cloud point by point.

Ingredients and references allowing for an almost linear (that is, lin-
earithmic) time full-sphere algorithm will be given in the next section.

3.1 Welzl’s algorithm for planar circles and spheres

Based on linear time algorithms for more general linear programming tasks
Welzl developed a very simple linear time algorithm for the planar smallest

3

circle problem in [14]. Welzl’s algorithm easily extends to higher dimensions,
especially to smallest enclosing spheres in 3d space.

In [14] Welzl’s algorithm is given in a recursive manner with recursion
depth equal to the number of points to process. For large point clouds
such recursive implementation may be infeasible due to limited stack size or
otherwise limited recursion depth. For instance, default maximum recursion
depth for interpreters of the widely used Python programming language
ranges from 10 for Python on some microcontrollers to 1000 in standard
Python1. Here we give Welzl’s algorithm in an almost iterative formulation,
where recursive calls only occur if a point is identified as boundary point of
the smallest circle or sphere enclosing all points processed so far.

The algorithm or the corresponding function welzl takes two arguments:
the list P of points to enclose and a set B of points known to lie on the
smallest enclosing circle’s or sphere’s boundary. Given at least two points
x1, . . . , xn in Rd with d ∈ {2, 3} start the algorithm by calling the welzl

function with arguments P := (x1, . . . , xn) and B := ∅ (no boundary points
known in advance). In the algorithm we always write ‘circle’. For d = 3
‘sphere‘ would be more appropriate.

Algorithm 1: Welzl’s algorithm in almost iterative form

1 function welzl(P , B)

2 if |B| = d+ 1 then
3 return circle determined by points in B

4 else
5 m ← max{0, 2− |B|}
6 C ← smallest circle enclosing B and first m points in P
7 for i = m+ 1, . . . , |P | do
8 if ith point of P not enclosed by C then
9 b ← ith point of P

10 C ← welzl(first i− 1 points of P , B ∪ {b})
11 Move ith point of P to front (make it the first point).

12 return C

The circle/sphere in line 3 of the algorithm is uniquely determined by
the points in B if points aren’t collinear (d = 2) or cocircular (d = 3), which
is always true here by the construction of B. In line 6 the smallest circle
enclosing two points or the smallest sphere enclosing two or three points has

1See https://docs.python.org/3/library/sys.html#sys.getrecursionlimit for informa-
tion on how to obtain these values.

4

to be computed, which is trivial. Recursion depth in line 10 is at most d+1.
Line 11 implements the move-to-front heuristic suggested in [14] to speed
up computations by constructing large initial circles in line 6.

In its original form Welzl’s algorithm has to be randomized to obtain
linear expected runtime. But in [14, Section 3] Welzl also shows that with
the variant given above it’s sufficient to randomly permutate the points
only once before running the algorithm. This permutation step is not stated
explicitly in the algorithm above.

3.2 Smallest spherical circles vs. smallest spheres

Although we already used the term (spherical) circle above, here we give a
precise definition for the sake of mathematical rigor. Note that throughout
this article we assume that the point cloud to enclose lives on a sphere with
radius 1 centered at the origin. This sphere will be referred to as main
sphere if there is a risk of ambiguity.

Definition 1. Given a center point c on the sphere and a radius r ∈ (0, π)
the corresponding spherical circle is the set of all points on the sphere with
geodesic distance r to the center c.

A spherical circle devides the sphere into two caps, a smaller one and a
larger one. For radius r = π

2 both caps are of equal size. The smaller cap
can be represented as the intersection of a ball and the sphere:

Lemma 1. The small cap defined by a spherical circle with radius r < π
2

and center c equals the intersection of the sphere and the ball with radius
sin c centered at (cos r) c.

Proof. This follows immediately from basic trigonometry.

Definition 2. A set of points on the sphere is contained in a hemisphere if
there is an enclosing spherical circle with radius r < π

2 .

