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Abstract

This work analyzes and evaluates di�erent approaches to translate UML state
machines into C++ code. The �rst part of this thesis covers the ground of trans-
forming information of a source language to a target language. It addresses the
basics of language theory and di�erent approaches of language transformation.
The second part examines the properties and formalisms of state machines to
value their characteristics for further reuse in the development cycle. The third
part disassembles the programming language C++ with all its quirks and oddities.
The last part puts all mentioned pieces together.

Beyond this approach the thesis tries to point out several concepts of language
engineering to ease the use of software languages for the language user as well
as the language engineer. It scrutinizes diverging solutions with the resulting
consequences.
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Motivation

More and more parts of everyday life are getting computerized. Often people
do not even realize they are interacting with a computer when they are using
everyday objects. Those devices are called embedded systems.

"An embedded system contains a computer as part of a larger system
and does not exist primarily to provide standard computing services to
a user. A desktop PC is not an embedded system, unless it is within a
tomographical imaging scanner or some other device. A computerized
microwave oven or a VCR is an embedded system because it does no
standard computing. In both cases, the embedded computer is part
of a larger system that provides some noncomputing feature to the
user..."[2]

These computers contain only necessary components, and they are speci�ed
to do only the thing they were built for. As long as you can deploy a Java Virtual
Machine (JVM), or something akin, on the device, it is possible to program it in
a high level language like Java2. But a lot of embedded systems do not provide
enough resources to execute a JVM. They use real time operating system, or they
do not contain an operating system at all.

Most of these systems have to be programmed with languages like C or C++
not only because those languages compile programs that can run on plain vanilla
components, but they are used for applications where the challenge is, "if some-
thing fails, people die"3 to phrase Bjarne Stroustrup. C and C++ evolved for more
than 20 years 4 and especially C++, as an extension of C, contains various language
concepts. With its enormous �exibility it is possible to combine high level language
features, like runtime and compile time polymorphism, with low level features, like
pointers and memory management. The consequence of this feature richness is
high complexity. In a language like Java it is not even possible to manage memory

1I do not know if it is a coincidence or not but it is part of the Book of Genesis ;-)
2Naturally it makes total sense to program a co�ee maker in Java or Co�eeScript using the

Hyper Text Co�ee Pot Control Protocol speci�ed in RFC 2324.
3Imagine a PATRIOT air defense missile system doing garbage collection while missing the

opportunity to detect an incoming missile.
4To be frank, the idea of C was born 1969 by Dennis Ritchie and 1979 Bjarne Stroustrup

started to develop C++. A lot of today's software languages vanish into oblivion after a year or
two.
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allocation and deallocation, thus resulting in a possible loss of performance. C++

instead is designed to pass any responsibilities to the developer to forward full
control with all its consequences.

Unfortunately, it is not the developer who designs an embedded system but an
engineer or a so called domain expert. He communicates in his domain language
all requirements, speci�cations and wishes to the developer. One excellent syntax
to represent this information is a state machine. Its graphical notation is easy
to understand for the developer as well as the domain expert. State machines
are not only easy to understand, but they are thoroughly researched and formally
described. With all these properties it is self-evident to try to transform state
machines in a low level language, like C++ , to deploy it on the embedded system.
Even though a vast number of scientist, students and academics analyzed and
researched this problem, the present thesis tries it again.

Prerequisites

To keep this thesis brief and to the point, it is necessary to presuppose basic
issues which are essential for it. As the title conjectures, you should have a
fundamental grasp of programming concepts as well as abstract data types[3] and
the programming language C++[4].

State machines and the like will be thoroughly covered but the fundamentals
will not be part of this thesis. Concomitant with the state machine fundamentals
are the basics of language theory which are part of theoretical computer science.
This knowledge is required and can not be delineated as good as by Hopcroft et
al.[5].

This work builds upon basic patterns of language processing. Language recog-
nition and transformation are discussed in depth by Aho et al.[6].

iii



Contents

1 Language transformation 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Di�erent views of software languages . . . . . . . . . . . . . . . 2

1.4 Purpose of a language . . . . . . . . . . . . . . . . . . . . . . . 2

1.5 Characteristics of a language . . . . . . . . . . . . . . . . . . . . 3

1.5.1 Concrete representation . . . . . . . . . . . . . . . . . . 3

1.5.2 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5.3 Minimalism . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5.4 Simplicity . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Language components . . . . . . . . . . . . . . . . . . . . . . . 5

1.6.1 Formalisms of language speci�cation . . . . . . . . . . . . 5

1.6.2 Abstract syntax . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.3 Concrete syntax . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.4 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Principles of language transformation . . . . . . . . . . . . . . . 10

1.8 Characteristics of language transformation . . . . . . . . . . . . . 13

1.9 Language composition . . . . . . . . . . . . . . . . . . . . . . . 17

1.10 Domain Speci�c Languages . . . . . . . . . . . . . . . . . . . . . 18

1.11 Language oriented programming . . . . . . . . . . . . . . . . . . 19

1.11.1 Language modularization . . . . . . . . . . . . . . . . . . 21

1.11.2 Product line engineering and language modularization . . 22

1.12 Generative programming . . . . . . . . . . . . . . . . . . . . . . 25

1.13 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iv



2 State machines 31

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Evolution of state machines . . . . . . . . . . . . . . . . . . . . 32

2.3 UML state machines . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 State machine implementations . . . . . . . . . . . . . . . . . . . 42

2.5 Event processing . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.7 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 C++ 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Advanced Concepts . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Dynamic polymorphism . . . . . . . . . . . . . . . . . . . 52

3.3.2 Static polymorphism . . . . . . . . . . . . . . . . . . . . 54

3.3.3 Class design . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Implementations of state machines in C++ . . . . . . . . . . . . 62

3.5 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Implementation 69

4.1 Mapping problem . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Solution approach . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Model transformation . . . . . . . . . . . . . . . . . . . . 71

4.2.2 Language extension . . . . . . . . . . . . . . . . . . . . . 72

4.2.3 Generation . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.4 Con�guration . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Reference implementation . . . . . . . . . . . . . . . . . . . . . 77

4.4 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Conclusions 86

A Appendix 87

A.1 UML diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.2 Source code listings . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.3 Contents of the data storage device . . . . . . . . . . . . . . . . 97

A.3.1 Eclipse projects . . . . . . . . . . . . . . . . . . . . . . . 97

A.3.2 Work�ows . . . . . . . . . . . . . . . . . . . . . . . . . . 98

v



List of �gures 100

List of listings 102

vi



Chapter 1

Language transformation

1.1 Motivation

To generate something out of something else is a basic concept of general science.
In computer sciences it is usually about code generation which means translating
instances of a higher abstract language to instances of a lower abstract language.
Programmers are working with code generators on a daily basis because a compiler
is more or less a special code generator. A compiler creates bytecode or object
code out of languages like Java or C++. "A generator just walks an internal data
structure and emits output."[7]

This implies an internal data structure and an algorithm to walk this structure.
The internal structure or representation needs to be deduced from the input.
The algorithm or behavior to walk this representation needs to be speci�ed. This
sounds like a problem made for a computer because it consists of input, processing
and output. Since the beginning of the computer age, scientists searched and
found various solutions to it. The foundation is always a multistage pipeline of
a language application, or plain vanilla language transformation, which will be
thoroughly examined in this part of the thesis.

1.2 Introduction

The principle of language transformation or translation is straightforward. Provid-
ing a source language instance for the translation component results in a target
language instance. In natural language processing this concept is necessary for
communication. Without the concept of translation, people could only communi-
cate with people which understand the same language. This verbal communication
is the foundation of linguistics and translation theory. While the principle of trans-
lation is easy, the task itself is hard. It can be seen as a mapping problem1 based on
transformation rules. Unfortunately, not all languages contain the same concepts2,

1Which is by de�nition a formal language.
2While a Jew immediately knows what a schmock is, it is di�cult to explain this phrase to a

goy.
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but linguists found out that all languages contain at least a core of concepts that
can be used to deduce other linguistic utterances [8].

Alas, the processing of natural languages cannot simply be mapped to computer
or software languages. First of all, the communication partners could be man
or machine. A machine requires correct and formal representations of linguistic
utterances to process them. Another aspect is that natural languages3 already
exist, while software languages need to be created. Thus, it results in the di�erence
between using a software language to design software and designing a software
language [9].

1.3 Di�erent views of software languages

Software development is usually about developing applications. The purpose of an
application is to get speci�c tasks done more e�ciently. The main purpose of the
software developer is to create such a software. The application will be written in a
software language. Using a software language to design software is an application
centered process. Specifying a language, as well as creating the needed tooling to
use the language, is a language centered process. Distinguishing between the two
processes is as crucial as distinguishing between refactoring and developing [10].

If the software developer uses a language to create software for the end user,
he will act as language user or application developer. If the Software developer
creates a language, he will act as language engineer. The end user of the language
engineer is the language user. It is even possible to use this approach recursively
because a language engineer cannot create a language out of thin air4. He will
use tools and formalisms to create a language.

Today's software developers use an Integrated Development Environment (IDE).
An IDE is more or less a set of tools. These tools di�er between language user
and language engineer. The language user interacts with an editor to write code,
transformers like a compiler, executors like a debugger, probably analyzers like a
cost estimator, and additional support tools like version control and so on.

An IDE like Eclipse5 renders the di�erences between the tools blurry. The
language user won't even di�er between the tools and the language he is using. For
the language engineer those di�erences are very important because his objective
is to provide the tools, as well as the language, to make creating software easier.
To achieve this, the IDE has to support him in creating a language speci�cation
and the tools for the language user. Martin Fowler coined the phrase Language
Workbench denominating those IDEs [11].

1.4 Purpose of a language

The common purpose of a language is communication. It should express the will
of the user e�ective and e�cient. Software languages, especially Domain Speci�c

3Except for constructed languages like Esperanto for example.
4The Object Management Group (OMG) would probably call him a meta language engineer.
5http://www.eclipse.org/
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Languages, which will be explained in 1.10 on page 18, but also General Purpose
Languages are using abstraction6 to achieve this.

"The abstraction level of a concept present in a software language is
the amount of detail required to either represent (for data) or execute
(for processes) this concept in terms of computer hardware."[9]

Based on the de�nition the expression "Java is more abstract than object code"
is correct because the abstraction level of Java is higher. The terms low level and
high level are not absolute but relative because the virtual level of abstraction grows
by time7. Meaning that today a class or an object can be called high level, while
an instruction could be called low level. But thinking in design patterns (see [12]
for details) makes the class look low level. Considering language transformation
as a pipeline to create an instance of a low level language out of an instance of
a high level language, is the default approach to raise the abstraction level. E.g.,
the �rst edition of C++ has been transformed to C, and after that it had used the
C pipeline to create executable code.

1.5 Characteristics of a language

Using a language is more or less like using a tool. Both have purposes and proper-
ties, rendering them useful in one area of application and useless in another one.
E.g., a screw driver excels in the domain of screwing, can be misused as a can
opener, and is completely useless as a paintbrush8. To quantify the value of a
language for a speci�c domain, it is necessary to identify the possible features and
their consequences of absence or presence.

1.5.1 Concrete representation

The concrete representation is an important feature. It can be divided in textual
and graphical notation. A textual language, like the programming language C,
can be edited with a common text editor, and it needs to be parsed for further
transformation processes.

A graphical language usually requires a projectional editor or a complex recog-
nition processes. E.g., Magic Draw9 is a projectional editor for Uni�ed Modeling
Language (UML) diagrams. It is possible to draw those diagrams in Visio10 or on

6Abstraction in the sense of leaving out irrelevant concepts from a certain point of view. The
misunderstanding of leaving out details to gain higher level of abstraction results in an incomplete
language.

7E.g., hardware is not virtual and interacting with hardware cannot be done with high level
concepts, like classes, but with machine code.

8A language example would be Extensible Markup Language (XML) which excels in the do-
main of con�guration, can be misused as a database, and is completely useless as a programming
language.

9http://www.nomagic.com/products/magicdraw.html
10office.microsoft.com/en-us/visio
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a napkin, but the recognition process needs to analyze the picture to create an
internal representation for further transformation processes.

The consequence of a graphical language using a projectional editor is the sheer
impossibility of creating syntactical incorrect instances. E.g., it is not possible to
create an association without association ends.

On the contrary, a text editor accepts each input and the parser has to verify
the syntactical correctness. As a consequence, it is possible to work with incorrect
instances of textual representations, while it depends on the projectional editor
whether the language user is allowed to do this or not.[9, 13]

1.5.2 Consistency

The consistency of a language is a feature that can be applied to other language
features. It is about choosing a design and holding to it. E.g., an arithmetic
language consisting of addition, subtraction and multiplication with their binary
operators, will be inconsistent if the plus operator uses in�x notation, the minus
operator post�x notation, and times pre�x notation.

The consistency of notations relates to the consistency of concepts. Related
concepts should look and behave the same way, and they should be grouped to-
gether. Unrelated concepts should look and behave di�erent, and they need to be
separated. E.g., the concept of edges should not be mixed with the concept of
nodes in a graph. A lot of software languages struggle with the consistency of the
level of detail as well as abstraction.

An example is C++, making it possible to combine pointer arithmetic and mul-
tiple inheritance. Experienced language users know that misusing the language
this way is a bad idea, but from the consistency view it seems plausible. Another
example are good libraries and frameworks, providing the user only with necessary
information about how to use them, but hide the details of the implementation.

Mixing level of details and abstractions results in a highly �exible language that
tends to be misused accidentally [9]. This leads to minimalism as an intentional
language feature.

1.5.3 Minimalism

Minimalism is about exposing only what is necessary for the domain and the user
to accomplish his task. E.g., a �nancial broker wants to express a trading process,
like placing an order, as seen in listing 1.1 from [14].

newOrder . to . buy ( 100 . s h a r e s . o f ( ' IBM ' ) ) {
l i m i t P r i c e 300
a l lO rNone t r u e
v a l u eA s { qty , u n i t P r i c e �> qty * u n i t P r i c e � 500}

}

Listing 1.1: Example of a �nancial brokerage system DSL
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Providing only the proper interface and hiding the implementation details will
prevent invalid client code because of necessary evolution of the abstraction.

Minimalism should go along with distillation. Distillation is about getting rid of
nonessential details [14]. Keeping the implementation dense and pure minimizes
accidental complexity [15]. It is like using smart pointers in C++ to get rid of
memory management details.

1.5.4 Simplicity

Another language feature is simplicity. Keeping a language simple makes it easy to
learn and easy to use. Simplicity concerns minimalism because it is about omitting
needless artifacts. Modern programming languages contain alternative notations
for expressions like a[i] as a synonym for *(a+i). These additional artifacts are
called syntactic sugar. They make it easier to express and read linguistic utterances
[16]. If anything, it should be applied judiciously, and it requires consulting the
language users [14].

1.6 Language components

For natural languages it is possible to create an unlimited amount of instances. To
represent a language in a dense but complete form, linguists use grammars [17].

A grammar consist of rules and primitives. The same applies for software
languages. A language speci�cation has several representation. It consists of one
or more concrete forms and one abstract form. The abstract form is usually an
abstract syntax tree or abstract syntax graph. The abstract syntax is used by the
tools. The concrete syntax is used by the language user. To transform a concrete
syntax into an abstract syntax a transformation, the so called syntax mapping is
needed. Next to the syntax is the meaning. A description of the meaning is the
so called semantics (see [11, 9, 6] for details).

1.6.1 Formalisms of language speci�cation

To process linguistic utterances of a language, it is necessary to specify the lan-
guage formally. According to [9], those formalisms can be distinguished as follows:

Context-free grammars are type-2 grammars of the Chomsky hierarchy. Those
grammars have long been the standard to de�ne programming languages.
They are thoroughly researched, thus providing the language engineer with
many tools to support him. Using the Backus-Naur Form as well as the
extended Backus-Naur Form as formal syntax, it is possible to de�ne sets of
production rules to specify the concrete syntax of a language.

The recognition process can be represented by a pushdown automaton. The
result of the recognition process is a derivation tree which is the underlying
structure of a context-free grammar. With an algorithm like in [18] it is
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possible to transform the derivation tree into an abstract syntax tree. While
it is usually not possible to reference other nodes than parent or child nodes,
compiler constructors use symbol tables to eradicate this �aw (see [6, 7] for
details). Combining a symbol table with its respective abstract syntax tree
results in an arti�cial representation of a directed graph. Only a subset of
context-free grammars are reasonable for further processing. These are so
called LL and LR grammars11 [19].

That reduces the amount of grammars and dictates the structure of the
production rules. Context-free grammars cannot be used to specify graphical
languages. That can be interpreted as a major drawback for present-day
language speci�cation. For more details about context-free grammars see
[5, 6].

Attributed grammars are context-free grammars with additional attributes as-
sociated to their vocabulary. Furthermore, the grammars are expanded by
semantic rules12 and conditions [20].

The attributes support the compile process and can have any structure.
Combined with symbol relation grammars, it is possible to specify visual
languages [21].

A signi�cant di�erence between this and the metamodeling approach is the
containment of notions like boxes and arrows.

Graph grammars use graphs to represent entities and relations. The fundamental
approach is based on instance graphs13, which are typed over a type graph14,
to represent the relation between concept and occurrences. In addition to
that, rules and transformations are necessary for the recognition and graph
rewriting process [22]. Further reading about graph grammars and even
more complex notations can be found in [23, 24].

The underlying structure is a derivation graph. Derivations in graph gram-
mars are not necessarily unambiguous which makes the recognition and pro-
cessing part rather complex and hard to handle e�ciently. On the contrary,
graph grammars are very expressive and represent type-1 grammars.

UML pro�ling is a so called lightweight extension mechanism to customize UML
models [25, 26, 27].

A pro�le is a collection of elements, like stereotypes, which can be applied to
speci�c model elements like classes. Generally, UML pro�les represent issues
of a speci�c domain, and they can be used to address issues that cannot be
represented with common UML elements.

The UML speci�cation provides the concrete syntax and the abstract syntax
mapping to create a pro�le [28, 29]. The language engineer creates an
abstract syntax model with its own classes and associations. Furthermore,
semantics are unde�ned and need to be speci�ed.

11The �rst character is the abbreviation for 'gets parsed from left to right'. The second
character means 'constructing a left respectively right most derivation'.

12In the context of this work it would be more correct to call them attribute rules.
13Which could be represented by object diagrams.
14Which could be represented by a class diagram.
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Metamodeling is the process of de�ning models which de�ne models. In the
context of this work the common interpretation of a model is an abstraction
of the real world15. More precisely: "A model is a combination of a type
graph and a set of constraints of various types."[9]
Thus, metamodeling is a graph based approach and its underlying structure
is a graph.

Metamodels are generally illustrated by class diagrams. While the represen-
tation and the structure does not di�er signi�cantly from graph grammars,
metamodels are less complex and more intelligible [30].

Usually a metamodel is a model of the abstract syntax. The abstract syntax
of UML, for example, is de�ned by metamodels. Further details of the
relevance of metamodels for model-driven software development and model-
driven architecture can be found in [31, 32, 33, 27].

Compared to context-free grammars, metamodels are more expressive. That
means by implication that it is possible to transform a context-free grammar
into a metamodel [34].

1.6.2 Abstract syntax

In the subject of linguistics the abstract syntax is the hidden, underlying, unifying
structure [17]. E.g., the sentences "the state machine extension references gcore"
and "gcore is referenced by the state machine extension" render the same fact
with di�erent concrete representations. Yet the abstract syntax is the same. This
applies also to UML diagrams and their XMI serialization [9].

The abstract syntax is fundamental for languages with more than one con-
crete representation for a linguistic utterance. It is the in-memory representation,
in which the concrete representation gets transformed in, to process it further.
Therefore, rendering the abstract syntax as the intermediator between concrete
syntax and semantical interpretation.

The abstract syntax is the representation of internal concepts. In other words,
it is a concept model consisting of the meaning of concepts and their relation-
ships. With its features, the abstract syntax should be considered as input of the
transformation process.

1.6.3 Concrete syntax

The concrete syntax is the actual interface of the language for the language user.
It consists of an alphabet and transformation rules to form the derivation tree.
Additionally, it can include abstraction rules for concrete elements with no ab-
stract counterpart, and binding rules for concrete elements representing the same
abstract element. Tools represent models or programs to interact with. Textual
languages need a recognition process, like scanning and parsing, to derive the
abstract form [6].

15The term model is derived from the Latin word 'modulus' which means standard.
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Visual languages, especially modeling languages like UML, are projected by the
tool16. A projected view and projected editing provides almost direct access to the
abstract representation. The consequence is a separate data format and restricted
interactivity. A free format editor, like emacs17 or Visual Studio18, accepts any
input, and allows the language user to save invalid language instances.

A structure editor, like Papyrus19 or MagicDraw, prohibits this20. Once the
language user got used to projected editing, this aspect renders obsolete.

The main purpose of the concrete syntax and its tool for representation is the
part as an interaction device. Thus, it should especially be designed for humans
with respect to the content of section 1.5 on page 3 [9].