If a point cloud is contained in a hemisphere, the point cloud’s smallest
enclosing circle is uniquely determined (see [15, Theorem 3] or [14, Lemma 1]
for the planar case, the proof for easily extends to the spherical setting). If
the point cloud is not contained in a hemisphere, there might be several
smallest enclosing circles (see [15, first paragraph in Section 2]).

The circle in Lemma 1 above is a great circle on the corresponding ball’s
surface. Consequently, there’s no smaller ball satisfying that intersection
property. This observation can be extended as follows:

5

Lemma 2. Let the point cloud be contained in a hemisphere. If the smallest
enclosing circle on the sphere is centered at c with radius r and if the point
cloud’s smallest enclosing sphere is centered at c̃ with radius r̃, then

c̃ = (cos r) c and r̃ = sin r. (3.1)

If the point cloud is not contained in a hemisphere, then the smallest enclos-
ing sphere is centered at the origin with radius 1.

Proof. The assertions are quite obvious. Given the smallest enclosing circle,
take corresponding ball from Lemma 1. Its surface is the smallest enclosing
sphere because any smaller enclosing sphere would yield a smaller enclosing
circle via intersection with the main sphere. The other way round, starting
with the smallest enclosing sphere, the circle defined by intersection with
the main sphere has to be the smallest enclosing circle. Else, it would give
rise to a smaller enclosing sphere via Lemma 1.

Now assume that the point cloud is not contained in a hemisphere. If
the smallest enclosing sphere would have radius r̃ < 1, by intersection with
the main sphere we would obtain an enclosing circle with radius

r = arcsin r̃ <
π

2
, (3.2)

which contradicts the assumption r ≥ π
2 .

The basic idea of Lemma 2 that smallest enclosing circles on a sphere
are closely related to smallest enclosing spheres has already been mentioned
in [1] without any details or proofs.

3.3 Derivation of the algorithm

The idea of our Welzl-type algorithm for point clouds on the sphere is to
apply Welzl’s algorithm in 3d (smallest enclosing sphere), but implement
some modifications which on the one hand allow to detect whether the point
cloud is contained in a hemisphere and on the other hand bring the algorithm
very close to the 2d variant of Welzl’s algorithm.

Our algorithm heavily relies on the following result:

Theorem 1. Let d = 3 in Welzl’s algorithm and start the algorithm with
some point cloud P and an empty set B.

(i) If the point cloud P is contained in a hemisphere, then the condition
|B| = 4 in line 2 of the algorithm is never satisfied.

6

(ii) If the point cloud P is not contained in a hemisphere, then at least
one of the following states will be observed during execution of Welzl’s
algorithm:

(a) In line 6 of the algorithm the initial sphere is constructed from
two points which lie antipodally on the main sphere.

(b) The welzl function is called with |B| = 3 and the three boundary
points lie on a great circle of the main sphere.

(c) The condition |B| = 4 in line 2 of the algorithm is satisfied.

Proof. To prove the theorem we take a close look at Welzl’s algorithm.
Welzl’s algorithm processes the point cloud point by point. It starts with
two points (even in the 3d case considered here), determines the smallest
enclosing sphere for these two points, then goes on to the third point. If the
third point is enclosed by the initial sphere, the fourth point is processed.
If the third point is not enclosed by the initial sphere, the point will be
marked as boundary point. A recursive call to the welzl function is used to
determine a new sphere enclosing the first two points and having the third
point on it (that is, on the boundary of corresponding ball). Then the fourth
point is processed in the same way as the third point, and so on.

During recursive calls to welzl another boundary point may be detected,
leading to a recursive call again. This way the smallest enclosing sphere is
determined point by point with recursive calls of welzl whenever the current
sphere turns out to be too small. Recursion depth is limited by the number
of boundary points uniquely determining a sphere, that is, by 4.

To prove (i) observe that in a depth-3 recursive call to welzl there are
three boundary points (|B| = 3) and a number of points in P to enclose.
On the one hand, the smallest sphere defined by the boundary points has all
three boundary points on one great circle. On the other hand, from Lemma 2
we know that the smallest enclosing sphere for P with B as boundary points
is a sphere with the three boundary points on a great circle, too. Thus, both
spheres coincide and the smallest enclosing sphere for P with boundary
points B can be determined from B without touching P . All points of P
automatically are enclosed by the smallest enclosing sphere of B, that is,
there will be no further recursive call of welzl.

To prove (ii) assume that the point cloud {x1, . . . , xn} to enclose is not
contained in a hemisphere. Then there is i such that {x1, . . . , xi−1} is con-
tained in a hemisphere, but {x1, . . . , xi} is not. While processing xi, the
point will be marked as boundary point and welzl will be called with

7

P = (x1, . . . , xi−1) and B = {xi}. During this recursive call the small-
est enclosing sphere for xi and some other point xj with j ∈ {1, . . . , i − 1}
will be constructed. If state (a) is not observed, there will be some xk,
k ∈ {1, . . . , i− 1} not enclosed by this sphere, because the sphere’s radius is
strictly below 1 and {x1, . . . , xi} is not contained in any hemisphere. Thus,
welzl will be called recursively with P = (x1, . . . , xk−1, xk+1, xi−1) and
B = {xi, xk}. Following the same reasoning again we see a third recursive
call to welzl, now with |B| = 3. If state (b) is not observed in this call,
analogous reasoning applies again, resulting in a fourth recursive call, now
with |B| = 4, which proves the theorem.

The theorem states that up to some easily detectable edge cases (cf.
states (a) and (b) in the theorem) the condition |B| = 4 can be checked to
determine whether the point cloud lies in a hemisphere or not. As long as
the points being processed are contained in a hemisphere the 3d algorithm
is almost identical to the 2d algorithm due to the lack of depth-4 recursive
calls. The only difference is that for |B| = 3 the 2d variant immediately
returns the circle determined by the boundary points whereas the 3d variant
also checks whether all points processed so far are enclosed by the smallest
sphere determined by B. If we know in advance that all points are contained
in a hemisphere we may skip this additional check, which shows that the
2d Welzl algorithm correctly works for point clouds on hemispheres, too, in
addition to planar clouds.

3.4 Statement of the algorithm

Here we state the complete algorithm based on the considerations from the
previous subsections. The only difference to the derivation above is that to
avoid a fourth recursive call we perform the hemisphere check immediately
after constructing the smallest enclosing sphere for three boundary points.
This does not change the algorithm’s behavior, but only its structure.

Like for Welzl’s algorithm, start the following algorithm with P contain-
ing a list of all points to enclose and B = ∅. Randomly permutate the list
of points before applying the algorithm.

8

Algorithm 2: Smallest enclosing circle on the sphere

1 function secots(P , B)

2 if |B| = 3 then
3 C ← circle determined by points in B
4 if C is a great circle then
5 stop /* points not in hemisphere, state (a) */

6 if C does not encloses all points in P then
7 stop /* points not in hemisphere, state (c) */

8 return C

9 else
10 M ← union of B and 2− |B| first points in P
11 if points in M are antipodal on main sphere then
12 stop /* points not in hemisphere, state (b) */

13 C ← smallest circle enclosing M
14 for i = 2− |B|+ 1, . . . , |P | do
15 if ith point of P not enclosed by C then
16 b ← ith point of P
17 C ← secots(first i− 1 points of P , B ∪ {b})
18 Move ith point of P to front (make it the first point).

19 return C

The stop command in the algorithm stops the whole program, aborting
all recursive calls to secots. States (a), (b), (c) refer to Theorem 1.

Corollary 1. The algorithm has linear expected runtime with respect to the
number of points to process.