1.6.4 Semantics

The synopsis of syntax is rendered by the following quotation: "...everything on
paper or the screen is a syntactic representation. This is also true of the machine's
internal representation, the so-called abstract syntax or metamodel."[35]

The syntax is an in�nite set of legal elements. But it requires semantics to
understand and thus process these elements. The meaning of the elements is the
semantic domain. "... it [the semantic domain] serves as an abstraction of reality,
capturing decisions about the kinds of things the language should express."[35]

The mediator of syntax and semantic domain is the semantic mapping. It as-
sociates syntactic elements with its speci�c meaning. To understand the meaning
of meaning it is best to refer to the linguistic concept of the meaning triangle [36].

The meaning triangle consists of the components concept, linguistic symbol
and real world. A linguistic symbol, like a book, is associated to a real world copy
of 'War and Peace' and vice versa through a mental concept of the person. Figure
1.1 on the following page illustrates the example. Those concepts are based on
each other to understand the world, and they represent the unique knowledge of a
person. Thus, semantics are subjective and render the process of communication
rather di�cult.

16Additional research has been done to recognize raster graphics but this is out of scope of
this thesis.

17http://www.gnu.org/software/emacs/
18http://www.microsoft.com/visualstudio
19http://www.eclipse.org/papyrus/
20Depending on the interaction the tool spoon-feeds the user, limiting his creativity, on the

contrary the tool guides and supports the user to avoid adverse consequences.

8

http://www.gnu.org/software/emacs/
http://www.microsoft.com/visualstudio
http://www.eclipse.org/papyrus/


Figure 1.1: A possible meaning triangle of the concept book. The picture of the
book is from http://en.wikipedia.org/wiki/War_and_Peace/.

E.g., a computer scientist would have a computer error in mind when someone
raises the subject of a bug. Then again, a biologist would associate it with an
insect. Thus, this issue requires a semantic description: "A description of the
semantics of a language L is a means to communicate a subjective understanding
of the linguistic utterances of L to another person or persons."[9]

The semantic description targets the audience of the language and not the
computer because a computer cannot construct own mental concepts. The se-
mantic description contains the semantic mapping and the semantic domain. E.g.,
the semantic description of the UML is informal and consists of semantic variation
points. Thus, it is ambiguous and renders proper processing impossible. Hence, it
is necessary to create a formal semantic description.

The semantic domain can be expressed by formal languages like logic, alge-
braic speci�cation languages or standard mathematics. According to [35, 9], the
semantic mapping can be expressed by:

Denotational semantics Based on pure mathematical notation, this approach
represents a rather complex form to describe the semantic mapping.

Pragmatic semantics Based on speci�c examples, this approach is simple but
less formal because it uses a reference implementation. The examples are
the input of the execution process. By comparing the output to the input it
is possible to deduce the behavior and thus the semantics.

Translational semantics Based on another language known to the audience, this
approach is also known in linguistics. To learn a new language, humans
reference the linguistic utterance of their known language of a concept to
the unknown linguistic utterance by translation. The concept of soup, for
example, is known as 'Suppe' in German and 'polévka' in Czech.

Translational semantics reuse the semantic mapping of the known language.
Consequently, the target language needs equivalent constructs for the con-
cepts. Especially in computer sciences, this problem is nontrivial. Even gen-
eral purpose languages, like C and Java, are hard to translate interchangeable
because their programming concepts di�er signi�cantly.
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In computer sciences translational semantics are represented by transforma-
tions21. They will be used in a bootstrapping fashion if the direct translation
renders too complex.

Operational semantics While translational semantics are based on a known lan-
guage, operational semantics render the concept itself, next to the semantic
mapping. It is like explaining an issue as a sequence in real life. To formalize
such a sequence, a chronology of snapshots is sophisticated. The formal
representation is a state transition system, using graph transformations as
realization.

1.7 Principles of language transformation

The most fundamental and best-known model of computer sciences is the Input-
Process-Output model22 to grasp the big picture of software or hardware. Even
language transformation, as well as so called language applications like compilers,
can be explained by this model. The input is an instance of the source language
that gets processed. If that performs �awlessly, an instance of the target language
will be the output.

In the context of language processing, it is also known as a multistage pipeline
illustrated in �gure 1.2. It is called multistage because it consists of several phases,
and it is a pipeline because these phases will be executed in a prede�ned order.
The consequence of using discrete phases is replaceability and reuseability. E.g.,
the �rst C++ compiler reused the pipeline of the C compiler. Once the C++ source
code has been transformed into valid C, it reused the transformation into machine
code.

Figure 1.2: The multistage pipeline of a language application from [7]. IR is the
abbreviation for intermediate representation, further called intermediate form.

21E.g., model transformations, graph transformations, compilation or generation.
22Or the Input-Process-Output+Storage model.
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Categories of language applications

To distinguish between the executable elements of the pipeline, it is useful to
categorize them according to [6, 7]:

Reader Recognizes the input data and builds an internal data structure. The
reader component is also known as frontend.

Generator Walks the internal data structure and emits the output data. The
generator is also known as backend.

Translator Is the combination of Reader and Generator. It reads input and emits
output in the same or in di�erent languages. If the result is in the same
language, it is also called a rewriter.

Interpreter Is like a program that executes other programs. To do this it reads,
decodes and executes instructions. E.g., the JVM is a byte code interpreter.

The common processes of the pipeline are categorized as follows, according to
[7, 6]:

Parsing also known as Recognizing, is associated with the reader component. The
process analyzes the input to check if it is a linguistic utterance of the source
language. Thus, it checks if the input is a valid instance of a concrete syntax
of the language, to pass it to the component that executes the syntactic
mapping. Especially for textual notations applies, that for a language, the
respective automaton can be used to check if a linguistic utterance belongs
to the language.

The automaton can be derived from the grammar, thus the parser itself can
be derived from the grammar23. Based on the underlying approach, it can
be necessary to separate the word recognition process, called scanning, from
the phrase recognition process called parsing [37].

Intermediate form construction If the parsing was successful, the process would
enter the next stage to construct an intermediate form. Simple transfor-
mations waive an intermediate form. The consequence is a less complex
algorithm with inferior scalability.

The intermediate form directly interrelates with the abstract syntax. Based
on the underlying language speci�cation, the intermediate form can be a tree
or a graph. Because common language processing is based on trees, and a
tree is always a graph, the word tree will further be synonymously used as
the intermediate form.

Next to the recognition process of the parser, the parser creates a so called
parse tree representing a recording of the parse process. To operate more
e�ciently with the tree, it will be transformed to an abstract syntax tree.

23So called parser generators or compiler compiler, like antlr (see http://www.antlr.org) or
yacc (see http://dinosaur.compilertools.net/), generate a parser from a speci�c grammar.
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The features of an abstract syntax tree are density, convenience and expres-
sivity. It contains no unnecessary nodes, is easy to walk, and emphasizes
operators, operands and relationships between them [19].

Semantic analysis After building the abstract syntax tree, the next stage is op-
erating on it. This requires an algorithm to visit all elements. It can be
a tree walker that is a set of recursive functions, a tree visitor that is an
implementation of the visitor pattern [12], a tree grammar that is a speci�c
grammar to generate a tree visitor, or a tree pattern matcher that is a kind
of tree walker that triggers actions if it encounters speci�c patterns.

Those visitors can be adjusted to rewrite the tree to change its structure24.

Interpreting can be split into two scopes. One is based on the created structures
of previous stages. The other one is based on byte code instructions to gain
higher e�ciency. A byte code interpreter simulates a computer consisting
of memory, CPU and registers.

Interpreting is an alternative to translating, but the processes can also com-
plement each other. The consequence of interpreting is the runtime over-
head with signi�cant debugging support and fault tolerance.

Translating names the process of mapping input constructs to output constructs.
A well known approach in linguistics is a literal translation. It replaces input
symbols with output symbols without referencing the concept. The German
phrase "Ich verstehe nur Bahnhof" could be mapped to "I only understand
train station". But the correct translation, regarding the concept25 of the
phrase would be "It is all double dutch to me". Using an intermediate form
evades this aspect.

Translation approaches divide into di�erent scopes based on the granularity
or even absence of the intermediate form. Syntax-directed translation emits
immediate output from speci�c actions embedded into a grammar or parser.
It processes the input in one pass. Therefore, it cannot perform sophisticated
translations like the creation of forward references. The consequence is a
less e�cient translator that is easy to create and understand.

In contrast exists the rule based translation. It requires translation rules and a
rule engine. Like pattern matching, it requires only rules for input constructs
relevant in the translation process. Because the rule engine knows what to
do based on the translation rules, it is very expressive and formal. Thus, it
is able to perform the translation automatically. On the downside, the rule
engine operates as black box, making it hard to comprehend what happens.
Moreover, the translation process slows down signi�cantly, the more rules
are speci�ed.

Next to that, the model-driven translation is the common translation ap-
proach. It focuses on the intermediate form. Depending on the complexity

24Furthermore, based on the visitors it is possible to identify and track symbols to create a
symbol table and thus emulate an abstract syntax graph. Another option is the enforcement of
static typing rules.

25As well as cultural aspects.
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of the translator, it executes various task with multiple passes over the model
before entering the generating stage. The simplest form creates an inter-
mediate form to walk and emit output via print statements. The di�erence
to the syntax-directed translation is walking the model instead of parsing a
stream. The approach is highly scalable. Because once the model is cre-
ated, it is possible to annotate, rewrite, or restructure it with interchangeable
components. Based on the target language simple print statements could
be insu�cient. It requires to create output objects and structure them into
an output model.

Collecting the output objects can be done output- or input-driven. The
output-driven approach traverses the input model for each speci�c task,
thus the output order dictates the translation process. The consequence is,
walking the intermediate form frequently with an already correctly structured
output model. The alternative is the input-driven approach that decouples
the input from the output order at the cost of collecting output pieces.
Consequently, the overhead of managing and collecting rises, the number of
traversals falls, and the result is a less coupled structure for further process-
ing.

Generating is the process of producing something. Depending on the domain, it
can be power, a sentence, or a curve for example. In the context of this work,
it is a linguistic utterance of a formally speci�ed language. In the general
context of generating software, it could be any software artifact. Usually,
the generator is included in the translator, yet the generating approaches
can di�er signi�cantly.

A so called code generator omits structured text from the output objects
of the output model. Those objects can be strings, templates, or custom
objects consisting of a string representation. Custom objects require a higher
creation and annotation, or �lling e�ort. Plain strings are easy to handle
but in�exible. Templates are today's common approach to get the bene�ts
of both worlds. Templates are like strings with speci�c holes to �ll.

1.8 Characteristics of language transformation

The aforementioned section re�ects the general multistage pipeline. If the pre-
requisites are satis�ed, the translation stage will apply translational semantics as
semantic mapping because semantics and code generators are alike. The default
is the translation of a higher abstract language into a lower abstract language.

Another common transformation is the in-place transformation that does not
change the language but rewrites the language instance. Thus, the transformation
is semantic-driven. Providing multiple semantics would make the expected behav-
ior of the transformation ambiguous. E.g., an informal language documentation
of Java and the Java compiler are two semantics. Ideally, both are synchronous.
But, what if a Java program does not work as expected? If the documentation
is correct, the compiler may be buggy. If the compiler is correct, the documenta-
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tion may be erroneous. De�ning a leading semantic prevents such ambiguity and
possible misunderstanding.

Changes in the source or target language require changes in the semantic
mapping and thus changes in the code generator. If one or more involved languages
are tailor-made, designing the code generator for adaptability will be crucial and
should be considered right from the start.

In the context of model-driven software development, the model transformation
is a key role. A code generator is a model to text transformation, as a special form
of model transformations. A main application of model transformations is bridging
the abstraction gap from more abstract instances or so called platform independent
models to more concrete instances or so called platform speci�c models.

Creating a new model out of another one, as well as rewriting the model is
a model to model transformation. The concrete representation of a model can
be text too. Thus, the di�erence between a model transformation and a code
generator, as well as the di�erence between an instance of a modeling language,
like UML, and an instance of a programming language ,like C++, is just virtual [9].
Because of the di�erent strategies, model transformations are categorized by their
features according to [38]:

Speci�cation Some transformations provide additional syntax elements for rela-
tions or conditions, like OCL for UML [28].

Transformation rule Represents the smallest unit of transformation and can be
a tree rewriting rule, an implemented function, or a template for example. It
consists of a count of domains, depending on how many source and target
domains are involved. Usually, only one target and one source domain are
concerned, but model weaving for example involves more than two domains.

Some rules require a separate syntax for target and source (e.g., a graph
transformation). The opposite would be a rule implemented as Java function
for example. Additionally, the rules could be parametrized, provide condi-
tions, or even support re�ections as well as aspects. As already mentioned
in 1.7 on page 11, transformations can be based on intermediate forms,
and especially relational approaches provide multidirection, meaning that
the transformation could be executed vice versa.

Rule application control This feature contains the kind of location determination
and the scheduling. Strategies to apply rules to a speci�c location can
be deterministic, non-determenistic or interactive. The scheduling can be
implicit or explicit, and consist of a selection strategy, potential phases and
an iteration strategy like recursion or looping.

Rule organization The organizational aspect is relevant for reuse and adaptabil-
ity. The transformation could provide a modularity and a reuse mechanism
like inheritance or composition. Additionally, a domain could dictate the
structure of the rules.

Source-Target relationship This feature determines if a new artifact needs to be
created or if the existing one can be updated.
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Incrementality Embraces the possibility of executing rules in an incremental way,
depending on the changes in the target or the source. Some transforma-
tions provide the possibility to preserve user edited parts of the target (e.g.,
protected regions or empty subclasses).

Directionality Asserts uni- or multidirectionality which is directly dependent on
the directionality of the transformation rule, as well as the scheduling logic.
Especially synchronization requires multidirectionality.

Tracing Supports debugging and impact analysis. It could enable tracking of
model synchronization. It could be plain logging to reconstruct the execu-
tion, or an interpreter functionality. It is based on so called traceability links
that connect source and target elements. The creation of the links could be
done manually or automatically with additional options to adjust them.

The major categories are, as already mentioned, split into model to text and
model to model transformations. The simplest model to text approach is based on
print statements. An alternative is based on the visitor pattern [12]. A far more
superior approach is template based, supported by most of today's model-driven
architecture tools. Those templates are target code enriched with meta code to
�ll in speci�c information of the source model.

Using a domain speci�c language (for details see 1.10 on page 18) supports the
developer signi�cantly in designing those templates because usually general pur-
pose languages do not provide sophisticated string processing mechanisms. Tem-
plates resemble the generated code and are independent from the target language.
Thus, templates can be created for any target language with the consequence of
creating possible incorrect code fragments, and if not supported by a type sys-
tem, no typing at all. Model to model transformations are divided in the following
approaches according to [39]:

Direct manipulation Based on an internal representation and an API, the trans-
formation rules target directly this representation. It is the least abstract
approach because each rule, as well as the scheduling and tracing for ex-
ample, has to be implemented. Using libraries and frameworks justi�es this
approach after all.

Structure driven This approach creates a structure based on the target model
and subsequently annotates it with additional information like references.
After this two phased sequence, the user de�ned rules are applied based
on the framework determined scheduling. The approach aims for targets
containing one to one or one to many references like database schemas.

Operational This approach is similar to direct manipulation, but it extends the
metamodeling mechanism mentioned in 1.6.1 on page 6. E.g., QVT Oper-
ations add additional mappings to the transformation by OCL expressions
[40].

Template based Similar to the model to text approach, a model template re-
sembles the target consisting of the model and embedded metacode, like
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stereotypes or OCL expressions. Consequently the transformation is easier
to understand.

Relational Based on the mathematical concept of relations, this approach speci-
�es the relations between source and target with constraints in a declarative
manner. Some approaches use logic programming to implement the rela-
tional approach. The transformations are side e�ect free and thus support
multidirectionality. Consequently, the performance is directly related to the
constraints. The syntax requires mathematical comprehension.

Graph transformation based Graph transformations (for details see 1.8 on page
16) seem to be the obvious choice to realize model transformations because
models and metamodels are like instance graphs and type graphs that are
just formal representations of class models. The fundamentals of graph
transformations are illustrated in [24, 22, 23].

The transformations are de�ned in source and target graph patterns, with
additional conditions in the source graph to add logic. The scheduling can
be modeled with state machines. Multidirectionality can be simulated using
triple graph grammars. The disadvantages of graph transformations are the
di�culty to use correlating the complexity to create and understand a graph
transformation, the non-determinism, and possible inferior performance [30].

Hybrid Hybrid approaches combine aforementioned approaches on di�erent levels
of granularity.

Graph transformations

Graph transformations are based on models as representation of reality. The
underlying data structure is the graph [3].

A graph is just a formal model for entities represented as vertices and their
relationships represented as edges. Hence, it can be processed by computers.
A general bottom up approach uses snapshots and scenarios to derive rules and
concepts. Graphs, like models in UML, can represent those snapshots as well as
concepts and rules.
A snapshot is represented by an instance graph, similar to an object diagram. A
concept is the generalization of snapshots. It is represented as type graph, similar
to a class diagram. If an instance graph can be typed over a type graph, it is a
valid instance of the type graph.

Rules are extracted from transformation scenarios and represent generalized
behavior. A rule consist of a left hand side, representing the precondition, and
a right hand side representing the postcondition. Both sides are instance graphs
typed over a type graph and whose structure is compatible. Next to generalization,
rules can have a constructive meaning. But adding or removing elements requires
additional logic to ensure the correctness of the graph. Removing a vertex could
lead to a dangling edge, resulting in an invalid graph.

A solution could be to enforce the deletion of the edges of a vertex that is going
to be removed. Because of the non-determinism, the result can be unexpected
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and surprising. Adding additional concepts and thus additional complexity, evades
the dangling edge problem. E.g., using constraints expressed in �rst order logic to
express forbidden subgraphs. The application of multi-objects, known from object
diagrams, could address collections of nodes with their responsible connections.
Adding additional conditions to the rules adds more granularity and thus more
control to the rule application (see [22, 24] for more details).

[41] illustrates and compares di�erent graph transformations to transform UML
models and opposes the results with QVT.

1.9 Language composition

A variety of transformations transform one source language instance in a less ab-
stract target language instance. As mentioned in 1.8 on page 13, more than
two languages could participate in a transformation. The consequence of using
multiple software fragments is better version control, increased understandability,
and reuseability regarding the single responsibility principle at the cost of refer-
encing. Especially working with multiple developers in a software project, sharing
one model as single point of truth, could result in a management disaster be-
cause of proprietary data formats, rendering the merge process impossible. Yet
using multiple linguistic utterances to represent the source of information, requires
referencing or linking.

Referencing can either be done by address respectively position, or by name
respectively identi�er. Using the address results in tight coupling but no name
resolution overhead. Referencing by identi�er should be the favored approach
because of the bene�t of loose coupling. Referencing a language component is
like a use dependency known from UML, indicating that one model element requires
another. It renders the referenced model element passive because it only provides
its service. It renders the opposite site active because it needs the service to ful�ll
its duty.

Extending a language by language composition renders the active elements as
additional language aspects from another domain, using the passive elements pro-
vided by the core language to partition the responsibilities, as depicted in 1.11 on
page 19. The object oriented approach uses associations to represent references.
Calling operations of associated objects requires access. A well designed class
provides only access to public elements of itself to other classes. Thus, it hides its
implementation. Using this information hiding principle in language composition,
renders the referencing process easier for the language engineer. First of all, the
innards of a language can change but the referencing elements should still work.
In the second place, accessing only provided elements results in lesser coupling and
a more scalable and �exible architecture.

The interface mechanism of object oriented design is an excellent implementa-
tion of information hiding because it separates the implementation from the sig-
nature or speci�cation. The same applies for a language interface. The simplest
language interface would be the abstract syntax model26 of a language. Because

26A model representing the concepts of a language and their relationships to each other.
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this does not hide anything it requires further re�nement to control access to
speci�c elements. An alternative would be a model and a transformation of the
abstract syntax of the source language to a new model to simplify the provided
information.

Known from design by contract, the o�ering side ful�lls a contract and the
consuming or required side requires a contract. The o�ering side can be considered
as the passive language while the consuming side is an active language. E.g.,
OCL could be considered an active language, referencing parts of UML which is
the passive language. Because OCL references only a small part of UML, each
language providing this part could be used as passive language. It results in a
language composition consisting of OCL and the provided language core.

The consequence of language composition is not only the loosened coupling
but also the overhead of handling the references correctly. Thus, the IDE should
check and resolve references in general and especially in case of changes. More
details about language composition can be found in [9].

1.10 Domain Speci�c Languages

In linguistics each language is able to express all possible concerns in itself. While
some languages require more e�ort to represent an aspect than others, they could
be considered general purpose. But a physicist explaining the concepts of quantum
mechanics to a doctor of literature, seems to be a physical impossibility even
though they are speaking the same language.