Proof. From the derivation of the algorithm we see that the runtime is not
worse than the runtime of Welzl’s algorithm for smallest enclosing sphere’s
in 3d space. Thus, runtime is linear.

3.5 Implementation details

For testing whether a point is enclosed by the current circle we do not have
to calculate the point’s distance to the circle’s center. Instead we may test
whether the point lies on the correct side of the plane containing the circle.
If the current circle has center c and radius r, then this plane is{

x ∈ R3 : uT x = t
}
, with u := c and t := cos r. (3.3)

9

A point x is on the correct side if uT x ≥ t. This test requires fewer elemen-
tary operations than a usual containment test for a circle. Given the plane,
that is, u and t, the circle’s center is u and the radius is arccos t.

Working with such planes, construction of the circle in line 3 of our
algorithm boils down to solving the system of linear equations

bT1 v = 1,

bT2 v = 1, (3.4)

bT3 v = 1

for v ∈ R3, where b1, b2, b3 are the three boundary points. Then the plane
(and, thus, the circle) is determined by u := v

∥v∥ and t := 1
∥v∥ . The circle is

a great circle (cf. line 4) if and only if the system has no solution.
To save computation time we may skip the hemisphere test in line 6 if

we know in advance that the point cloud is contained in a hemisphere.
Whenever a recursive call to secots returns in line 17 (that is, no stop)

we know that the points processed so far are contained in a hemisphere. If
the next point x not enclosed by the current circle satisfies uT x > −t, from
simple geometric considerations we see that the already processed points
and x together are contained in a hemisphere, too. Passing this knowledge
on to the subsequent recursive call of secots avoids the then unnecessary
hemisphere test in line 6.

Care has to be taken implementing the move-to-front heuristic in line 18.
This operation has to be executed in constant time, which is possible if the
point cloud is stored in a doubly linked list.

A ready-to-use Python implementation along the lines sketched here is
available in [7]. Figure 1 has been obtained with this implementation and
shows that runtime indeed behaves linearly as expected from the theory.

4 The full-sphere case

As our linear time algorithm only yields results for point clouds contained
in a hemisphere one may ask whether there are linear time algorithms for
the full-sphere case. To our best knowledge the answer is ‘no’. Solutions in
the full-sphere case aren’t uniquely determined. Thus, processing the point
cloud point by point would yield kind of local solution only.

We mentioned in the introductory section that the smallest enclosing
circle problem on the sphere is equivalent to the largest empty circle problem
on the sphere. The planar largest empty circle problem typically is solved

10

0 200K 400K 600K 800K 1M
number of points

0

2000

4000

6000

8000

10000

tim
e

in
 m

s

min/max
mean

Figure 1: Runtime for point clouds of different sizes between 100 000 and
1 million points. Points are uniformly distributed in a ‘rectangle’. Longi-
tudes span 90 degrees, latitudes span 60 degrees. For each cloud size the
algorithm is run 10 times. Computations were done on one core of an Intel
Core i7-8550U CPU with 1.8GHz. Code is available in [7, example ‘time’].

by computing the Voronoi diagram of the point cloud and then looking for
the Voronoi vertex with the largest distance to its cells’ centers, see [13],
for instance. This vertex is the center of the largest empty circle. Here a
Voronoi vertex is a point where three or more Voronoi cells meet.

To solve the largest enclosing circle problem on the sphere we have to
compute a Voronoi diagram on the sphere. This is possible in linearithmic
time. Concrete algorithms are given in [4] and [16]. If the point cloud has n
points, the Voronoi diagram has 2n − 4 vertices, see [16, Section 2]. Thus,
the vertex with largest distance to its cells’ centers can be found in linear
time.

Note that the algorithms presented in [4] and [16] next to the Voronoi
vertices yield all relevant information like neighboring cells and distances

11

to cell centers within their linearithmic time bound. Thus, the overall al-
gorithm for computing the largest empty circle has linearithmic runtime,
too.