In general it can be considered as a signi�cant di�erence in the semantics, thus
resulting in a problem of understanding. Two physicist talking about the same
matter could understand each other, but because each semantics is subjective, it
could result in a di�erent understanding. Talking about an issue requires similar
knowledge and terminology. Thus, the used language is a subset of the general
purpose language. It consists only of elements necessary for this domain27. Such
a domain speci�c language evolves from the people using it and the concepts it
consists of. While linguistics do not consider these language subsets, computer
scientist use this concept to provide a customized language for speci�c purposes.

Therefore, DSLs are highly specialized and problem oriented. Next to the
characteristics of a language mentioned in 1.5 on page 3, they have additional
categories28 according to [9, 14, 11, 44]:

Audience or target domain The audience of a DSL is important because the hole
purpose of the DSL is to support the user in expressing his will e�ectively
and e�cient. The audience are domain experts or domain users. It is crucial
to re�ect as much of the domain and the terminology as possible but with
limited expressiveness. That means it should not be possible to express

27The developers of UML de�ned domain as follows: "Domain: An area of knowledge or
activity characterized by a set of concepts and terminology understood by practitioners in that
area."[42]

28A more detailed list of desired properties can be found in [43].
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something of another domain, but it should be expressive enough to make
its intention clear to a user without programming skills for example. The
notation needs to be tailored to �t the domain and should be developed in
cooperation with the user.

Direction or source : DSLs can be classi�ed as horizontal, also known as tech-
nical oriented, and vertical also known as business oriented. A horizontal
DSL consists of technical characteristics shared by a group of applications.
Frameworks and libraries are common implementations of horizontal DSLs.
It is called horizontal because the contained concepts are all on the same
abstraction layer. Because the domain knowledge is already known, it just
needs to get formalized.

A vertical DSL is tailored to a business domain. It requires to mine the
knowledge of the domain expert to create a domain model [45]. Based on
this model the formal speci�cation and tooling can be derived. It is called
vertical because it references concepts on di�erent abstraction layers. Yet
it could be based on a horizontal DSL.

Classi�cation : DSLs get classi�ed by the way they are implemented in. So called
internal DSLs are implemented in an existing language. Using such a host
language renders them as embedded languages (see [43] for more details
about implementation variants and their associated consequences).

Like the UML pro�ling mechanism, the language reuses elements of the host
language. This makes it easy to create such a DSL. It delegates parsing
and the like to the host language. Consequently, using an improper host
language renders the DSL less e�ective because it is directly bound to the
host language and its speci�cation.

External DSLs on the other hand are developed ground-up. The implemen-
tation is rather complex, but it does not need to have the complexities of
a full-blown language. It is arguable to add non-textual DSLs to the clas-
si�cation because it concerns only the noti�cation discussed in 1.5 on page
3. Detailed information about the classi�cation of DSLs can be found in
[14, 11].

1.11 Language oriented programming

Language oriented programming tries to unite established software development
concepts to gain their bene�ts [46]. Using a GPL to develop programs is a tradi-
tional software development approach. A GPL provides various language features
and is Turing complete. Focusing di�erent paradigms, a GPL can be imperative,
object oriented, functional, declarative or even a combination of those paradigms.
Most GPLs (e.g., Java) are hard to customize. Using frameworks and libraries
supports the developer in writing more customized code, but the formal language
speci�cation will not be edited.

Combining Java with AspectJ29 for example, adds aspect orientation to the
29http://www.eclipse.org/aspectj/

19

http://www.eclipse.org/aspectj/


object oriented Java world at the cost of additional overhead. The runtime and
compile time overhead can be compensated, but the additional AspectJ code adds
more complexity to the source code. The developer needs to understand two
languages in addition to their special interaction. While adding language features
to a GPL is supported by inheritance, template mechanisms, composition, and
modularization, it is not possible to remove functionality that will not be used by
the developer in a speci�c project.

The main purpose of programming is to represent the developers mental model
of the software as a linguistic utterance of the target programming language be-
cause: "A program is any precisely de�ned model of a solution to some problem
in some domain, expressed using domain concepts..."[47].

Using a GPL delays this transformation process because the concepts di�er
signi�cantly, since the GPL is too verbose and not tailored to the problem domain.
Understanding and maintaining the resulting source code considers the same as-
pect vice versa. The developer needs to understand the source code and transform
it back to a mental model. Using libraries and frameworks simpli�e this process at
the cost of learning and using an additional chunk of software.

Language oriented programming tackles the problem of the divergence between
mental model and target language instance. A language consisting of the same
concepts as the problem domain simpli�es the transformation process. Tailor-
made editors, to represent the linguistic utterance from di�erent viewing angles,
support developers to understand the ideas behind the source code. Thus, lan-
guage oriented programming is a paradigm to provide the developer with one or
more tailored languages and the respective tooling. In addition to that, language
oriented programming provides a process of creating such a language and the
tooling.

A common approach to create a language based on language oriented pro-
gramming uses a domain model. A domain model can be deduced by domain
driven design [45]. Thus, a language is designed object oriented and encapsulates
one domain. Interweaving these languages in an aspect oriented fashion results in
a composed language with de�nite concerns (see 1.9 on page 17). Usually one
language represents the minimal core, providing interfaces to other languages. [45]
de�nes the shared kernel pattern or, if a more pragmatic approach is necessary,
the conformist pattern to design such an approach.

This modularization concept is similar to the pro�ling mechanism of the UML
as well as the classical library or framework approach. Yet each language provides
its own syntax, editor support, type system and transformation engine. Based
on the design of the core language, the referencing language modules could be
reused within other languages and imported as needed. Thus, keeping the actual
language dense and problem speci�c, but �exible and expressive. More information
can be found in [48, 13].

Language oriented programming can either be done projectional or parser
based. The projectional approach renders the creation of editors simpler because
of the underlying structure that is dictated by the editor.
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1.11.1 Language modularization

As already coined in section 1.11 on page 19: "A modular language consists of a
minimal language core, plus a library of language modules that can be imported and
used in a program as needed based on the task at hand.[...] A language module is
a little bit like a traditional framework or library, but it comes with its own syntax,
IDE support, type system, and compiler or transformation engine."[48]

Present-day tools for language oriented programming, like MetaEdit+30, Inten-
tional Domain Workbench31, Meta Programming System32 and Xtext33, aim for
this modularization on di�erent kind of levels and with di�erent implementations,
and their respective consequences.

First of all the editor can be projectional or parser based. A parser based
approach requires parseable code and the projectional approach a speci�c format
that is in general not parseable or human readable. Thus, both approaches could
only communicate by a standardized exchange format. To create a representa-
tion in the target language the internal model needs a transformation engine and
additional transformations. If the target language is textual like Java or C++, the
projectional approach requires an additional model to text transformation because
the models cannot be fed directly into the compiler or interpreter. More details
can be found in [13].

Most language extension mechanisms use inheritance and thus adapt the Liskov
substitution principle. A language extending another one is able to process linguis-
tic utterances of the extended language. This could also mean to restrict the
language concerning the base language. While Xtext provides single inheritance,
MPS is less restrictive and thus renders the process of language extension easier
and more e�cient. Inheritance can also be applied to the generator or transforma-
tion engine to customize the transformation. Language composition can be done
by adapters or facets [12].

Similar to the language interface approach from section 1.9 on page 17, the
adaptor gets injected and thus a comfortable editing experience is provided to the
user. Combining languages in this way or by cross references, will render itself
useful if each concern was implemented as separate language. In contrast to
reuse, language combination is less restrictive because designing a language for
reuse restricts the language signi�cantly. The language being reused is often a
core language as mentioned in section 1.11 on page 19.

Embedding languages, like the concept of internal DSLs known from section
1.10 on page 18, provides a mechanism to combine completely independent lan-
guages (e.g., SQL embedded into a real estate DSL). The obvious consequence
is adding more concepts than required and a possible interaction overhead with
almost no e�ort. Furthermore, embedding languages with features like multiple
inheritance within a target language like Java could lead to unde�ned behavior or
surprising results.

30http://www.metacase.com/
31http://www.intentsoft.com/
32http://www.jetbrains.com/mps/
33http://www.eclipse.org/Xtext/
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Language annotation is a less intrusive extension mechanism. Like using stereo-
types in UML or annotations in Java, the annotated artifact gets enriched by meta-
data, that can be interpreted by transformations or tools34. Those annotations
render useful for documentation, tracing and variability. See [50] for more details.

The modularization of languages by concerns or concepts require additional
hooks. Known from aspect oriented programming, an advice de�nes the behavior.
An advice relationship in language modularization could represent the behavior of
executing additional rules before or after the extended part, or they could even
override it. The join points and pointcuts are de�ned by the modularization im-
plementation. More details can be found in [48, 51].

Yet the aspect language needs to be speci�c to the particular language, thus
it requires a language speci�c aspect weaver [52].
Embedded software development bene�ts signi�cantly from language modular-
ization and language oriented programming because the integration and tooling
problems required by modeling fade from the spotlight. Especially product line
engineering (see the following section 1.11.2) combined with language annotation
promotes the development of embedded systems.

1.11.2 Product line engineering and language modularization

Product line engineering or product family engineering is a concept to simplify the
software development and deployment process of so called product families. The
process to derive a software product line is divided into two phases. The �rst
phase is called domain engineering to analyze and de�ne the domain. It speci�es
the features of the product family and their relationships35.

Product line engineering separates the problem space, respectively the problem
domain, from the solution space respectively solution domain. "The former is
concerned with end-user understandable concepts while the latter deals with the
implementation of the product features using software technologies."[53]

Subsequently follows the product engineering to derive �nal products, similar
to the application engineering of generative programming discussed in section 1.12
on page 25 as well as in [54]. Thus, product line engineering is about the vari-
ability of products of a product family. "In traditional SPLE [Software Product
Line Engineering] approaches, variability is mainly handled using either mechanisms
provided by the implementation language, such as patterns, frameworks, polymor-
phism, re�ection, and pre-compilers or using con�guration and build tools to set
compile time variables and select variants of assets"[53].

The structural variability can be represented by a creative construction DSL
often used in the solution domain. Non-structural variability is represented by a
con�guration DSL often used in the problem domain. The feature model de�ned

34A similar approach is described in [49], resulting in cascading model-driven software devel-
opment.

35Domain driven design from [45], describes the creation of domain models to represent the
problem domain containing the terminology and the relationships of the elements. It yields a
similar representation to create a ubiquitous language.
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in [54] provides a graphical notation to express con�gurable variability36. Figure
1.4 on page 27 shows an example of an abstract feature diagram.

Variability can be expressed either positive or negative. Negative variability
removes parts from the creative construction model based on the con�guration
models. Positive variability starts with a minimal core and adds additional compo-
nents using aspect weaving for example [53].

In addition to manage variability, product line engineering provides a mapping
from problem to solution space. Using the modularization approach from section
1.11.1 on page 21 to create a language, enables such a mapping e�ectively. Lan-
guage annotations can be used to represent features of the software component
and thus enables feature modeling. A language workbench, like MPS, enables
the language engineer to create a thorough software product line. It enables the
developer to de�ne a language, the editors and the transformation rules. It does
also provide the possibility of language modularization and composition. Hence, it
provides a simpli�ed approach of product line engineering.

The transformations are piped in the kind explained in the section 1.7 on page
11 and require multiple transformation steps to create target code. Enriching the
software components with features by language annotation is a positive variability.
It requires a transformation in an aspect oriented manner because it weaves aspects
to the result dependent on the particular models.

Bootstrapping language workbenches and language oriented programming en-
ables the creation of meta-product lines37 and software factories. Software fac-
tories combine component based development (see [49, 55] for more details),
model-driven development and software product lines to create an integrated soft-
ware development and deployment process.

Modern application development is supported by tools using abstraction and
best practices. Software factories use the term domain speci�c assets to address
this. Domain speci�c assets are used to complete domain speci�c tasks and thus
mixing product line engineering and product development. Model-driven develop-
ment uses UML to represent linguistic utterances. It is based on object oriented
analysis and design to create the models. Using this approach, incorrectly as-
sumes that the structure of the solution will match the structure of the problem
as depicted in [56].

Thus, the primary use of UML is the visual representation of classes and their
relationships to each other because UML is bound to object oriented concepts.
Model-driven development processes the information of the models to automate
the development tasks. It promises platform speci�c implementations similar to
bytecode languages used by C# or Java. A lot of CASE tools, targeting model-
driven development, propose a top-down process, thus forestalling rapid iteration.
Roundtrip engineering tackles this problem at the cost of adding complexity to
the model and thus rendering the modeling obsolete after one generation process.
The main problem of model-driven development is the synchronization and resyn-
chronisation of model and code base and thus the bridging problem between model

36In terms of the OMG the feature model would be the meta model and a concrete con�gu-
ration would be the model [53].

37Product lines of a product line architecture. See [53] for more information.
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and implementation.

Raising the abstraction layer by using an intermediate framework to address
the problem domain targets the problem and results in domain speci�c models.
An alternative to the framework could be a pattern language to implement the
abstraction. Addressing the domain speci�c models with a DSL leads to various
abstraction layers on top of each other and progressive transformations. Similar
to feature models, a categorization and ordering is necessary to con�gure the
approach in a deterministic and lucid way. Software factories de�ne a matrix like
�gure 1.3 of the categorization of the models.

Figure 1.3: The layered grid for categorizing models from [57].

Filling the matrix results in a so called software schema, describing a set of
speci�cations that must be developed to produce a software product. This prod-
uct represents a software template that can be loaded into an IDE to create
speci�c types of software also known as software factory for product families. The
transformations of the models are divided into horizontal, vertical and oblique.
Horizontal transformations are refactorings or delocalizations. Vertical transfor-
mations are classical re�nements. Oblique transformations combine horizontal
and vertical transformations. Delocalization is similar to language modularization
by aspects. Aspects, like logging, are de�ned and the delocalizing transformation
executes aspect weaving.

A software factory is based on abstraction, granularity and speci�city. A prob-
lem of using abstraction is that: "Powerful abstractions that encapsulate large
amount of low level code tend to address highly specialized domains."[57]

Abstraction always tended to be interpreted hierarchical like in the develop-
ment of programming languages. Software factories use granularity to represent
the amount of abstraction. Granularity is a measure of the size of software artifacts
carrying abstraction. A �aw of this approach is the limited traceability. Designing
a business component, like a service, and programming this component di�ers sig-
ni�cantly due to the di�erent abstractions. Using component based design with
regard to composition, decomposition, partitioning and interaction remedies this
de�ciency. Component based design uses separate components to structure the
resulting software. The characteristics of a component are functional isolation, de-
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�ned services and resources it provides, and de�ned services and resources required
to provide the previous one.

"A component, therefore, encapsulates its constituent features. Also
as it is a unit of deployment, a component will never be expected to
have access to the construction details of all components involved.
For a component to be composable with other components by such
a third party, it needs to be su�ciently self-contained. Also, it needs
to come with clear speci�cations of what it requires and provides. In
other words, a component needs to encapsulate its implementation and
interact with its environment by means of well-de�ned interfaces."[58]

Völter de�nes in [49] three models, with their respective metamodels and re-
lationships to each other, to specify components. A type model to describe com-
ponents as data structures. A composition model to describe a logical system
consisting of logical components referencing each other. A system model to de-
�ne the hardware and process structure to deploy the logical components on.

Speci�city is the scope of the abstraction. The more speci�c an abstraction
gets, the more it contributes to the problem domain, but the less it is useful in
other domains and vice versa.

While model-driven development and component based design are focused on
building one software product, product lines de�ne product families. Thus, it
is necessary to distinguish between the product line developer and the product
developer. The product line developer de�nes the product line scope and hence
the domain models. The assets created by the product line developer are used by
the product developer to create instances of the product family.

In the term of software factories the product line developer creates the software
schemas and the software templates to create the software factory. The product
developer is now able to use the software factory. In the context of software
factories, the factory itself is the software template loaded into the IDE, thus
making it possible to create software factories in a recursive manner. Using a
language workbench to instantiate a language speci�c editor would enhance the
process even further because of an IDE tailored to the speci�c problem domain
with the consequence of creating an additional editor.

1.12 Generative programming

"Generative Programming is a software engineering paradigm based on
modeling software system families such that, given a particular require-
ments speci�cation, a highly customized and optimized intermediate
or end-product can be automatically manufactured on demand from
elementary, reusable implementation components by means of con�g-
uration knowledge."[54]

Elements of generative programming are the problem space, the solution space
and the con�guration knowledge, to convert an instance of the problem space to
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an appropriate instance of the solution space. This is the basic principle of Prod-
uct Line Engineering as well as software factories. In general the con�guration
knowledge has a similar responsibility as a compiler. It contains rules for illegal
combinations, default settings and dependencies, as well as optimization and con-
struction knowledge. While object oriented design struggles to develop reusable
Software fragments, generative programming tackles this problem in two steps.

First of all, the design and implementation of a generative domain model is
focusing development for reuse. Secondly, it uses the generative model to produce
a concrete system. Evans describes in [45] an informal method to create a domain
model respective to the target software. Like most of the object oriented analysis
and design methods, it is aiming for a single system. Domain engineering, on the
other hand, addresses a multi system scope to deduce software for application
engineering. The �rst step of domain engineering is the domain analysis. This
phase is about collecting the domain knowledge, also known as domain scoping,
and re�ne it to a coherent domain model known as domain modeling. The resulting
domain model consists of the domain de�nition representing the scope, the domain
lexicon, the concept models and the feature models.

A concept model describes the concepts of the domain and their relations to
each other. The feature model de�nes requirements to specify the systems in
a domain. It represents the con�guration aspect of the concept models. The
feature model prescribes the possible feature combinations, hence the variability.
After the analysis phase follows the domain design to develop an architecture for
the systems and a production plan. Finally, the domain implementation proceeds
which contains the reusable components, domain-speci�c languages, generators
and so forth.

To represent a concept model it is possible to use a class diagram of the UML
to pursue the classical view. Representing a feature model requires a di�erent
syntax (i.e., the feature diagram depicted in [54]). The linchpin of this thesis is
based on feature models. The Feature-Oriented Domain Analysis method de�nes
three types of features: Mandatory, Alternative and Optional features. FODA
prescribes two types of composition rules: Requires and Mutually-exclusive with

rules. Furthermore, FODA distinguishes between various features (e.g., runtime,
compile time features). A feature can be seen as a property of a concept. It
describes the concept and displays the variation of the concept instances. Figure
1.4 on the following page shows a feature diagram of the car example from [54].
A car consists of a body, a transmission that is either automatic or manual, an
engine that could be powered by electricity, by gasoline or by both, and it could
pull a trailer.

Variable features need to be bound before use. Binding requires a site and a
mode. While the site de�nes the link, the mode de�nes the behavior (e.g., static,
changeable or dynamic binding). Feature diagrams and UML class diagrams can
be used interchangeable to represent a feature model. To implement the variabil-
ity, object oriented programming concepts, like inheritance and parametrization,
can be used. Those approaches would lead to high complexity if used for fea-
tures representing aspects, like security, because an aspect crosscuts with several
modules.
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Figure 1.4: The car example feature diagram of [54].

Applying the separation of concerns principle from [59] for the aspects should
result in understandability, adaptability, reusability and so forth. Alas, in the real
world exist dependencies, as well as overlapping of issues, which cause either re-
dundancy, due to localization, or lesser separation of concerns. To tackle the
problem of redundancy, a software could create an internal representation and
show the issues through di�erent views. Yet editing elements in such a view needs
to change the internal representation.

To derive features from concepts, two decomposition techniques are deter-
mined according to [54]:

Modular decomposition Decomposes a system into hierarchical units resulting
in high cohesion and low coupling.

Aspectual decomposition "The main idea behind aspectual decomposition is to
organize the description of a concept (e.g., a system, a domain, a com-
ponent, a function, and so on) into a set of perspectives, where each per-
spective concerns itself with a di�erent aspect and none of which is itself
su�cient to describe the entire concept"[54].

This results in various models referring the same concepts. As a conse-
quence, models reference each other which is known as crosscutting.

Both approaches complement each other and represent the natural modeling
approach.

Techniques to implement variability

Inheritance is a static compile time variability mechanism. Single inheritance is
ideal for non-simultaneous single variation points. It is also possible to represent
non-singular variation points with the consequence of multiple implementations.
Alternatively, multiple inheritance using mixins can be applied which results in more
complicated relationships. More �exible than multiple inheritance is parametrized
inheritance with the consequence of possible invalid compositions and di�ering
semantics.
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Static parametrization, like parametrized classes, implements statically bound
simultaneous dimensions. Dynamic parametrization using dynamic method bind-
ing implements dynamic binding. Dependencies between features are represented
as constraints and default dependency rules. Constraints specify valid feature
combinations and default dependency rules which de�ne default values for unspec-
i�ed parameters. To express constraints in a UML model, the OMG speci�ed the
OCL. For concrete implementations it is useful to use a con�guration system (i.e.,
a generator).