5 Conclusions

We have shown that computing smallest enclosing circles for point clouds
on the sphere is possible in linear time by mixing the 2d and the 3d variant
of Welzl’s algorithm. Although our algorithm only yields correct results if
the point cloud is contained in a hemisphere, the hemisphere does not have
to be known in advance. In addition, our algorithm detects whether the
hemisphere assumption is true or not.

Algorithms developed during the past 40 years starting with [5] have
polynomial runtime or yield approximate solutions only. Especially for
geodata applications those algorithms are too slow. With the algorithm
presented in this article millions of points can be processed on consumer
hardware within seconds.

Next to the theoretical linear time result, which directly carries over
from Welzl’s work to ours, we have provided numerical evidence that our
implementation does not violate the theoretical limit.

A ready-to-use Python implementation of our algorithm published in [7]
makes our results easily accessible to other researchers and practitioners.

References

[1] J. Brower. Minimum bounding circle on a sphere. Math-
ematics Stack Exchange. Comment by user Henry,
https://math.stackexchange.com/q/4336094 (version: 2021-12-17).

[2] P. Das, N. R. Chakraborti, and P. K. Chaudhuri. A polynomial time
algorithm for a hemispherical minimax location problem. Operations
Research Letters, 24(1):57–63, 1999.

[3] P. Das, N. R. Chakraborti, and P. K. Chaudhuri. Spherical mini-
max location problem. Computational Optimization and Applications,
18(3):311–326, 2001.

[4] J. Dinis and M. Mamede. Sweeping the sphere. In 2010 International
Symposium on Voronoi Diagrams in Science and Engineering, pages
151–160, 2010.

12

[5] Z. Drezner and G. O. Wesolowsky. Minimax and maximin facility
location problems on a sphere. Naval Research Logistics Quarterly,
30(2):305–312, 1983.

[6] M. E. Dyer. On a multidimensional search technique and its application
to the euclidean one-centre problem. SIAM Journal on Computing,
15(3):725–738, 1986.

[7] J. Flemming. Secots – Smallest enclosing circles on the sphere.
https://github.com/jeflem/secots, 2024.

[8] N. Megiddo. Linear-time algorithms for linear programming in R3 and
related problems. SIAM Journal on Computing, 12(4):759–776, 1983.

[9] N. Megiddo. Linear programming in linear time when the dimension is
fixed. J. ACM, 31(1):114—-127, 1984.

[10] OpenStreetMap contributors. Planet dump retrieved from
https://planet.osm.org, 2024-07-23.

[11] OpenStreetMap contributors. OpenStreetMap data base.
https://www.openstreetmap.org, 2024.

[12] M. Patel. Spherical minimax location problem using the euclidean
norm: Formulation and optimization. Computational Optimization and
Applications, 4:79–90, 1995.

[13] G. T. Toussaint. Computing largest empty circles with location con-
straints. International Journal of Computer & Information Sciences,
12(5):347–358, 1983.

[14] E. Welzl. Smallest enclosing disks (balls and ellipsoids). In Hermann
Maurer, editor, New Results and New Trends in Computer Science,
pages 359–370. Springer Berlin Heidelberg, 1991.

[15] G. Xue and S. Sun. The spherical one-center problem. In D.-Z. Du
and P. M. Pardalos, editors, Minimax and Applications, pages 153–156.
Springer US, Boston, MA, 1995.

[16] X. Zheng, R. Ennis, G. P. Richards, and P. Palffy-Muhoray. A plane
sweep algorithm for the voronoi tessellation of the sphere. Electronic-
Liquid Crystal Communications, 2011.

13

	Problem statement and applications
	Algorithms in the literature
	The algorithm
	Welzl's algorithm for planar circles and spheres
	Smallest spherical circles vs. smallest spheres
	Derivation of the algorithm
	Statement of the algorithm
	Implementation details

	The full-sphere case
	Conclusions