Generic programming represents an approach to realize static parametriza-
tion. The Standard Template Library represents an example of using generic pro-
gramming to provide an abstract representation of e�cient algorithms. Generic
programming correlates with generic parameters, polymorphism and parametrized
programming. "The idea of parametrized programming is to represent reusable
software as a library of parametrized components, which can be combined in a
vast number of ways."[54]

If a concept cannot be localized by generic programming or object oriented
programming, it will be necessary to use aspect-oriented programming. It de-
composes a problem into functional components and aspects which crosscut the
functional components. Subsequently, it composes the components and aspects
to gain an implementation. Aspect oriented decomposition is realized in di�erent
ways according to [54]:

Subject-oriented programming is based on di�erent subjective views on an ob-
ject to obtain a so called subject. "A subject is a collection of classes and/or
class fragments (i.e., mixins) related by inheritance and other relationship
(e.g., aggregation, association, and so on). Thus, a subject is simply a par-
tial or a complete object model."[54]
The composition is speci�ed by correspondence and combination rules.

Composition �lters add a mechanism to separate functionality from message co-
ordination to the object model by so called message �lters. The object will
be extended by an interface layer for input and output message �lters. The
�lter intercepts the message to realize before and after actions. Further-
more, the �lter realizes redirection, delegation and dynamic inheritance.

Adaptive programming separates behavior from the object structure. The be-
havior code will be written against a partial speci�cation of classes. The
partial speci�cation is called a traversal strategy. It speci�es the traversal
of a given concrete class diagram. Based on that information, methods to
pass information between classes can be generated.

Thus, it separates aspects from functional code to avoid code tangling. An
alternative would be refactoring to patterns, yet it is not su�cient for real systems.
The resulting fragments need to be composed by a so called aspect weaver. The
aspect weaver executes a weaving process similar to compilation or generation.
The aspect weaver itself can be implemented as generator and thus executes a
static process, or as interpreter and thus executes the processing at runtime. The
desired properties of the composition are minimal or even no coupling between
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aspects and components, selectable binding times and binding modes between
aspects and components, and non-invasive addition of aspects to the component.

So called join points are well de�ned points to interconnect aspects and compo-
nents. Join points can be references by name to a language construct, references
to the uses of a given construct, or references to patterns.
The binding time could be before or during runtime. The binding mode could
be static or dynamic. E.g., inlining represents static binding and virtual methods
represent dynamic binding.
Using a composition operator and de�ned hooks realizes non-invasive adaptions.
E.g., inheritance is a composition operator with respect to the deriving class. The
hooks could be represented by virtual methods.

Aspect orientation requires an abstract implementation to express aspects.
The implementation can be a library or framework, a separate language like an ex-
ternal DSL, or a language extension similar to the mechanisms from section 1.11.1
on page 21. Additionally, aspect oriented programming requires an implementation
of the weaving process to compose the aspects with linguistic utterances of the
respective component or even other aspects. Because it is yet another language
transformation, it can be realized with a transformation introduced in section 1.8
on page 13. An alternative implementation would be dynamic re�ection that re-
quires metaobjects of the target language.

Known from section 1.4 on page 2 and section 1.10 on page 18, languages
consist of an abstraction and a specialization dimension to classify them. Aspect
weaving adds an additional dimension of crosscutting. A higher level of crosscut-
ting and abstraction requires a more complex weaving transformation, or extending
the transformation pipeline similar to that of section 1.7 on page 10. More infor-
mation can be found in [54].

1.13 Synopsis

This chapter introduced the principles of generating linguistic utterances of a
target software language from one or more source languages. The concept is
based on a multistage pipeline to partition the process into well de�ned stages.
It starts with a reader component to parse the linguistic utterances of the source
languages and creates an intermediate form. Based on the intermediate form
and speci�ed transformations, the intermediate form will be traversed, annotated
and rewritten. Finally, an output model is forwarded to the generator to create
software artifacts based on the target software language. The transformations
can be categorized by their features and applied approaches. Consequently, the
applied transformations are directly related to the requirements of the language
application.

Because of the complexity of UML, it is reasonable to apply a model to model
transformation to simplify the model. Using the resulting model as core model
to enrich it with features from other models, embodies a �exible approach to
generate a concrete software system from a plethora of options. Con�guring the
weaving component by choosing a generator empowers the product developer even
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further. This approach is a simpli�ed version of product line engineering as well
as generative programming. It scatters the features to the active languages that
reference the core model. Thus, a language workbench is required to create each
language with its respective editor. Those extension languages represent positive
variability. They should be reusable and non-invasive to support model-driven soft-
ware development. Because the audience of those languages are developers, it is
su�cient to provide a textual notation and thus a parser based editor. Hence,
the languages can be speci�ed by a context free grammar. Yet UML models are
usually projected, thus the editor need to provide an export to a standardized for-
mat. Because UML is speci�ed by a metamodel, the speci�cation of an extension
language should provide a transformation to a metamodel.

The approach requires at least two di�erent language engineers. One lan-
guage engineer for the core language. It requires no concrete syntax but a dense
abstract syntax, designed for other language engineers. The semantics should be
translational and adaptable. Another language engineer provides a default trans-
formation of the core model to the target language. He needs to specify hooks
for the language extensions and a con�guration language to adapt the generation
process. Each extension language can be build by a di�erent language engineer.
He has to use the speci�ed join points but can design the language at will. He
needs to provide at least one concrete syntax and one semantic description. The
semantics should be pragmatical for the language user to simplify the con�guration
and extension process.

Each extension language should render one domain and comply the charac-
teristics of a language (simple, minimal, distilled, composable). Vertical domains
should be represented by a UML pro�le because of its pertinence of the com-
munication between domain expert and developer. Technical domains should be
represented by a non-invasive external DSL because the information is essential
for the developer and the generator. Thus, concepts are modular decomposed
by UML and each crosscutting aspect is represented by one or more extension
languages. The variability is statically bound and parametrized. Because of the
non-invasive approach, the features (and thus the product family) can be extended
anytime by the language engineer. Hence, a language engineer is also a product
line developer and the language user is a product developer.
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Chapter 2

State machines

2.1 Motivation

As mentioned in the previous chapter, it is very useful to generate linguistic utter-
ances of a less abstract language out of a more abstract and thus more expressive1

language. Yet the abstract language needs to be formal to process it by a com-
puter but usable and understandable for the audience. State transition systems
are abstract machines based on directed graphs. They are used in theoretical
computer sciences to characterize concepts of computer sciences. They are the
origin of so called state machines and �nite state automata and hence forefathers
of UML state machines.

Despite the formal origin, its syntax is easy to understand and used in various
domains like telecommunication, avionics and automotive. Especially so called
embedded real time systems, or so called reactive systems2, are represented by
state machines to predict and comprehend the behavior of those systems depending
on input from their environment. A concrete yet not standardized representation
of a light switch as state machine is shown in �gure 2.1.

Figure 2.1: A light switch represented by a state machine.

1In the sense of expressing an issue dense, simple and thus more comprehendable.
2An object is reactive when its behavior is executed in response to received events [2].
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2.2 Evolution of state machines

State transition systems consist of a tuple of a set of states, and a set of binary
relations of the states called transitions. Additionally, a state transition system can
contain a set of labels and thus a ternary relation of a set of labeled transitions.
Labels can be interpreted as expected input, conditions, trigger or actions to
perform. To represent such a state transitions system more human readable, it is
possible to use a state transition table or a directed graph.

So called �nite state machines or �nite state automata3 are similar to state
transition systems, but they constrain the sets of states and transitions to be
�nite and de�ne a start state and a set of �nal states. Finite state machines
are models of computation. They are represented by so called state-transition
diagrams. They can consume words of a regular grammar. Thus, they need a set
of terminals or a so called alphabet. Instead of a set of transitions, they require a
set of transition functions which combine states and terminals. Consuming a word
and �nishing the process in a �nal state results in the acceptance of the word.
Those �nite state machines are called acceptors because of the Boolean result.

Figure 2.2 shows the concrete representation of a state transition system, that
accepts words with an odd count of the character '1', as directed graph. The same
�nite state machine is represented by the state transition table shown in �gure
2.3 or by the formal representation shown in �gure 2.4. A �nite state machine
producing output is called transducer. Instead of �nal states, it contains a set
of output terminals and output functions which return terminals of the output
alphabet. Two well known kinds of transducers are Moore machines and Mealy
machines. The output functions of Moore machines depend only on the state. The
output functions of Mealy machines depend on the state and the input alphabet.
Thus, a Mealy machine usually contains lesser states than the respective Moore
machine. See [18, 5] for more information.

Figure 2.2: A deterministic �nite state machine represented as directed graph.

It is possible to represent a �nite state machine in a non-deterministic fashion
To reduce its states. Lesser states result in more intelligible state machines for
humans. Processing a non-deterministic state machine requires either a trans-
formation into a deterministic state machine or the application of less e�ective

3From the Greek 'automatos' meaning self moving or self willed.
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algorithms like backtracking. According to [18, 5], a non-deterministic �nite state
machine can be transformed in a deterministic state machine and vice versa.

Figure 2.3: A deterministic �nite state machine represented as state transition
table.

Figure 2.4: A deterministic �nite state machine represented as formal de�nition.

Yet describing real systems with �nite state machines results in a complex
representation, because of the exponential growing of states and thus a hardly
understandable state diagram. David Harel de�ned additional syntax elements
and corresponding semantics to simplify the representation. He proofed that his
statecharts are still formal and thus processable [60, 61]. He added the following
concepts and elements to a �nite state machine:

Hierarchy Because a traditional �nite state machine is �at, it requires exponen-
tially more states to represent containment relationships. Harel used encap-
sulation to express a hierarchy graphical. The semantics of such a superstate
is an 'exclusive-or' for the substates. It provides an opportunity to cluster
or re�ne states. Another advantage is the option to zoom-in or zoom-out a
superstate.

Arrows represent directed transitions that can originate and terminate at any
state level. Arrows can be labeled with events and parenthesized conditions.

Default states and arrows If nothing else is speci�ed, a default state will repre-
sent the state entered. Default arrows are like start and �nal states of �nite
state machines.

History Represents the system's history as a circled H. The history state delegates
the transition to the most recently visited state. A history state with an
asterisk represents deep history to apply the history to the lowest level.

Orthogonality represents an 'and' decomposition and introduces parallelism, syn-
chronization and independence to state machines. A state containing two
or more orthogonal components can be in more than one state at the same
time. The formal equivalent is the product of automata4, but orthogonal
components could have interdependencies. The syntactic separation of or-
thogonal components is represented by a dashed line.

4A product automaton is a disjoint product of two �nite state automata.
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Condition is a simpli�cation of transitions represented by a circled C. Instead of
two or more transitions triggered by the same event but labeled with di�erent
conditions, the event triggered transition points to the condition element.
The conditioned transitions originate from this element.

Selection is another simpli�cation element represented by a circled S. If the state
that is going to be entered determined by a one-to-one fashion of the value
of an event and thus the transitions are obvious, a selection can be used to
hide these transitions.

Timeout and delay Harel added a special timeout event because real-time sys-
tems use timeouts on a regular basis. A timeout event is parametrized with
a bound to derive the delay.

Unclustering Aims to simplify state machines by outsourcing composite states
to state machines, thus representing the big picture of a state machine and
the possibility to zoom-in to further details.

Action is a mechanism for the state machine to interact with its environment
and in�uences other components. An action can be attached to transitions
and have a zero execution time. Additionally, Harel de�ned a start and
stop action for activities. Thus, Harel uses the syntax of Moore and Mealy
automata to label transitions as well as states with actions.

Activity Are like durable actions. They can be controlled by the start and stop
actions and require an active condition.

Figure 2.5: The statechart of the stop watch example from [61].

Harel indicates that using his statechart syntax can result in contradictions. It
requires the designer to be cautious to avoid the introduction of inconsistencies
into the system. Figure 2.5 shows the stopwatch example from [61] which is
depicted with Harels statechart as concrete syntax.
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2.3 UML state machines

The UML provides various diagrams and thus various concrete syntaxes to express
di�erent aspects of systems and software. E.g., the well-known class diagram
to depict the structure of software. UML does also provide a syntax to repre-
sent dynamic aspects. Dynamics in UML are distinguished between behavior and
interaction. Interaction implies instances working together in a synchronous or
asynchronous way. It is modeled with sequence, communication, or timing dia-
grams.

Behavior belongs to an element or object. It is divided into simple, stateful
and continuous behavior. Simple behavior is a function (e.g., a search or a sort
operation) also known as functional behavior. It can be modeled with activity
diagrams. Stateful behavior is assigned to objects possessing a �nite set of states.
The respective object must be in one state at a time. Because these objects react
to events in a well-de�ned manner, they are also called reactive objects. Stateful
behavior is modeled with state machine diagrams. Continuous behavior depicts
objects with an in�nite set of existence conditions (e.g., algorithmic objects).
The behavior depends on the continuous past behavior. The OMG de�ned an
extension of activity diagrams to model continuous behavior. See [2] for more
details.

The BehavioredClassifier (that is a Classifier, that is an Element) hosts
Behavior. E.g., an Activity is a parametrized behavior containing Actions as
the most elemental Behavior of the UML. The UML speci�es various actions
to describe any kind of statement and thus representing the semantic equivalent
to statements of a programming language. Actions have a so called run-to-
completion semantics which means that they are not interruptable. Activities do
not have run-to-completion semantics and thus can be interrupted between their
actions.

State machine diagrams are the concrete syntax to model a StateMachine,
which inherits from Behavior, to capture the behavior of a BehavioredClassi-

fier. Sample diagrams are �gure A.1, �gure A.2, or �gure A.3 contained in the
appendix.

Figure 2.6 on the following page shows the metamodel of the StateMachine

with all its referencing items. It is found on page 536 of [29] and belongs to the
BehaviorStateMachines package. As already known from section 2.2 on page
32, a state machine consists of states and transitions.
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Figure 2.6: The abstract syntax of the UML state machine from [29].

A State represents a moment of the behavior of the Classifier. It models
a situation when a speci�c invariant condition holds true. It can represent either a
static or dynamic situation. It has compartments for its name, internal activities
and internal transitions. A state is either active, that means as soon as it is
entered, or inactive. According to [29], the UML de�nes four derived properties
of a State:

isSimple Represents a state with no substates.

isComposite Represents a state with substates and thus a container of substates.
If a composite state has more than one region, it is also orthogonal. A com-
posite is active if one or more substates are active. The list of active states is
called state con�guration. The substates are displayed in the decomposition
compartment that can be hidden to enable zoom-in a state machine.

isOrthogonal A state with more than one region is called orthogonal and thus
each orthogonal state is a composite state. It is similar to Harels orthog-
onality concept and represents and-states. Thus, states contained in an
orthogonal state, but in di�erent regions, can be active at the same time. It
enables parallelism, concurrency and independence of state con�gurations.
Regions are separated by a dashed line in the decomposition compartment
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of the state. Each region has its own initial and �nal state to execute tasks
in parallel. A completion event (see page 40) is triggered after all regions of
the state reached their �nal state.

isSubmachineState A submachine state is semantically equivalent to a composite
state. A submachine state encapsulates another state machine and is made
for reuse.

The FinalState is a specialized State to show that a Region is completed.
Except for an incoming transition, it is constrained to have no other properties.
If all regions of the state are completed, the state itself will be completed. If the
region of a state machine is completed, the state machine itself will be terminated.

A transition represents the actual change in the con�guration of a state ma-
chine. It can be labeled with a guard, a trigger and an e�ect.

A guard is a condition which indicates whether the transition is enabled for the
incoming event. The guard condition is a constraint that is evaluated, "when an
event occurrence is dispatched by the state machine"[29] and before the transition
�res. It should not have any side e�ects and needs to evaluate to a Boolean result.
The evaluation order of the guards is not de�ned5.

A trigger is associated to an event. If it is enabled, it will cause the transition
to �re.

The e�ect is a Behavior, usually an Action that is executed when the tran-
sition �res. The e�ect may explicitly generate a new event.

According to [29], the UML de�nes the following transition types:

Compound transition A path of one or more transitions which change a com-
plete state machine con�guration to another. It is a set of transitions and
pseudostates which lead to a set of states.

High-level or group transition A transition from a composite state either out of
the composite state or to another substate of the composite state. It causes
the execution of all relevant exit activities, starting with the innermost6. If
the transition leaves the compound state, its exit activity is executed as well,
otherwise it is rendered as local transition7.

Internal transition "An internal transition executes without exiting or re-entering
the state in which it is de�ned. This is true even if the state machine is in
a nested state within this state."[29]

Completion transition A transition without a trigger, but it can have a guard. It
is implicitly triggered by a completion event. A completion event is generated

5Each transition can have only one guard, but there can be multiple transitions for the same
event.

6Not explicitly contained in the speci�cation is the entry behavior. It causes all relevant entry
activities of the target state, starting with the outermost

7Only transitions inside a composite state can be local. They will not cause the exit activity
of the composite state if triggered.
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when a state �nishes its activities or reaches its �nal state. To evade non-
determinism, each completion transition of a state should have a mutually
exclusive guard.

A transition from an external state to the border of a composite state is called
default entry. It executes the entry activity and the default transition to a substate
of the composite state. A transition from an external state to a substate of
a composite state is called explicit entry. It executes the entry activity of the
composite state as well as the targeted substate. An orthogonal composite state
can be entered by default or explicitly. Entering a region explicitly triggers the
default transitions of all other regions of the composite state. Leaving a composite
state executes all exit activities, beginning with the innermost substate. Exiting
an orthogonal composite state executes each exit activity of the active substates
�rst and after that the composite state. The UML de�ned an additional concrete
syntax called signal symbols to depict a transition oriented view. See [26] for more
information.

As already mentioned, a transition can have an e�ect. This e�ect is normally
an atomic behavior. A state can also be associated with functionality. It will be
executed by the system if the state is active. Those activities are part of the
internal activities of the state. They consist of a label and a trigger separated by
a slash. According to [29] three labels are reserved by de�nition:

Entry is triggered as soon as the state is entered and thus executes before any
other activity of the state. Entry activities should be atomic to avoid incon-
sistencies in the event processing.

Exit is triggered as soon as the state is left and thus executes as last activity
before a transition out of the state occurs. Exit activities should be atomic
to avoid inconsistencies in the event processing.

Do is an ongoing behavior "... performed as long as the modeled element is in the
state or until the computation speci�ed by the expression is completed."[29]
If the do activity is completed, it will generate a completion event.

To simplify the state machines even further, [29] introduced so called pseu-
dostates. Most of them are not crucial to a state machine, but they can illustrate
various issues more explicitly.

Initial Pseudostate A solid �lled circle to represent the source for a transition
targeting the default entry. There can be only one initial pseudostate for
each region.

History (shallow and deep) Similar to Harels history concept, a circled H with
or without an asterisk is targeted by a transition. It resumes with the last
state con�guration of the composite state.

Entry point A circle usually at the border of a composite state as target for an
entering transition to redirect it to a speci�c transition of a substate.
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Exit point A crossed circle usually positioned at the border of a composite state to
represent an exiting transition to redirect it to a speci�c outgoing transition.
Exiting a region of a composite state by an exit point implies the exit of the
composite state.

Fork and join A heavy bar to either split a transition for multiple regions or reunite
multiple transitions from multiple regions of an orthogonal state.

Junction A solid �lled circle that can act as a merger or splitter of transitions. The
splitting is similar to Harels condition concept but the guards are evaluated
statically, thus the transitions with a guard evaluating to false are disabled.

Choice pseudostate Is illustrated as a diamond and is similar to Harels condition
concept. It realizes a dynamic conditional branch and splits the transition
into multiple outgoing transitions with guard conditions. At least one guard
condition should evaluate to true to avoid an ill-formed state machine.

Terminate node The cross depicts the immediate termination of the state ma-
chine and thus no exit activities are executed.

To execute a transition it needs to be enabled and at least one of its triggers
must be satis�ed by the associated event. "An event is the speci�cation of some
occurrence that may potentially trigger e�ects by an object."[29]

Hence, anything that happens is modeled as an Event. An event can either be
external or internal. An external event is part of the interaction between objects.
An internal event lives only inside one object. Events are further separated into
asynchronous events and synchronous events. Synchronous events usually invoke
an operation. The sender waits for the response of the receiver, thus the sender
waits for the duration of the called operation. An asynchronous event is dispatched
by the sender, and the sender continues its �ow of control. Events can have
parameters and attributes.

The event processing or event dispatching is de�ned by an event pool. A
triggered event is added to the event pool and dispatched to the state machine.
The dispatch method as well as the prioritization of the events is a semantic
variation point of the UML. To keep the state machine in a well de�ned state, the
UML de�nes that the event would be dispatched only if its predecessor was fully
dispatched. If an event is dispatched and no transition is enabled, the event will
be discarded and the next event will be dispatched. If more than one transition is
enabled, only one will be �red based on the user de�ned prioritization. If multiple
transitions of an orthogonal component are enabled, each transition will be �red,
yet the order is unde�ned. States can de�ne a list of events to postpone. Those
deferred events will not be dispatched until they �re a transition, or the state
machine enters a state where the events do not get deferred.

According to [29], the UML de�nes the following standard events which derive
either from Event or MessageEvent:

SignalEvent An asynchronous event associated with a Signal that can contain
additional information.
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CallEvent A synchronous event associated with an Operation that will be called.

ChangeEvent An asynchronous event associated with a Boolean Expression. It
represents a change in state or the satisfaction of a condition. A change
event is generated explicitly, but the time of evaluation of the expression is
unde�ned. A ChangeEvent is identi�ed by 'when' followed by the expression.

TimeEvent An asynchronous event similar to Harels timeout concept. "A Time-
Event speci�es a point in time. At the speci�ed time, the event occurs."[29]

A TimeEvent can either be relative or absolute. It is associated with a Time-
Expression which speci�es the deadline. A relative TimeEvent is identi�ed
by 'after' followed by the TimeExpression. An absolute TimeEvent is iden-
ti�ed by 'at' followed by the TimeExpression.

AnyReceiveEvent Is an asynchronous event triggered by the receipt of either a
sent signal or a called operation that has no associated SignalEvent or
CallEvent in the speci�c state. It is identi�ed by the word 'all'.

The aforementioned completion event is yet another special case. It is dis-
patched immediately and thus prioritized before all other events in the event pool.
The completion event has no parameters.

A StateMachine can be specialized by an extension mechanism similar to
inheritance. It complies with the Liskov Substitution Principle. It is possible to
add new states and transitions but not to delete states or transitions from the
inherited state machine. Substates cannot change their superstate. Actions and
activities can be added, removed and specialized. Transitions can be retargeted.
Orthogonal components can be added to inherited states.

The ProtocolStateMachine is a specialized StateMachine used to specify
the behavior of a protocol (e.g., SMTP, HTTP, and so on). It is not bound
to an implementation, but it rather determines state changes and events of a
protocol based communication. States represent a stable situation in the �ow of
the protocol, thus they have neither entry, exit, nor do activity and cannot contain
history pseudostates.

Yet the stateInvariant of the state holds an additional condition for incom-
ing and outgoing transitions. A Transition is further re�ned to a Protocol-

Transition. A general ProtocolTransition is associated with an Operation

of the owning Classifier, and it can have a pre- and a postcondition. Even
though the Operation is derived from a call trigger, the UML de�nes a semantic
variation point to specify other events on a ProtocolTransition.

Similar to the statecharts of Harel, contradictions can be introduced to a
StateMachine by a reckless designer. UML calls those state machines ill-formed.
Examples for ill-formed state machines consist of race conditions and overlapping
guards. Some of those �aws could be found and thus indicated by the modeling
tool (e.g., �nding overlapping guards which is an NP-hard problem [2]). The work
of Ines Nötzold [62] addresses the topic of how to detect and validate ill-formed
state machines exemplarily.

Orthogonal components are an excellent representation for parallelism and con-
currency in a state machine. However, they introduce a kind of multi-threading and
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non-determinism into an event driven system. An alternative would be the appli-
cation of the Active Object pattern. "The Active Object design pattern decouples
method execution from method invocation to enhance concurrency and simplify
synchronized access to objects that reside in their own threads of control."[63]
According to [63], it consists of:

� A proxy to access public methods.

� A method request triggered by a call of a proxy method. It contains the
context information and a guard to determine when the request can be
executed.

� A concrete method request for each method that requires synchronized ac-
cess.

� An activation list where the proxy inserts the concrete method requests.

� A scheduler, running in a di�erent thread than the proxy, executing the
method requests.

� A servant de�ning the behavior of the active object. The method of the
servant corresponds to the method of the proxy methods and thus is invoked
when the associated method request object is processed by the scheduler.

� A future for the calling client to access the result of the proxy method call.

A model to model transformation from 1.8 on page 13 to re�ne the model,
could transform each composite state with more than one region into a composite
state with an active object for each region. A similar approach is depicted in
[64] by using object composition instead of orthogonal regions. "Concurrency
virtually always arises within objects by aggregation; that is, multiple states of the
components can contribute to a single state of the composite object."[64]

The composite object needs to interact with its aggregates in a synchronous
manner and dispatches the respective events. On the other hand, the aggregated
parts need to communicate asynchronously with its container because they run
in the same thread and would otherwise violate the run-to-completion semantics
of the UML. This approach requires modeling interaction by a sophisticated de-
signer and cannot be deduced by automated transformation. Another alternative
to orthogonal components are the formal semantics of Harel to deduce a state
machine similar to the algorithm of creating a product automaton [5].

Further approaches and e�orts have been researched and performed to specify
semantic variation points (see [65] for details), or to add formal semantics based on
semantic pro�les to extend the UML state machines (see [66] for details). Most of
the model-driven approaches enrich the state machine with additional information
and execute model re�nement transformations, like �attening the state machine
for further processing.
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2.4 State machine implementations

A lot of software could bene�t from a state machine approach because the context
of the system is represented by the state instead of scattered variables. Yet most
software systems intertwine the state machine with the concurrency model and an
event-passing method. Extracting the state machine code decouples the system
from the other software artifacts and increases its cohesion. A generic state ma-
chine should have at least an initialize operation, to provide a well-de�ned starting
point, and a dispatch functionality, to dispatch events to the state machine. The
dispatch functionality requires a uniform event representation which consists of
the event signal and possible event parameters.

The nested switch implementation contains a dispatch operation. This oper-
ation consists of a switch statement based on the states of the state machine.
Each state case statement consist of another switch to handle the speci�c events.
The implementation is very simple, but it is not build to reuse and will result in a
large monolithic operation if the state machine consists of many states and events.

The state table implementation renders the state machine as a table. A two
dimensional table, consisting of the list of events and the list of states, contains
a tuple of an action and the next state, that is the transition itself. Processing
the events can be done generically because the speci�c details are captured in the
table. The dispatch operation gets the actual state and the event to process.
It determines the operations from the respective state table. Thus, it requires a
vast number of operations, representing the actions, and relies heavily on pointer
to functions. Yet the event processor can be reused and the event dispatching
occurs in constant time. Especially embedded systems could swap the state table
to a read only memory. The state table approach can either be implemented by
inheritance or aggregation. Aggregation introduces another level of indirection,
while inheritance requires the usual inheritance overhead. Alternatively, the state
table can be one dimensional resulting in a more bloated table. But the table
itself can be enriched with more information, like guard conditions, rendering the
transitions more �ne grained.

The state pattern from [12] is yet another implementation of a state machine.
The approach is object oriented, and it uses polymorphism to dispatch events cor-
rectly. States are represented as classes containing their state speci�c behavior.
The context class maintains a pointer to an abstract state class and the event han-
dler function. This context class delegates the operation calls to the speci�c state
class. Thus, the state pattern does not require a dispatch operation because of
the event handler functions. Yet it is possible to introduce a weakly typed dispatch
operation to provide a generic state handler operation. The dispatch operation
of the concrete state classes contains a switch over the events, and it performs
explicit downcasts to detect the signal. The approach is easily extendable, and it
encapsulates the context class and the state classes. The abstract state class can
be reused, but adding events results in changing its interface and thus requires to
change all inheriting state classes.

The modal behavior chapter of [67] introduces objects for states, methods
for states and collections for states. While objects for states refer to the state
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pattern and methods for states refer to the state table, collections for states is
an approach usually impractical for embedded systems. Collections are associated
with speci�c states and contain the objects. The client can easily access all
independent objects by the collection, and initiate a state change that removes
the objects from one collection and adds them to another. Therefore, transitions
are more or less connections of the di�erent collections. Collections for states
simpli�es the access of multiple objects at the cost of a signi�cant overhead.

In [64], Miro Samek combines the nested switch, the state table and the state
pattern to provide a �nite state machine as well as a hierarchical state machine
implementation. It is a generic event processor named QEP8. It maps states
directly to state handler operations. QEP de�nes a generic abstract state machine
with a pointer to a state handler operation, which represents the current state, and
its initialize and dispatch operation. The dispatch operation calls the state handler
operation. The speci�c state handler operations of the state machine capture a
state, and contain a switch over the respective events. Instead of the pointer to
the state handler operation, it is possible to use a lookup table to detect the state
which introduces an additional level of indirection. The hierarchical state machine
implementation extends the approach by informing the event processor about a
nested state. The state handler will inform the event processor about its super
state if it cannot handle the event.

2.5 Event processing

A fundamental part of reactive systems and thus state machines are events to
trigger state changes. Events could come from the systems environment, like user
interactions or other systems, representing interaction. To distinguish between
events from the environment and events from the system itself, they are called
external and internal events.9

Messages should be transformed into events by an additional abstraction layer
if the performance overhead is acceptable. [67] de�nes various patterns for mes-
saging. The aforementioned abstraction layer should be implementation speci�c,
but it depends on the requirements of the systems. Thus, it could be a broker, a
publish-subscribe mechanism or a messaging middleware addressed in [67]. A lot
of frameworks and CASE tools, like Rational Rhapsody, use a so called message
bus that is one of the most scalable, but also one of the most complex solutions.
The message bus is a messaging middleware that connects all participants virtually,
and distributes messages in an asynchronous manner.

The processing of events and messages in an event-driven system is signi�cantly
di�erent from sequential or multitasking systems. The processing is completely
delegated to components outside of the system10. Usually, a part of the operating
system or of the used framework implements this functionality and thus realizes an

8It is the event processor of Miro Sameks Quantum Platform.
9The author of this thesis prefers the word message for an external event and just event for

an internal event.
10At least it is not directly in the hand of the developer of the system.

43



inversion of control11. The processing itself depends on the underlying execution
model. The execution model is a set of policies to manage the central processing
unit. According to [64], they are di�erentiated as follows:

Sequential system Is the simplest execution model. It consists of a main loop
which calls functions and interrupt service routines handling interrupts. The
model is straightforward to understand. The CPU utilization is poor because
the loop needs to poll explicitly for inputs and thus the CPU is idle or waits
most of the time.

Multitasking system Schedules which task or thread is executed in which order
by the CPU. A so called kernel switches the CPU from one task to another by
a process called context switching. Each task gets a memory stack to store
and restore the CPU registers speci�c to the task. The context switches
are activated by interrupts or by explicit calls to the kernel. The kernel
provides mechanisms to block tasks, like semaphores, and thus is able to
defer waiting tasks. That makes this execution model look more responsive
than a sequential system even though it requires additional context switching
overhead. Multitasking systems distinguish between preemptive and non-
preemptive kernels to determine which task runs next.

A non-preemptive kernel gets control through explicit calls from the task.
If an interrupt produces an event for a high-priority task, that is blocked
waiting for an event, while a low priority task is running, the low running
task will execute until it yields or it will make an explicit blocking call to the
kernel. From that on, the kernel determines that the high-priority task is
ready to run, and switches the context. This method is called cooperative
multitasking which results in a non-deterministic way of execution. Yet the
switching of a context will only perform in explicitly known calls to the kernel
and thus makes it easier to share resources among tasks.

The preemptive kernel on the other hand, is called after the interrupt is
executed and thus determines which task will be executed before the low-
priority task yields or makes an explicit blocking call. The kernel switches
the context to the high-priority task, and the interrupt returns to this task
preempting the low-priority task. The high-priority task executes until it
blocks via a call to the kernel. The kernel creates a fake interrupt to switch
the context to the low-priority task. This approach guarantees deterministic
task-level response, but it increases the complexity of sharing resources.

Event-driven system Consists of an event loop, an event dispatcher and an event
queue. The running applications have event-handler functions. All occurring
events are inserted in the event queue controlled by the event dispatcher.
In the event loop, the event dispatcher pools the event queue, and it ex-
tracts events sequentially to call the associated event-handler functions. The
event-handler function executes its code, and it returns to the event loop
and thus realizes run-to-completion semantics. It is also called event-action
paradigm because each event is mapped to the code that will be executed.

11Also known as Hollywood Principle.
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Adding an abstraction layer between the execution model and the application,
makes the software more portable. Therefore, [64] de�nes the active object com-
puting model, depicted in �gure 2.7. The core concept of those active objects
applies multiple event-driven systems in a multitasking environment because each
active object contains its own thread of control. Hence, an active object encap-
sulates an event loop, an event queue and a state machine. The event loop is
simpli�ed because the active objects extract the events directly from their event
queue. The event loop calls the dispatch method of its active object to dispatch
and process the event, like an event-handler function of the event-driven system.
Because the dispatch method must complete before another event can be dis-
patched, run-to-completion semantics are provided implicitly. Active Objects do
not distinguish between external and internal events because each event has to
be queued into the speci�c event queue of the active object. The underlying
state machine of the active object handles the dispatched event to complement
the event-driven system, rendering the event dispatcher and the event-handler
functions obsolete.

Figure 2.7: The active object computing model from [64]. (A) shows the Active
object system and (B) the internal event loop.

The context of the active object is contained in itself, thus it integrates nicely
into a system with context switching. Even the run-to-completion semantics would
not be violated by a preemptive kernel because preempting a low-priority active
object would only cause the active object to postpone its run-to-completion task.
A simple non-preemptive kernel could use the event queues to determine which
event will be dispatched next12. Each queue gets a priority, and the scheduler looks
for the queue with the highest priority containing at least one event. Yet most of
the device drivers and communication protocols require a more complex system
because they use blocking calls. Because of the encapsulation of the active objects
and thus the independence of the underlying execution model, they �t smoothly
even into those environments13.

12In [64] it is depicted as vanilla kernel.
13In fact, active objects could be based on protothreads (see [68] for details).

45



Delivering events and messages is distinguished between direct posting and one
of the aforementioned messaging middleware systems. Direct event posting is a
push-style communication because the sender 'pushes' the event to the recipient.
Direct posting requires tight coupling because the sender needs to know the recip-
ient and its speci�c events. It is rather in�exible because adding recipients requires
to change the sender. On the contrary, direct event posting is straightforward,
and does not require additional overhead.

However, the messaging middleware approach decouples sender and receiver.
Common implementations use a publish-subscribe mechanism that realizes a pull-
style communication. A recipient subscribes an event and therefore 'pulls' the
information. The subscription can be done directly, similar to the Observer pattern,
or via a mediator (see [12] for details). A mediator collects the events from
registered publishers, and it distributes the events according to the subscriptions.
Thus, the published events need to have the same semantics to all participants.
It will be rendered as multicast event if more than one subscription exists for
the same event. The approach is more �exible than the direct event posting
because the participants can register and unregister themselves dynamically. The
mediator is usually labeled as a software bus because it seems that the participants
communicate by a bus. The mediator could represent either a classical hub and
spoke architecture or could have intermediate mediators for scalability reasons,
fault tolerance or high priority channels. The mediator itself could even be some
kind of active object with its own thread and event queue.

As already mentioned, most of the events reside in a so called event queue.
The event queue is a classical First-In-First-Out data structure to collect and
distribute the events in the correct order. An alternative would be a priority queue
that orders its elements based on their priority. To optimize the event management
even further, it is possible to create a memory pool for events. This so called event
pool is reserved for events only which renders all memory blocks of the pool equal.
This results in fast access and allocation, no fragmentation and no overhead. Yet
all events need to have the same structure and size. To support di�erent event
sizes it is necessary to create multiple event pools.

2.6 Related work

State machines correlate with event driven systems. Yet alternative approaches
lead to similar results. [11] depicts that state machines do not require a graphical
notation. Fowler uses state machines as example for a textual notation that is
understandable as long as it is concerned with �at state machines and no syntactic
sugar like orthogonal components.

[69] de�nes yet another textual DSL for state machines. The technique is low
level oriented, and it maps state machines to event driven C code. It dissects
the event handling in static and dynamic components. A special feature of this
approach is the attribution of states to share information among actions.

ESTEREL14 is a synchronous programming language, and has mathematical

14http://www.esterel.org/
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semantics to describe reactive systems. It gets translated into �nite state machines
of low level languages like C.

According to [70], Argos is a synchronous language to create reactive systems
similar to ESTEREL. Argos uses a graphical notation, like statecharts, and intuitive
semantics.

SyncCharts15 combine statecharts and Argos to a graphical formalism to model
reactive systems. A syncChart can be translated to ESTEREL.

2.7 Synopsis

State machines, or state transition systems, have a long history, and are an es-
tablished way of representing dynamic aspects of components. They are used by
engineers because of the simple syntax consisting of states and transitions. The
resulting statechart is used to communicate the behavior of a system to domain
experts and developers. The underlying syntax (i.e., a graph or a table) can be
processed by a computer because of its formal de�nition.

UML state diagrams de�ne a concrete syntax for UML state machines to
represent the dynamic behavior of a reactive object. They reuse Harels syntax
which is based on Moore, Mealy and �nite state machines. Yet UML speci�es
mostly informal semantics with semantic variation points. UML speci�es a run-
to-completion semantics, the entry and exit order, the generation of completion
events and full event dispatching. [28] contains a state machine metamodel which
de�nes di�erent kinds of transitions, states and events. Semantic variation points
are the evaluation of guards, the execution of multiple transitions, and the event
dispatching and pooling. Either requirements dictate semantics and the realization
or the developer has to determine them. The applied tool should not prede�ne
any of these decisions. It should provide each possible kind of implementation and
semantic description.

Implementing a state machine is based on the following techniques:

� The Nested switch which requires switch or nested if statements.

� The state table which requires function pointers.

� The state pattern which requires object orientation.

� The collections for states pattern which requires collections.

� A hybrid of those techniques.

Each state machine implementation should de�ne a generic initialization and
dispatch function to provide uniform access. The implementation directly depends
on the event processing and thus on the execution model of the environment
(i.e., sequential, multitasking, event-driven). The active object computing model
from [64] can be applied as additional abstraction layer. The event dispatching

15http://www.i3s.unice.fr/~map/WEBSPORTS/SyncCharts/
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can either be implemented by a push- or pull-style communication. The event
queue is usually a FIFO or a priority queue. It could use one or more event
pools for sophisticated event management. External events could be handled by
a message dispatcher to transform them into internal events, and forward them
to the respective event queue. Those features should be part of an extension
language to con�gure the product. Because of the technical aspects, it should
not be part of the respective UML model.

Semantics should be selectable within the con�guration of the generation pro-
cess. Requirements could dictate divergent semantics than the one speci�ed by
UML. The domain expert could request Harels formal semantics or other alterna-
tives discussed in this chapter. Thus, the developer requires pragmatical semantics,
provided by the respective language engineer.

The UML state machines syntax contains elements to simplify the diagram.
The composition of states and most of the pseudostates can be transformed into
elemental syntax elements by a model to model transformation. Regions could
be transformed into active objects, or avoided by the application of aggregation.
Thus, the core language could go without those syntactic sugar. On the other
hand, if an adapter is available, it will be possible to support alternative source
languages and event-driven systems.
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Chapter 3

C++

3.1 Introduction

C++ is a widely used programming language. It is feared and worshiped because of
its �exibility in combination with various language features. C++ evolved out of C
to combine low level concepts, like pointers and preprocessor macros, with classes
and objects. After that the language got enriched with features like constness,
C++ templates, template libraries and di�erent compiler implementations. The
�rst standardization process occurred in 1998 by an ANSI/ISO committee. The
latest standardization has been published as ISO/IEC 14882:2011 on August 12th,
2011. This process of language evolution leads to a vast number of supported
features with disjoint targets.

"Today's C++ is a multiparadigm programming language, one support-
ing a combination of procedural, object-oriented, functional, generic
and metaprogramming features."[71]

Combining the features without understanding or knowing their characteristics
will result in compiler or linker errors, if the programmer is lucky, or it will convey
in unde�ned behavior and therefore result in a possible disaster. To prevent those
outcomes, it is insu�cient to assume that the programmer is fully aware of his
doing. Tools like an integrated development environment and the compiler as
well as the linker should be augmented by static code analyzation, optimization,
code generation, validation of variants and coding guidelines. This part consists of
language dissection and analyzation to deduce language aspects and assign those
aspects to the proper �eld of application.

3.2 Basics

To derive language aspects from C++, it is essential to cover the basics. Because
of the standardization of the language and di�ering semantics of concepts respec-
tive to other programming languages, this section contains terminology referenced
in the next sections.
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Translation unit "A translation unit is the source code giving rise to a single
object �le. It's basically a single source �le, plus all of its #include �les."[71]
The translation unit is the input for a compiler to create object �les.

Linking The linker uses the compiler created object �les and binds them to an
executable �le, respectively a static or dynamic library. Because object �les
are created separately, it is possible to have multiple symbols of the same
identi�er. If identi�ers are declared extern, it can result in unde�ned sym-
bols. If the linker �nds a doublet of an identi�er, it will stop the binding
process with an error. If the linker does not �nd a function, method or static
element, it will also abort the binding process. Either the compiler consists
of additional steps to clean object �les or the linker consists of additional
functionality to eradicate redundant elements (see [72] or [73] for details).

The linkage process can be di�erentiated between dynamic and static linking.
Static linking binds all referenced elements into one executable �le. Dynamic
linking resolves the unde�ned symbols when the program is executed. The
main advantage of dynamic linking is the reuse of often used libraries and
thus only one software artifact per library which contains the information that
will be referenced. Yet the main disadvantage is the renowned 'DLL-Hell'1

which breaks executable �les due to dependencies to a dynamic link library
that got updated and replaced by an incompatible version. [74] explains the
concept of dynamic code linking.

Preprocessor The preprocessor is a tool for text substitution. It runs before the
compile process to substitute speci�c lines of code. Compiler can contain
speci�c preprocessor directives, called pragma directives, to simplify pro-
gramming or build tasks. If the compiler does not support the pragma direc-
tive, the compiler will ignore it. The concept of include guards for example
is based on preprocessor directives to support the compile and development
process. Microsofts Visual C++ Compiler supports the #pragma once di-
rective which enables the same feature as include guards.

Declaration "A declaration tells compilers about the name and type of something,
but it omits certain details." [71]

A function's declaration reveals its signature. The o�cial C++ de�nition of
'signature' excludes the function's return type, but it is more convenient to
consider it as part of the signature.

De�nition "A de�nition provides compilers with the details a declaration omits."
[71]

In C++ it is possible to divide the class de�nition into a header and an
implementation �le. Generating a modeled UML class should result in a
header �le of the class, which contains all member in the respective section
of the access modi�er, and an implementation �le which references the
header and contains the member function bodies.

1DLL-Hell is the Microsoft Windows speci�c dependency hell.
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One De�nition Rule Using an object or a function requires to de�ne it �rst2. Yet
there should only exist one de�nition to avoid ambiguity. A translation unit
for example will not compile if it includes more than one de�nition for a class.
One option is the application of forward declarations. Another option uses
include guards and yet another solution could use compiler speci�c pragma

directives.

Initialization "Initialization is the process of giving an object its �rst value." [71]

C++ provides di�erent possibilities to initialize an object. First of all is the
default constructor. It can be called without any arguments if not rede�ned
by the programmer. The copy constructor will be called if given a reference
to a di�erent object of the same kind. The copy assignment operator will
be called if the programmer intends to copy the value from one object to
another of the same kind. The most important kind of initialization is using
the member initialization list. It is more e�cient because it does not call the
default constructors of the member.3

Unde�ned behavior "For a variety of reasons, the behavior of some constructs
in C++ is literally not de�ned: you can't reliably predict what will happen at
runtime." [71]

E.g., dereferencing a null pointer or referring to an invalid array index. The
behavior of the program will be unpredictable. An unprobable yet possible
outcome could be the erasure of the hard drive for example.

Memory allocation With C++ the programmer has the possibility to put data
structures on the stack or on the heap which is also called dynamic memory
allocation. Stack objects will be deleted automatically when the scope is
exited. Those variables are called local variables. With dynamic memory
allocation the programmer extends the lifespan of an object beyond the
scope. The disadvantage is that the programmer has to take care of the
destruction of the heap object or it results in a memory leak.

Function objects Objects that act like functions because of overloading
operator(). Function objects are also called functors in C++.

Smart pointer Is a pointer like object whose destructor calls the destructor of
the object it is pointing to. The STL provides auto_ptr, shared_ptr, and
weak_ptr for this issue, respective to the ownership. The object ownership
is about the responsibility of the actual object (see item 13 of [71]).

RAII Is the abbreviation for Resource acquisition is initialization. It is common
to use an object like a smart pointer to manage a resource. Normally the
developer acquires a resource and initializes the managing object in the same
statement (see item 13 of [75]).

Constness Despite other programming languages, the keyword const is remark-
ably versatile and thus valuable in C++. It is not only possible to create

2Referencing on the contrary requires only a declaration.
3The C++11 standard introduced move semantics and so called move constructors to avoid

unnecessary memory allocations for object initialization.
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constant primitives and objects, but also pointer and references, to specify
semantic constraints. Thus, const allows the developer to communicate to
other developers as well as to the compiler (see item 15 of [75]).

Member functions can be enriched with const to ensure immutable access.
Yet the compiler will only check for bitwise constness, checking only for
changes of the associated variables4. Developers on the other hand prefer
logical constness that means internal changes are tenable as long as the
client cannot detect it. Using the keyword mutable for data members of
the class provides this functionality and satis�es the compiler.

It is also possible to cast away or add constness at runtime with cast oper-
ators. Requiring this option usually implies bad design and should be used
judiciously. More information about constness can be found in item 3 of
[71].

Friendship Functions and classes can be declared as friends of other classes, mak-
ing them access protected, private and public member of that class. Friend
functions or classes usually indicate a design �aw and should be avoided for
the sake of encapsulation. Yet, especially type conversion by non-member
functions require the friend declaration (see item 24 and 46 of [71]).

Inlining C++ provides the syntactic feature of inlining function calls. It is similar
to a preprocessor macro because it substitutes function calls with the actual
lines of code. Yet inlining is just a request to the compiler. The compiler
will inline short functions like getter methods implicitly. The developer can
add the keyword inline to the function signature to make an explicit inline
request. As item 30 of [71] coins, inlining should be used judiciously and it
depends highly on the build environment.

3.3 Advanced Concepts

To get the most out of C++ it is necessary to understand the consisting language
features and how to combine them properly. Most of those concepts are eminent
for e�ective C++ programming and require insight of high level and low level
programming.

3.3.1 Dynamic polymorphism

Object oriented programming languages contain a language concept called poly-
morphism. Based on the inheritance it is possible to derive the type of the object
at runtime. Because C++ additionally contains compile time or static polymor-
phism (see section 3.3.2 on page 54), this concept is called runtime or dynamic
polymorphism. Dynamic polymorphism in C++ is based on virtual tables (vtbls)
and virtual table pointer (vptrs) combined with inheritance. The virtual pointer of
an object points to the virtual table of the class. Declaring one function virtual,

4Incorrect use of const in combination with a reference to internal data yields changeable
data members (see item 28 of [71] for details).
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induces the compiler to create a vtbl and a vptr for each object pointing to the
vtbl. Using dynamic polymorphism for small objects like events or points wastes
resources and thus should be used judiciously (see item 24 of [76]).

"Inheritance is the second-tightest coupling relationship in C++, sec-
ond only to friendship. Therefore, prefer composition to inheritance
unless you know that the latter truly bene�ts your design."[75]

Using inheritance renders inlining for most compilers useless because creating
the translation unit requires knowledge of the actual implementation. To deduce
the object type at runtime, the compiler adds a type_info object to the respective
vtbl and thus provides runtime type information (RTTI).

In contrast to object oriented languages like Java, C++ provides multiple in-
heritance with all its consequences. Multiple inheritance puts the developer in the
position to use so called mix-in classes (see [77]) to easily extend the functional-
ity of classes. Yet it leads to the renowned diamond problem. Deriving from two
classes that both derive from the same class creates a diamond shaped inheritance
graph and usually leads to unexpected behavior. Common inheritance would copy
the member of the base class for each derived class. Using virtual inheritance
avoids additional copies. Yet virtual inheritance de�nes odd initialization and as-
signment rules. If it is not really necessary, it should be avoided or at least should
not contain any data (see item 40 of [71]).

Similar to the interfaces of Java and .NET are virtual base classes with pure
virtual functions. Making a function pure virtual prohibits instantiation of classes
not redeclaring the function. It is possible to provide a de�nition for a pure virtual
function, but the call needs to be quali�ed.

An (impure) virtual function should not be public because it "inherently has two
di�erent and competing responsibilities, aimed at two di�erent audiences."[75]

It is part of the public interface accessible for the rest of the world, and it is
a customization point due to its virtual nature. The non-virtual interface (NVI)
idiom targets exactly this problem and de�nes a non-virtual public function which
delegates to a virtual non-public function. Similar to the template method de�ned
in [12], it provides an internal hook and well de�ned before and after parts. Because
C++ lets the developer rede�ne private virtual functions it is a common approach,
except for derived virtual functions, to call their base class counterparts and virtual
destructors. Yet another alternative to implement is, using the strategy pattern
either classical (see [12]) or via function pointers or function objects (see item 35
of [71] for details).

If a class is designed as a polymorphic base class, it should de�ne a virtual
destructor (see item 8 of [71]). The C++11 standard provides a no derivation-
prevention mechanism similar to Java's final, but most of the current compiler
do not support the functionality. It is possible to inherit from a class with a non-
virtual destructor. That could lead to object slicing and unde�ned behavior which
usually results in a resource leak. Because the C++ compiler will always add a non-
virtual public destructor to a class if it was not declared it explicitly5, item 50 of

5The C++11 standard de�nes the delete keyword to prevent the compiler from creating
default constructors or destructors.
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[75] suggests to de�ne public virtual destructors for base classes with polymorhpic
deletion, or protected non-virtual destructors for base classes without polymorphic
deletion like policy classes from section 3.3.2 at page 57. Furthermore, item 54
of [75] considers cloning to avoid slicing. Disabling the copy constructor and the
copy assignment constructor prevents object slicing. An NVI based clone member
function provides the functionality of deep copies.

Dynamic polymorphism requires type casts to provide down- as well as up-
casting of types6. Type casts in C++ di�er signi�cantly from type casts of other
object oriented languages like Java.

For low level operations, and usually unportable results, C++ provides
reinterpret_cast (e.g., casting a pointer to an int). The reinterpret_cast

operator does not perform any type checking and should be avoided (see item 92
of [75]).

The static_cast operator provides type conversion with compile time type
checking. It is possible to perform explicit conversions and force implicit con-
versions. Yet a cast like static_cast<Window>(*this).onResize() behaves
di�erent from the equivalent Java cast. This cast calls onResize of a completely
di�erent object and should be replaced by a quali�ed function call like
Window::onResize(). Because static_cast does not perform runtime type
checking, it should be used judiciously on pointers of polymorphic objects because
the result could be erroneous (see item 93 of [75]).

The dynamic_cast operator performs runtime type checking and thus should
be preferred for such downcasts. It will yield a null pointer if the pointers are
incompatible. It will yield a bad cast exception if it is performed on incompatible
references.

Most dynamic_cast implementations are less e�cient than static_cast im-
plementations because of the additional runtime type check. The dynamic_cast

requires RTTI. A possible implementation could use strcmp on the type_id to
perform the type check and thus results in a signi�cant performance loss (see
item 27 of [71]). Yet item 93 of [75] provides a combination of dynamic_cast
and static_cast because: "Using static_cast instead of dynamic_cast is like
eliminating the stairs night-light, risking a broken leg to save 90 cents a year."[75]

3.3.2 Static polymorphism

Static polymorphism or compile time polymorphism is similar to preprocessor di-
rectives except that the compiler decides whether to expand the source code or
not7. Static polymorphism is realized by the template mechanism. The template
mechanism is itself Turing-complete and based on generic programming.

The main purpose of generic programming is to write reusable code relying
on the syntax of the type. In contrast to object oriented programming, that is

6 [72] de�nes an additional cast called side-cast that can only be applied in a multiple inheri-
tance hierarchy.

7Preprocessor directives, or macros, de�ne plain text substitutions without any syntax anal-
ysis. The substitution process will be executed before the template mechanism. Thus, it is
possible to use macros within templates.
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based on explicit interfaces centered on function signatures, templates are based
on implicit interfaces. An implicit interface is based on a valid expression. Sutter
and Alexandrescu name those valid expressions customization points (see item 65
of [75]). A customization point can be a member function, a typedef, a non-
memberfunction or a (trait) specialization.

During compile time, the compiler tries to substitute the types by �tting the
syntax. If the type does not have the appropriate syntax, the compile process will
stop. Yet if there is no appropriate type but the template gets never called, the
compiler will not try to �t the type and thus the source code is valid and will get
compiled.

Generic programming

Czarnecki and Eisenecker outline generic programming as follows:

"Generic programming is a subdiscipline of computer science that
deals with �nding abstract representations of e�cient algorithms, data
structures, and other software concepts, and with their systematic or-
ganization. [...] Generic programming focuses on representing families
of domain concepts."[54]

Thus, Generic programming is a di�erent paradigm to represent software frag-
ments compared to object oriented programming. Both approaches try to tackle
the same problems, thus it is usually possible to represent a software fragment
either object oriented or generic.

Generic programming in C++ is implemented as unbounded static polymor-
phism. I.e., the interfaces of the involved types are not predetermined and thus
the approach is non-invasive, and "the binding of the interface is done at compile
time"[73].

The consequences of applying generic programming compared to object ori-
ented programming are (see [73]):

� Interface commonalities do not require base classes and thus collections are
easily implemented.

� The generated code requires more memory, but it will be executed faster
because of no additional indirections.

� The code base needs to be published to integrate it in other projects.

� Types implementing only parts of the implicit interface can be used if the
called templates do not require the entire interface.

The standard template library (STL) of C++ is an application of generic pro-
gramming. It consists of containers, algorithms, and iterators. The containers are
completely detached from the algorithms. The iterators are used to combine both
of them and thus the STL provides a multitude of combinations (see [78] and [79]
for details).
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Template mechanism

C++ templates have been introduced in the late 1980s. The �rst compiler that
could really parse template de�nitions was developed in the mid-1990s by Taligent.
It was bought by Hewlett-Packard and thus became the aC++ compiler8. C++
templates became part of the C++98 standard. A lot of missing features have
been added to the C++11 standard.

By the time of writing this thesis, most of the common C++ compiler do
not support the C++11 standard completely and thus relying on the new features
results in possible portability issues. Yet the concepts represented by the C++
templates have not been changed signi�cantly since its introduction.

C++ templates are divided into function templates and class templates. Func-
tion templates are functions with additional template parameters. A template
parameter is either a built-in type (e.g., int, char, and so on) or a class. Us-
ing a function template requires the developer to �ll in the concrete types, called
template arguments, either explicit or implicit by deduction. Function templates
can be overloaded to provide speci�c implementations for speci�c types, similar to
type based if-else branches.

Class templates are classes with additional template parameters. A container
class to manage elements of certain types is usually implemented as a class tem-
plate. Template based member functions will only be instantiated if they are used
within the application. Similar to function overloading, a class template can be
specialized to provide optimized implementation for speci�c types. A specializa-
tion requires the specialization of all member functions of the class template. In
addition to function templates, class templates can be partially specialized. I.e., it
is possible to specialize only some of the template parameters9.

Class templates can contain default template arguments to simplify the access.
E.g., the container classes of the STL de�ne an allocator template to re�ne the
memory management of the container. In most of the cases the default is just
�ne, but if the developer needs to allocate speci�c objects on a special heap, he
must overwrite the template argument with his own allocator.

Member functions, as well as nested classes, can have additional template
parameters in respect of their surrounding class. Only virtual member functions
and destructors can not have template parameters.

Template parameters do not have to be types. A template parameter can
be a so called non-type template parameter. It is more like a value than a type
(e.g., a �xed size for a container). A template parameter can also be a template
parameter that is called template template parameter. E.g., injecting a generic
container into a template.

Because templates di�er signi�cantly from ordinary code, the handling is less
intuitive. Normally, declaration is separated from de�nition, yet templates re-
quire a speci�c inclusion and instantiation order to link them correctly. common

8http://www.hp.com/go/acc
9Function templates have to be totally specialized. The workaround is to provide an additional

overloaded function template.
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approaches are, either instantiatiang the templates explicitly or the so called inclu-
sion model10 (see [73]). The inclusion model either includes the de�nition in the
declaration or puts the whole template in a header �le. The developer includes
the template �le, and the linker will link each object �le of the translation units.
If the template includes additional header �les, the size of the template will grow
signi�cantly and thus it increases the build time. Another linker problem that
could occur, are multiple function de�nitions. Each translation unit will require
the de�nition if it uses the template and thus violating the one-de�nition rule.

To tackle the build time problem, it is advisable to use precompiled headers.
A precompiled header is a compiler speci�c option. It creates object �les, consist-
ing of non-changing software fragments, before the compilation process to reuse
instead of recompile those fragments.[80]

The instantiation of C++ templates is based on the two-phase lookup because
names cannot be resolved when templates are parsed. The �rst phase uses ordi-
nary lookup rules and argument dependent lookup to look up non-dependent and
unquali�ed names. The second phase occurs at the instantiation of the template,
to look up the quali�ed and unquali�ed names, to complete the look up.

A detailed explanation of the template mechanism is contained in [73].

Traits and policies

C++ Templates are the bedrock to encapsulate characteristic features, and proper-
ties of software fragments, and bind them at compile time. Traits, trait templates
or trait classes "represent natural additional properties of a template parameter."
[73]

"A traits template is a template class, possibly explicitly specialized,
that provides a uniform symbolic interface over a coherent set of design
choices that vary from one type to another."[81]

Basic traits are either �xed traits, value traits, or parametrized traits like in
the accumulation example of [73]. More advanced traits are promotion traits
to deduce the return value of a template based operator overloading11. "An
important use of traits is as 'interface glue' � universal non-intrusive adapters. If
various classes implement a given concept in slightly di�erent ways, traits can �t
those implementations to a common interface."[81]

A Part of the STL consists of traits like the std::iterator_traits. The
C++11 standard, as well as the boost libraries12, introduce even more traits to
create more sophisticated C++ templates (see [77]). In item 47 of [71], Meyers
de�nes the properties of traits as type information at compile time. It admits if-
else tests at compile time by using function overloading. An application of traits is,

10A former approach called separation model was removed from the C++ standard because of
the complexity for compiler manufacturers to implement it.

11The C++11 standard introduced the decltype and the auto keyword to simplify these cir-
cumstances.

12http://boost.org
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using a master function or function template that calls trait speci�c (overloaded)
worker functions or function templates.

Policies or policy classes are similar to traits but they are more behavior speci�c.

"Policies represent con�gurable behavior for generic functions and
types (often with some commonly used defaults)."[73]

They are passed as template parameters and need to be collected in classes
or class templates. Thus, policies are orthogonal to each other and cannot be
treated as standalone software fragments. The accumulation example could be
parametrized by a policy to determine the accumulation algorithm (e.g., summa-
tion, multiplicity) (see [73]). A thorough introduction to policy based design can
be found in [82]. Alexandrescu relates policies with a compile time based strategy
pattern [12].

"... multiple inheritance and templates foster complementary trade-
o�s. Multiple inheritance has scarce mechanics; templates have rich
mechanics. Multiple inheritance loses type information, which abounds
in templates. Specialization of templates does not scale, but multiple
inheritance scales quite nicely. You can provide only one default for a
template member function, but you can write an unbounded number
of base classes. This analysis suggests that a combination of tem-
plates and multiple inheritance could engender a very �exible device,
appropriate for creating libraries of design elements."[82]

Thus, policy based design is based on templates and multiple inheritance to
get a synergy of both worlds. The result is a highly �exible design. It is based on
combining individual policies within a host class in a typesafe manner.

The symbiosis of policies and traits are called policy traits that are unique prop-
erties of a template parameter and thus usually implemented as type or member
function. E.g., the performance based policy trait to deduce copy, swap and move
of a type from [73]. Alexandrescu de�ned in [82] typelists to combine policies ef-
�ciently with inheritance and avoid ambiguities. The C++11 standard introduced
variadic templates to handle this issue more sophisticated.

The C++ standard speci�es that an empty base class does not need to allocate
memory as long as it does not cause memory allocation to an address of an object
of the same type. Because typedefs do not require memory, and a lot of template
parameters are substituted with empty classes, the compiler can optimize the
respective class if inheritance is used instead of a data member for the template
parameter (see item 39 of [71] for details about the empty base optimization).

Combining inheritance with templates to factor out speci�c implementations
of member functions is also known as the "Curiously Recurring Template Pat-
tern"(CRTP). A templatized base class speci�es member functions in regard to
the template parameter. Another class inherits from the base class, and it forwards
itself as template argument and thus has to provide the functionality required by
the base class.[83]
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Template metaprogramming

Metaprogramming considers programs as data and thus generates or modi�es
source code of the target language. Metaprogramming is usually based on a meta
object protocol (MOP) to manipulate the code in a consistent way (see [84] for
details). The meta object protocol will either be evaluated at compile time, like
in Lisp, or at runtime like in Groovy. Because C++ templates were not envisaged
for metaprogramming, template metaprogramming does not directly consist of a
meta object protocol13.

Because templates are evaluated at compile time, template metaprogramming
is also evaluated at compile time. One reason to use template metaprogramming
in C++ is, to move computations from runtime to compile time, improving the
runtime behavior at the cost of longer compile time14.

Because metadata is immutable and metafunctions can not have side e�ects,
template metaprogramming is called a pure functional language. Metadata is
either types or non-types15 used as template parameters. Especially traits provide
type based information for the template as template parameter.

The parameters and nested types of the traits template are used as function
parameters and return values of metafunctions. Template specialization provides
a mechanism to alter the type of the traits template. Traits templates capture
multiple nested types and thus metafunctions can have multiple return values. [85]
de�nes a metafunction as either "a class template, all of whose parameters are
types[,] or a class with a publicly accessible nested result type called type."[85]

C++ Frameworks and libraries, like boost16 or Blitz++17, provide domain spe-
ci�c languages based on template metaprogramming. Blitz++ is a library to per-
form mathematical calculations e�ciently. It is based on so called expression
templates18 to delay the evaluation of the expression. Expression templates rep-
resent a compile time parse tree, thus the compiler can optimize the expression
based on the so called return value optimization (RVO). RVO is a compiler spe-
ci�c optimization to avoid the creation of temporary objects. Using CRTP for the
template arguments of the expression templates and operator overloading results
in an embedded domain speci�c language within C++.

The metaprogramming library (MPL) of boost provides an API for metapro-
gramming that is also used within other boost libraries like Meta State Machine.
[85] de�nes a state machine framework based on MPL. A templatized state ma-
chine class captures a state transition table, and concrete state machines derive
from the state machine class using CRTP. The event processing is also templa-
tized to invoke a function based event dispatching. Boost.Statechart, as well as
Meta State Machine, is either based or at least inspired by this implementation
(see section 3.4 on page 62 for further details).

13OpenC++ provides a meta object protocol for C++ to modify the target language at compile
time.

14The additional code bloat is another disadvantage that is considered in item 44 of [71].
15Because of the restriction of the C++ standard, non-types are integer or bool constants.
16http://www.boost.org/
17http://sourceforge.net/projects/blitz/
18Move semantics and rvalue references introduced by the C++11 standard render expression

templates obsolete.
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3.3.3 Class design

Item 32 of [75] is named: "Be clear what kind of class you're writing."
Within the item Sutter and Alexandrescu distinguish classes in C++ as follows:

Value class Is intended to be used as a concrete class with public destructor and
constructor but without virtual functions. An example would be std::vector
that gets usually put on the stack or is a member of another class.

Base class Is part of a class hierarchy and provides an interface through virtual
functions. The destructor should be public virtual and the copy constructor
non-public (see item 50 and 53 of [75]). Concrete derived classes of base
classes are usually dynamically created on the heap.

Trait class Carries information about types and consists of typedefs and static
functions. Traits will not get instantiated, are unmodi�able and stateless.
See section 3.3.2 on page 57.

Policy class Is a pluggable behavior which consists of a state. Policies are a
powerful design principle to split classes into multiple fragments and thus
are not used as standalone objects but as member or base. "...policy-based
class design fosters assembling a class with complex behavior out of many
little classes (called policies), each of which takes care of only one behavioral
or structural aspect."[82]
See section 3.3.2 on page 57.

Exception class Should virtually derive from std::exception, and it has a public
destructor and a no-fail constructor. Exceptions in C++ are thrown by value
and catched by reference (see item 73 of [75] and item 13 of [76]).

Ancillary class "typically support speci�c idioms (e.g., RAII see Item 13)."[75]

If possible, non-member non-friend functions should be prefered (see item
44 of [75]). Yet sometimes objects and thus classes, like smart pointer, are
required. "They should be easy to use correctly and hard to use incorrectly
(e.g., see Item 53)."[75]

Item 19 of [71] recommends to "treat class design as type design". Because
C++ provides operator and function overloading, adapting memory allocation and
deallocation, as well as object initialization and deinitalization, a class can be
designed to be seamlessly integrated into C++. The creation and destruction is
not only speci�ed by its constructor and destructor but also by operator new,
operator delete, the new-handler, placement new and placement delete19 (see
chapter 8 of [71] for details).

C++ will create various constructors and operators silently if not explicitly de-
clared otherwise (see [77] and item 5 and 6 of [71]). That could lead to unexpected
behavior. E.g., C++ creates a non-virtual public destructor for a class that does
not contain a destructor. If the class operates as base class, polymorphic deletion
will lead to unde�ned behavior.

19As well as the respective new[] and delete[] operators for arrays.
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The di�erence between object initialization and assignment has to be designed
with care for the user of the class. Passing objects by value calls the copy con-
structor which results in additional memory allocation. As coined in section 3.3.2
on page 59, some compilers are able to avoid the construction of temporary ob-
jects by the application of RVO. If the copy constructors consists of side e�ects,
this optimization can cause unexpected behavior20.

"Any class that overloads the function call operator (i.e., operator())
is a functor class."[79]

Instances of functor classes can be applied by the user like functions, but they
can have an additional state. Especially the STL algorithms make extensive use of
instances of function classes called function objects. A function class returning a
bool is called a predicate class. Predicate functions and predicate classes are used
as parameters for conditional algorithms. More details about functors and functor
classes can be found in chapter 6 of [79].

Enabling operators by overloading them is as fundamental as disabling them
because the operators are the implicit semantics of the class. Enabling a copy
constructor for a singleton, or disabling the streaming operator for strings, is
unintuitive for the user. Yet operators like && or || should not be overloaded
because of their special semantics (see item 7 of [76] for details). Some operator
functions, like the streaming operator, are non-member functions which require
friend access to the class.

Next to the speci�c operators of a class are type conversions. Type conversion
can either be de�ned explicit or implicit. Explicit type conversion prevents implicit
type conversions and thus minimizes the chance of unintended type conversions.
Yet an implicit type conversion is more convenient for the user (see item 15 of
[71]).

Additional information for the user of the class are so called guarantees. All
STL algorithms and container have to have a speci�c runtime behavior. It enables
the user to choose the right algorithm or container, based on his requirements.
C++ enables the class designer to specify additional information of possible ex-
ceptions that could occur when a function will be executed. Adding the keyword
throw() to a function declaration, lets the compiler know that this function should
not throw any exception. It is called the nothrow guarantee and promises to never
throw an exception. if an exception occurs in the function, the 'unexpected func-
tion' will be called which will usually terminate the program (See item 29 of [71]
for details about exception safety and guarantees. See [86] item 8 to item 17 and
chapter 3 of [76] for details about exceptions, exception handling and exception
safety).

To minimize compilation dependencies and thus minimize the recompilation
e�ort21 in C++, a class should only depend on declarations of other classes. De-

20It could even occur that the program will work as expected if it is compiled with debug
information. Yet compiling the same program in release mode, could trigger the compiler to
apply RVO.

21If a class depends on a class and that class depends on another class, it is called cascading
compilation dependency. It leads to long build times, even though only minor changes in the
implementation have been done.

61



pending on the declaration makes it possible to work with pointers of those classes
and thus makes it possible to use forward declarations.

Implementing a class with respect to minimal compilation dependencies is ei-
ther done with an interface class or a handle class. An interface class is a class
declaration which consists of pure virtual function declarations and a factory func-
tion for clients.

A handle class is based on the pointer to implementation (pImpl) idiom. The
pImpl idiom hides the implementation within an implementation class. The han-
dle class consists of necessary forward declarations, function declarations and a
pointer to the implementation class. The function de�nitions of the handler class
delegate the call to the implementation class through the pointer. Thus, a level
of indirection is added, but the declaration is separated from the implementation.
[75] suggests to pImpl judiciously because of the additional complexity. The han-
dle class is similar to the bridge pattern (see [12]), and it is also called compilation
�rewall or Cheshire Cat. More details can be found in [86] item 26 to item 30 and
in [71] item 31.

3.4 Implementations of state machines in C++

Known from section 2.4 on page 42 are the basic implementations like nested
switch, state table, state pattern and hybrids like Sameks QEP. Yet, because of
their large �eld of application, state machines have been implemented by various
developers. Those implementations are usually contained in libraries or frame-
works.

Qt State Machine Framework

The Qt Project22 contains an object oriented implementation of a state machine
framework. It is based on State Chart XML (SCXML)23. The implementation
integrates itself �awlessly into the Qt framework because it is tightly coupled with
Qt's Meta-Object System. The Qt Meta-Object System is a MOP de�ned by Qt,
adding additional language features to C++ by an additional compile step which is
executed by the Meta-Object compiler. The use cases of Qt state machines are
state-based (�uid) User Interfaces, asynchronous communication, the controller
of the Model-View-Controller pattern and other high-level applications. It is not
meant to be used for performance critical or low level applications because of
the runtime overhead introduced by Qt. Qt state machines are easy to use, and
they provide most of the functionality UML state machines de�ne (see section
2.3 on page 35). The Qt state machine requires a running event loop to execute
asynchronously, but it contains an internal event loop as well as an event queue
(see [87] for details).

Listing 3.1 de�nes a state machine, wich communicates with the user interface,
corresponding to the UML diagram A.1:

22http://www.qt-project.org
23http://www.w3.org/TR/scxml/
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// d e f i n i n g a p p l i c a t i o n , button , e t c . . . .

QStateMachine mach ine ;

QState *compound = new QState ( ) ;
QState * s t a t e 1= new QState ( compound ) ;
QState * s t a t e 2= new QState ( compound ) ;
QF i n a l S t a t e * q u i t S t a t e = new QF i n a l S t a t e ( ) ;

s t a t e1 �>a d dT r a n s i t i o n (&button , SIGNAL( c l i c k e d ( ) ) , s t a t e 2 ) ;
s t a t e2 �>a d dT r a n s i t i o n (&button , SIGNAL( c l i c k e d ( ) ) , s t a t e 1 ) ;

s t a t e1 �>a s s i g n P r o p e r t y (&button , " t e x t " , " S t a t e 1" ) ;
s t a t e2 �>a s s i g n P r o p e r t y (&button , " t e x t " , " S t a t e 2" ) ;

QObject : : connec t ( s t a t e2 , SIGNAL( e n t e r e d ( ) ) , &button , SLOT( showMaximized ( ) ) ) ;
QObject : : connec t ( s t a t e2 , SIGNAL( e x i t e d ( ) ) , &button , SLOT( showMin im ized ( ) ) ) ;

compound�> s e t I n i t i a l S t a t e ( s t a t e 1 ) ;
compound�>a d dT r a n s i t i o n (&qu i tBu t ton , SIGNAL( c l i c k e d ( ) ) , q u i t S t a t e ) ;

mach ine . addSta t e ( compound ) ;
mach ine . addSta t e ( q u i t S t a t e ) ;
mach ine . s e t I n i t i a l S t a t e ( compound ) ;
QObject : : connec t (&machine , SIGNAL( f i n i s h e d ( ) ) , QApp l i c a t i o n : : i n s t a n c e ( ) , SLOT( q u i t ( ) ) ) ;

mach ine . s t a r t ( ) ;

Listing 3.1: An adapted example of [87].

Boost.Statechart

As mentioned in section 3.3.2 on page 59, boost consists of two implementations
to create state machines. The �rst one is Boost.Statechart, formerly known as
boost.fsm. It is a C++ library for �nite state machines. It is possible to map most
of the features of UML state machines, and its corresponding semantics, to state
machines of Boost.Statecharts and vice versa24.

Listing A.1 de�nes a simple Boost.Statechart state machine which corresponds
to the UML diagram A.2. The code snippet 3.2 depicts the event de�nition.
Snippet 3.3 shows the de�nition of a state as well as a state machine.

s t r u c t EvS ta r tS top : s c : : event < EvSta r tS top > {} ;
s t r u c t EvReset : s c : : event < EvReset > {} ;
s t r u c t EvGetElapsedTime : sc : : event < EvGetE lapsedTime >{

p u b l i c :
EvGetE lapsedTime ( doub l e & t ime ) : time_ ( t ime ) {}
v o i d A s s i g n ( doub l e t ime ) con s t { time_ = t ime ; }

p r i v a t e :
doub l e & time_ ;

} ;

Listing 3.2: The event de�nition of the re�ned StopWatch.

s t r u c t A c t i v e ;
// StopWatch s t a t emach i n e w i t h a c t i v e as i n i t i a l S t a t e
s t r u c t StopWatch : s c : : s tate_mach ine < StopWatch , A c t i v e > {} ;
s t r u c t Stopped ;
// compos i t e a c t i v e s t a t e o f s topwatch w i t h Stopped i s i n i t i a l s t a t e
s t r u c t A c t i v e : s c : : s imp l e_s t a t e < Ac t i v e , StopWatch , Stopped >{

p u b l i c :
t y p e d e f s c : : t r a n s i t i o n < EvReset , A c t i v e > r e a c t i o n s ;
A c t i v e ( ) : e lapsedTime_ ( 0 .0 ) {}
doub l e & ElapsedTime ( ) { r e t u r n e lapsedTime_ ;}
doub l e E lapsedTime ( ) con s t { r e t u r n e lapsedTime_ ;}

p r i v a t e :
doub l e e lapsedTime_ ;

} ;

Listing 3.3: The de�nition of the state machine and the Active state.

The implementation makes use of template metaprogramming, CRTP, traits
and policies. Due to this design, it is possible to create state machines on a highly

24see http://www.boost.org/doc/libs/1_54_0/libs/statechart/doc/uml_mapping.html
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�exible basis which are build at compile time. It is even possible to distribute state
machines on multiple translation units25. The default state machine applies an
optimized RTTI. By using an RTTI-policy, it is possible to use the native C++
RTTI, or if necessary, alternative functions to get state type information provided
by the library. Because boost.Statechart is statically con�gured, the compiler is
able to optimize and validate the state machines at compile time. The double
dispatch does not require a dynamic table and thus an event dispatch will only call
a virtual function with an additional linear search for the transition26.

The default state machine is not thread safe. Boost.Statechart provides also
asynchronous state machines, using a scheduler policy that consists of a variable
worker policy for thread safety. The library consists of an additional concept
called state local storage which makes it possible to create state based context
fragments. Usually the state machine itself contains the context which results in a
monolithic class and thus in a hot spot for changes. Because most of the context
fragments are only relevant in a speci�c state, and state local storage provides a
mechanism to distribute the context elements to the states, the developer is able
to unclutter the state machine by the application of state local storage. Snippet
3.4 shows the destructor of the Running state which accesses the ElapsedTime

property of the compound Active state by state local storage.

~Runn ing ( ) { con tex t < Ac t i v e >() . E lapsedTime ( ) = ElapsedTime ( ) ; }

Listing 3.4: The destructor of the Running state.

Despite UML's Run-To-Completion semantics, Boost.Statechart is able to
handle exceptions at any time and thus supports unstable states and unstable
state machines. Yet, "[the libraries] exception event processing rules ensure that
a state machine is never unstable when it returns to the client"[88]. A speci�c
propagation mechanism will delegate the exception_thrown event to the state
that caused the exception if the state machine is stable, or to the outermost un-
stable state of the unstable state machine. Similar to the STL container, each
state machine has an allocator trait that can be customized for hard real time
requirements. [88]

Meta State Machine

The Meta State Machine (MSM) of Christophe Henry is the other state machine
library provided by Boost. State machines de�ned by Meta State Machine are
based on template metaprogramming similar to Boost.Statechart. Compared to
Boost.Statechart, the Meta State Machine library is far superior at runtime, but
it requires more e�ort at compile time.

The state machines are divided into frontend and backend. The frontend is a
DSL to represent the state transition table of the state machine. The backend
represents the policy based engine. Because of the policy based design, it is highly

25Depending on the compiler.
26Boost.Statechart de�nes so called reactions which imply transitions.
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�exible. The default backend is optimized for runtime speed, thus increasing the
compile time. Especially larger state machines will not compile by default because
of the maximum template recursion depth, as well as MPL and Boost.Fusion
limitations.

At the moment Meta State Machine provides three frontends to de�ne state
machines. The basic frontend is inherited from [85]. The transition table of
the player example from [85] is contained in listing A.2 that is the source of the
following code snippets (see �gure A.3 for the respective UML diagram). The
snippet 3.5 shows the declaration of the Empty state:

a_row < Empty , open_c lose , Open , &p : : open_drawer > ,
row < Empty , cd_detected , Stopped , &p : : s to r e_cd_in fo ,&p : : good_disk_format > ,
row < Empty , cd_detected , P l a y i n g , &p : : s to r e_cd_in fo ,&p : : a u to_s t a r t > ,

Listing 3.5: The state table entry of the Empty state for the basic frontend.

v o i d s to r e_cd_in fo ( cd_detected con s t&) { cout << " p l a y e r : : s to r e_cd_in fo \n" ; }

Listing 3.6: The de�nition of store_cd_info transition for the basic frontend.

boo l good_disk_format ( cd_detected con s t& ev t ) {
i f ( e v t . d i s c_type != DISK_CD){ cout << "wrong d i s k " << en d l ; r e t u r n f a l s e ; }
r e t u r n t r u e ;

}

Listing 3.7: The de�nition of good_disk_format guard for the basic frontend.

Ommitting elements from a row requires the developer to use a speci�c row,
like a_row in the snippet 3.5. Transitions are void member functions like in
snippet 3.6. Guards are bool member functions like in snippet 3.7. The de�nition
of events like in snippet 3.8, the de�nition of states like in snippet 3.9, and the
de�nition of the backend like in snippet 3.10 can be used in the basic frontend as
well as the functor frontend. Meta State Machine allows the developer to mix the
frontends within a state machine.

s t r u c t open_c lose {} ;
enum DiskTypeEnum{DISK_CD=0 ,DISK_DVD=1};
s t r u c t cd_detected {

cd_detected ( s t r i n g name , DiskTypeEnum d i s kType )
: name ( name ) , d i s c_type ( d i s kType ) {}

s t r i n g name ;
DiskTypeEnum d i s c_type ;

} ;

Listing 3.8: The MSM event de�nition of open_close and cd_detected for the
basic and the functor frontend.

// f r o n t�end : d e f i n e the FSM s t r u c t u r e
s t r u c t p l a ye r_ : p u b l i c msm : : f r o n t : : s tate_mach ine_def <p laye r_ >{
s t r u c t Empty : p u b l i c msm : : f r o n t : : s t a t e <>{
t emp l a t e < c l a s s Event , c l a s s FSM> vo i d on_entry ( Event con s t &,FSM&){ cout << " e n t e r i n g : Empty" <<

e n d l ; }
t emp l a t e < c l a s s Event , c l a s s FSM> vo i d on_ex i t ( Event con s t &,FSM& ) { cout << " l e a v i n g : Empty" <<

e n d l ; }
} ;

Listing 3.9: The MSM de�nition of the state machine and the Emtpy state for
the basic and the functor frontend.

t y p e d e f msm : : back : : s tate_mach ine <p laye r_ > p l a y e r ;

Listing 3.10: The registration of the backend.
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The functor frontend is more user friendly than the basic frontend. At the
moment, the functor frontend is the preferred frontend. The same player example
as before is implemented in listing A.3 with the functor frontend. The following
code snippets are from listing A.3. The snippet 3.11 shows the state table entry
of the Empty state. As depicted in the previous code snippet, instead of member
functions, the frontend uses functors. The Snippets 3.12 and 3.13 show the
transition and the guard as functor. The functor syntax can also be applied to
states, like in snippet 3.14.

Row < Empty , open_c lose , Open , open_drawer , none > ,
Row < Empty , cd_detected , Stopped , s to r e_cd_in fo , good_disk_format > ,
Row < Empty , cd_detected , P l a y i n g , s to r e_cd_in fo , au to_s t a r t > ,

Listing 3.11: The state table entry of the Empty state for the functor frontend.

s t r u c t s to r e_cd_in fo { t emp l a t e < c l a s s EVT, c l a s s FSM, c l a s s Sou rceSta te , c l a s s Targe tSta te > v o i d
o p e r a t o r ( ) (EVT con s t &,FSM& fsm , Sou r c eS t a t e& , Ta rge tS t a t e& ) { cout << " p l a y e r : : s to r e_cd_in fo " <<
e n d l ; } } ;

Listing 3.12: The de�nition of store_cd_info transition for the functor frontend.

s t r u c t good_disk_format {
t emp l a t e < c l a s s EVT, c l a s s FSM, c l a s s Sou rceSta te , c l a s s Targe tSta te >
boo l o p e r a t o r ( ) (EVT con s t& ev t ,FSM&, Sou r c eS t a t e& , Ta rge tS t a t e& ) {
i f ( e v t . d i s c_type != DISK_CD){ cout << "wrong d i s k " << en d l ; r e t u r n f a l s e ; }
r e t u r n t r u e ;

}
} ;

Listing 3.13: The de�nition of good_disk_format guard for the functor frontend.

s t r u c t Empty_Entry{ t emp l a t e < c l a s s Evt , c l a s s Fsm , c l a s s State > v o i d o p e r a t o r ( ) ( Evt con s t& ,Fsm&
, S ta t e& ) { cout << " e n t e r i n g : Empty" << e n d l ; } } ;

s t r u c t Empty_Exit { t emp l a t e < c l a s s Evt , c l a s s Fsm , c l a s s State > v o i d o p e r a t o r ( ) ( Evt con s t& ,Fsm&
, S ta t e& ) { cout << " l e a v i n g : Empty" << en d l ; } } ;

s t r u c t Empty : p u b l i c msm : : f r o n t : : euml : : f unc_sta te <Empty_Entry , Empty_Exit >{};

Listing 3.14: The functor de�nition of the Emtpy state.

The experimental eUML frontend is the newest Meta State Machine frontend.
Its syntax is more UML like and contains less syntactic noise. Yet another imple-
mentation of the player example implemented with the eUML frontend is depicted
in listing A.4. The following snippets are extracted from this listing. For each
de�nition exists a macro that is usually expanded to the functor frontend.

The former event de�nition can be rewritten like in snippet 3.15. Guards and
transitions are de�ned as actions, depicted in snippet 3.16 and 3.17. The state
de�nition is simpli�ed to the state macro, depicted in snippet 3.18. The exit and
entry behavior can be de�ned as action as well. Using the macro syntax, requires
the developer to explicitly declare the state machine as depicted in listing 3.19.
The state transition table looks more user friendly, like in snippet 3.20. It could
also be written with the alternative notation, beginning with the target state.

BOOST_MSM_EUML_EVENT( open_c lose )
enum DiskTypeEnum{DISK_CD=0 ,DISK_DVD=1};
BOOST_MSM_EUML_DECLARE_ATTRIBUTE( s t r i n g , cd_name )
BOOST_MSM_EUML_DECLARE_ATTRIBUTE(DiskTypeEnum , cd_type )
BOOST_MSM_EUML_ATTRIBUTES( ( a t t r i b u t e s_ << cd_name << cd_type ) , c d_de t e c t e d_a t t r i b u t e s )
BOOST_MSM_EUML_EVENT_WITH_ATTRIBUTES( cd_detected , c d_de t e c t e d_a t t r i b u t e s )

Listing 3.15: The event de�nition of open_close and cd_detected using the
eUML macro syntax.
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BOOST_MSM_EUML_ACTION( good_disk_format ) {
t emp l a t e < c l a s s FSM, c l a s s EVT, c l a s s Sou rceSta te , c l a s s Targe tSta te >
boo l o p e r a t o r ( ) (EVT con s t& evt ,FSM&, Sou r c eS t a t e& , Ta rge tS t a t e& ) { i f

( e v t . g e t_a t t r i b u t e ( cd_type ) !=DISK_CD){ cout << "wrong d i s k , s o r r y " << e n d l ; r e t u r n f a l s e ; }
r e t u r n t r u e ;

}
} ;

Listing 3.16: The de�nition of good_disk_format guard using the eUML macro
syntax.

BOOST_MSM_EUML_ACTION( s to r e_cd_in fo ) { t emp l a t e < c l a s s EVT, c l a s s FSM, c l a s s Sou rceSta te , c l a s s
Targe tSta te > v o i d o p e r a t o r ( ) (EVT con s t &,FSM& fsm , Sou r c eS t a t e& , Ta rg e tS t a t e& ) { cout <<
" p l a y e r : : s to r e_cd_in fo " << e n d l ; } } ;

Listing 3.17: The de�nition of store_cd_info transition using the eUML macro
syntax.

BOOST_MSM_EUML_STATE( ( Empty_Entry , Empty_Exit ) , Empty )

Listing 3.18: The de�nition of the Empty state with the respective eUML macro.

Empty + open_c lose / open_drawer == Open ,
Empty + cd_detected [ good_disk_format ] / s to r e_cd_in fo == Stopped ,
Empty + cd_detected [ au t o_s t a r t ] / s to r e_cd_in fo == P l a y i n g ,

Listing 3.19: The state transition table entry of the Emtpy state using the eUML
frontend.

BOOST_MSM_EUML_DECLARE_STATE_MACHINE( ( t r a n s i t i o n_ t a b l e , //STT
i n i t_ << Empty , // I n i t S t a t e
no_act ion , // Ent r y
no_act ion , // E x i t
a t t r i b u t e s_ << no_att r i bu te s_ , // A t t r i b u t e s
con f i g u r e_ << no_conf igure_ , // c o n f i g u r a t i o n
Log_No_Trans it ion // n o_ t r a n s i t i o n h a n d l e r
) , p l a y e r_ ) // fsm name

Listing 3.20: The de�nition of the player state machine using the eUML macro
syntax.

Because of the separation between frontend and backend, it is possible to de�ne
user speci�c DSLs to represent state machines in C++. It is also possible to provide
di�erent semantics by the backend. Because Meta State Machine calculates most
of the state machine aspects at compile time, the compiler is able to optimize
and validate27 the state machine. The compile time optimization results in a
highly e�cient state machine. The compile time validation is able to check that
orthogonal regions are really orthogonal and that each state is reachable.

The double dispatch is executed at constant-time. The run-to-completion
semantics depend on the con�guration of the backend (like enabled exception
handling, or message queuing) and the structure of the state machine. Because
each state machine is represented as state transition table, which uses the row
template, it is possible to substitute states with sub state machines and thus
enable the developer to create a highly scalable state machine.

Meta State Machine supports the complete UML state machine syntax and
full UML state machine semantics. Each concept can be directly mapped to Meta
State Machine source code. The default behavior corresponds to the de�ned
UML behavior. Additionally, Meta State Machine provides interrupt states for

27The validation is done by the compile time graph library mpl_graph.
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sophisticated error handling, and Kleene events to simplify the transitions of a
state machine if any event should trigger the transition.

Yet another useful feature are �ags to simplify state conditions. Flags enable
the user to de�ne speci�c conditions which apply for speci�c states. Instead of
querying the state machine for its states, the user is able to query the �ags (see
[89] for details).

3.5 Synopsis

C++ is called a multiparadigm programming language because it consists of var-
ious language features and concepts. Generating C++ supports the developer to
combine the features correctly. It can also prevent vicious combinations. Mapping
UML classes to C++ classes seems to be easy, but C++ consists of more than
one representation for a class (e.g., base, value, policy, trait, exception, anxcillary
class). While dynamic polymorphism can be modeled in UML pretty straighfor-
ward, static polymorphism and meta programming requires either a pro�le or an
external model extension. Other options like constness, friendship, inlining, guar-
antees and memory alllocation should not be part of the model because they are
details of a lower abstraction layer. The same applies for compiler speci�c options
(e.g., applying RTTI, Empty Base Optimization, RVO, pre-compiled header) and
corresponding implementation patterns (e.g., NVI, pImpl, CRTP). Modeling a
class that is based on policy based design, or references traits, requires a sophis-
ticated parametrization approach. Thus, it is only resasonable to provide at least
one language extension for C++.

While the Qt state machine framework can be generated straigthforward,
the boost state machine frameworks need to be enriched with more information.
Boost.statecharts is based on template metaprogramming and uses policy based
design and CRTP to provide a �exible and con�gurable implementation. Meta
State machine di�erentiate between frontend and backend. The generator should
let the developer choose the frontend DSL and the backend con�guration. The
semantics should also be selectable because of possible restrictions determined by
the speci�cations, requirements or the system environment. An additional lan-
guage extension for the con�guration of implementation speci�c state machines
will enable the developer to do this in a more sophisticated manner than UML
provides at the moment.
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Chapter 4

Implementation

4.1 Mapping problem

As depicted in the previous chapters, C++ provides multiple state machine imple-
mentations and thus multiple target representations. UML state machines provide
just one source representation1 with semantic variation points. A solution would
be to specify the requirements and pick the most sophisticated target represen-
tation. This is done in [90]. That solution does not scale well and the language
users could have divergent requirements for their products. The alternative would
be to enrich the model with additional information. Outlined in the �rst chap-
ter, enriching a model with ancillary information is usually done with an additional
language or by adapting the source language. The extension language needs to
be tailored to the domain, and it requires to reference UML model elements (see
section 1.4 on page 2 and section 1.5 on page 3).

The classical MDA approach proposes the pro�ling mechanism (see [26]). This
solution is feasible, yet the model will contain technical details not relevant for its
purpose. Adding details to a model lowers the abstraction level and thus the
expressiveness of the model. The alternative of adapting the metamodel is more
intrusive and less portable. The preferable approach should render domain speci�c
views of the model which represent only relevant information. It should weave
all the information together to create a concrete representation of the target
language. Language oriented programming as well as language modularization,
introduced in section 1.11 on page 19, represent such an approach.

4.2 Solution approach

Based on the principles of language oriented programming and language compo-
sition, one core language provides a well de�ned interface for other languages,
so they can reference the core language elements. Using a language workbench,

1It is possible to model the same state machine with di�erent concepts, but UML provides
only one concrete syntax.

69



like MPS or Intentional Domain Workbench, demands to implement the concrete
syntax of UML within the language workbench from the language engineer. But
most of the domain experts, and system architects, use a UML editor to model the
system. A UML editor is usually a projectional editor. If the language workbench
is also a projectional editor, it will require an import of the UML model. Because
of incompatibility issues, this import is not provided out of the box, and it is usually
not wanted by the manufacturer of the language workbench.

Yet the Eclipse Modeling Framework2 (EMF) is a full featured modeling frame-
work, which provides an XMI interface, to read and write models [91]. UML2 of
the Model Development Tools3 provides an EMF based UML implementation. If
the UML editor has an EMF UML serialization, it will be possible to work with
the exported model in an EMF environment. Within the Eclipse ecosystem, those
models can be referenced and adapted by Eclipse based editors. Xtext, for ex-
ample, is a framework to develop languages. It uses one or more context free
grammars, similar to the extended backus naur form, to create EMF components.
Because each context free grammar can be transformed into a metamodel, Xtext
provides a transformation to transform the grammar into a metamodel (see sec-
tion 1.6.1 on page 5). Therefore, those languages integrate themselves smoothly
into the Eclipse ecosystem. Within those languages, it is possible to reference
other languages by their metamodels. Thus, it is possible to create a non-invasive
language extension for a UML model based on the abstract syntax model. Figure
4.1 depicts the solution approach explained in the following sections.

Figure 4.1: A draft of the scalable, yet �exible, solution approach to generate
C++ out of UML.

2http://www.eclipse.org/modeling/emf/
3http://www.eclipse.org/modeling/mdt/
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4.2.1 Model transformation

The UML metamodel based on its superstructure [29] and infrastructure [28] is
very complex. This abstract syntax does not suit the characteristics of a language,
which have been discussed in section 1.5 on page 3, because the intention of UML
is general purpose modeling. Hence, UML is not tailored to a speci�c domain. It
violates simplicity, minimalism, introduces accidental complexity and thus impedes
the language engineer to create proper language transformations.

The GeneSEZ4 framework provides a dense metamodel which consists of trans-
formation relevant language elements. It simpli�es and minimizes the language
interface and thus simpli�es the generation process, as well as the language com-
position and extension known from section 1.9 on page 17. A supplied model
to model transformation of the GeneSEZ framework transforms a serialized UML
model into an instance of the gcore metamodel. Using the abstract syntax of the
GeneSEZ metamodel as core language, and referencing it within Xtext grammars,
results in a scalable extension mechanism.

It is also possible to use a di�erent source language as long as a transformation
to a GeneSEZ compliant model exists5. Figure 4.2 shows the state machine part
of the gcore metamodel. Compared to �gure 2.6 on page 36, which shows the
state machine part of the UML metamodel, the gcore metamodel is clearer and
contains more information (e.g., events and transitions), models states slightly
di�erent and spares regions.

Figure 4.2: The state machine part of the gcore metamodel.

4http://genesez.org/
5The GeneSEZ term for such a transformation is called adapter.
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4.2.2 Language extension

Each language extension depends directly on the applied technology. An Xtext
based extension requires a grammar �le to derive a metamodel. This process is
adaptable by exchanging, and extending, the work�ow components of the work�ow
to create the software artifacts. An alternative would be EMFText6 that derives
its artifacts from an existing metamodel. Yet another technology is Epsilon7. It
introduces an additional abstraction layer which consists of the Epsilon Model
Connectivity and the Epsilon Object Language.

For the sake of simplicity the language extensions are based on Xtext. The
abstract syntax can be represented by a grammar �le. Other models can be
referenced. The editor can be customized. There is almost no con�guration
overhead.

Because the audience will be developers, a text based editor within the Eclipse
IDE is su�cient to express the will of the user e�cient and e�ective. This ap-
proach requires EMF and thus excludes more sophisticated language workbenches
(e.g., Meta Programming System, Intentional Domain Workbench) because of
the incompatibility of the abstract syntax. If the language workbench is based on
EMF, or provides an EMF interface, it should be possible to integrate it and its
extensions within the multistage pipeline.

Each extension consists of an Xtext project and its respective user interface
project for the editor. Because a work�ow is provided to con�gure the extension,
each aspect of the editor and the language generation is adaptable. Gcore needs
to be registered within the work�ow. It needs to be imported into the grammar
to reference the gcore language elements. Because the GeneSEZ metamodel is
already instantiated, it is not possible to derive from the metamodel8. Hence,
additional rules need to encapsulate the respective core elements. Because this is
similar to the language annotation approach, discussed in section 1.11.1 on page
21, this approach will only provide positive variability (see section 1.12 on page
27, [54] and [56] for details).

The language extension itself can be specialized for target language speci�c
aspects. E.g., the state machine extension can be specialized for C++ to pro-
vide additional mappings for boost.Statechart, Meta State Machine or the Qt
State Machine Framework. This enables a more granular con�guration for state
machines that could be mapped to implementation speci�c details and policy con-
�gurations.

Then again, an abstract language extension can be reused for other platforms
to create a product line or even a software factory (see section 1.11.2 on page 22).
If intended, even the core language could be exchanged, because each extension
references only speci�c elements9 of the core language.

The result is an editor within Eclipse to create one or more extension �les.
The editor itself is text based, and the extension requires access to the serial-

6http://www.emftext.org/index.php/EMFText
7http://www.eclipse.org/epsilon/
8In this case, EMF de�nes inheritance as bidirectional. Xtext enables inheritance from a

grammar because the metamodel will yet be generated.
9In this case, those elements are depicted in �gure 4.2.
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ized model. Compared to a UML pro�le, such an extension should be used for
technical domain aspects. Especially functional aspects should be represented by
stereotypes within the model because this information is relevant for the domain
expert. Stereotypes can alter and control the UML2GeneSEZ transformation step.
Because the language extensions reference an already transformed model, they
cannot alter this transformation. Hence, only following transformations can be
adapted. The obvious disadvantage is the required presence of a gcore instance
model.

The resulting DSLs are external, horizontal and target the application devel-
oper. While creating the UML model follows the modular decomposition approach,
each language extension should follow the aspectual decomposition10. I.e., a class
is modeled modular. If the class uses policy based design, each policy, like thread-
ing or logging, will be con�gured by one or more extensions and therefore will be
based on aspectual decomposition. Another aspect of those language extensions
are the semantic variation points of the UML (e.g., the event processing of UML
state machines). Those variation points are independent from the model but cru-
cial for the resulting software. The language user should be able to choose the
appropriate semantics in a pragmatic manner. The semantics should be easy to
use and understand and thus ideally be pragmatic semantics (see page 9).

4.2.3 Generation

Subsequent transformations could either be model to model or model to text
transformations. Because Xtext provides the transformation language Xtend2,
it is only reasonable to use it for the following generation process. Because of
its template syntax inherited from Xpand11, its Java like syntax12 and the di-
rect Guice13 support, the opportunity arises to use this language for the model
to text transformation14. Xtend2 is able to manipulate the model directly in a
uni-directional manner. Thus, it requires the language engineer to write each
transformation rule by himself. Tracing needs to be implemented by the language
engineer, too. Because Xtend2 is interpreted, it simpli�es the debugging of the
transformation process at runtime.

For this prototypical implementation a model to text transformation based on
Xtend2 is su�cient. If required, it could be replaced, or complemented, seam-
lessly by an alternative transformation approach (e.g., graph transformation, op-
erational transformation, relational transformation, and so on) and its respective
EMF based implementation (e.g., Epsilon Transformation Language, ATL Trans-
formation Language, QVT Declarative, and so on)15. The main advantage of
alternative transformation approaches are, more sophisticated model to model
transformations to weave the information into the model, and thus create an in-

10Yet specializing a language extension follows the modular decomposition approach.
11http://www.eclipse.org/modeling/m2t/?project=xpand
12Xtend2 compiles completely to Java and can be used interchangeably.
13https://code.google.com/p/google-guice/
14It could also be used for model to model transformations.
15see the model transformations of http://www.eclipse.org/modeling/
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termediate model to simplify the model to text transformations. Or more sophis-
ticated model to text transformations provided by the respective implementation.

The model to text transformation, based on Xtend2, is separated into the main
generator (see �gure 4.3) and the language extension generators (see �gure 4.4
and �gure 4.5). The main generator project contains a CppGeneratorComponent
to con�gure the generator setup as well as the language extensions. To create
a speci�c Injector by Guice, the respective RuntimeModule is injected into the
main generator setup. The RuntimeModule binds the speci�c Generators and
the protected region resolver.

Figure 4.3: A structural overview of the C++ platform project.

A protected region resolver makes so called protected regions available to
provide an alternative to subclassing. A protected region is a tagged code segment
for user speci�c implementation details. The Xtext Protected Region Plug-in
from Daniel Dietrich16 extends the Xtext framework by protected regions. It
overwrites the default behavior of the JavaIoFileSystemAccess, and it provides
a ParserFactory to register language speci�c parsers to create protected regions
based on the target language.

The main generator overrides the doGenerate method of the IGenerator in-
terface and contains a reference to each extension generator. The main generator
project provides an interface for each extension generator as well as a default im-
plementation. It injects each extension generator and protected region resolver

16https://github.com/danieldietrich/xtext-protected-regions
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into the main template class by setter injection. Subsequently, the generator calls
the templates generate method.

The template class creates the resulting character stream and delegates parts
of the creation to the extension generators. Because the main generator provides
the extension generator interface, the language engineer of the extension can
provide di�erent generators, thus di�erent semantics for the language user, if
required.

Figure 4.4: A structural overview of the state machine extension platform. This
extension is not C++ speci�c, but can be specialized for C++ speci�c implemen-
tations.

Each extension generator implements the IGenerator as well as its extension
generator interface. Because of a �aw in the work�ow engine, the doGenerate

method of the IGenerator interface is misused to inject the model resource17 at
the invocation of the work�ow component.

Because EMF uses URIs to identify objects, it is necessary to query the re-
sources by the model element to get the correct gcore model and the correct
extension model. Otherwise, EMF is not able to resolve the model element cor-
rectly, and it is not able to �nd the corresponding model element in the gcore

model. With the model element and the correct model instances, it is possible
to check for eventual extensions and alter the generation process respective to
the extension generator. Figure 4.3 shows the structure of the C++ platform
project. Figure 4.4 and 4.5 show the structure of the extension projects. The
class diagrams omit speci�c details for brevity.

17The same applies for the protected region resolver.
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Figure 4.5: A structural overview of the C++ extension platform. At the moment
only MOperations are enriched with additional information.

4.2.4 Con�guration

It is common to use a work�ow or con�guration language to con�gure the trans-
formation process. It could be done with any general purpose language, like Java,
but this approach is usually not very intuitive for the language user. The used work-
�ow language is MWE2 which is also part of the Xtext framework. An MWE2
work�ow is controlled by components which are plain Java classes. These compo-
nents implement at least the IWorfklowComponent with its preInvoke, invoke
and postInvoke methods, to provide a sequential �ow of execution.

If the user wants to use di�erent generators for the language extension, he
must create a project speci�c runtime module to overwrite the default bindings.
If he uses the language extension, he must register each StandaloneSetup so
that the work�ow runtime can read the extension instances. Additionally, he
has to register the GcoreSupport, or the references to the gcore model will
not be resolved by Xtext. Because an IGenerator requires an EMF Resource,
the respective core model has to be serialized. With all this prerequisites the
CppGeneratotComponent can be con�gured with the project speci�c Runtime-

Module, as well as the respective models or resources.

Thus, the user of the generator is able to adapt the generation process re-
spective to his requirements. If he requires the service of a language extension,
he must create an extension �le and register it at the work�ow. Additionally, he
con�gures the RuntimeModule with the speci�c generator. This approach enables
non-intrusive positive feature variability in an aspect oriented fashion. Each lan-
guage extension captures a speci�c aspect. The con�gured generation process
adds the information to the result. The passive core model is referenced actively
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by the respective extension models. If the syntax or semantics of the language
extension is insu�cient, the language engineer can adapt either the speci�c lan-
guage or provide an alternative generator. This enables generative programming
in a product line engineering fashion.

The main drawback is the tight coupling between the extension generator
interfaces and the calls within the main generation process. An advantage is the
�exible mapping from problem to solution domain. The language user is able to
create and con�gure a product line similar to a feature model. Thus, he can
generate a speci�c target language instance from a product family.

4.3 Reference implementation

The reference implementation uses an adapted version of the TimeBomb example
from [64]. Figure A.4 and A.5 show the respective class and state machine model.
The example is GeneSEZ-like divided into the actual project and the generator
project. The generator project contains the model, the work�ow and the extension
�les. Executing the SerializeCoreModel work�ow creates a gcore instance of
the model and exports the respective XMI representation.

For now, a runtime Eclipse is necessary to deploy the language extension with
its editor to an Eclipse instance. This instance is able to interpret �les with the
registered �le extensions correctly as language instances. To write a language
extension �le, the project needs a reference to the serialized gcore instance (see
�gure 4.6).

Figure 4.6: A runtime Eclipse with the deployed language extensions. Each ex-
tension �le references the serialized model of the project.
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As depicted in section 4.2.2 on page 72, each language extension consists
of two projects18. The org.genesez.gcore.statemachine.addon project is
the actual language extension for the state machines. The respective ui plugin
con�gures the editor and will be used by default19. Within the org.genesez.-

gcore.statemachine package of the Xtext project is a work�ow, a grammar,
a RuntimeModule and a StandaloneSetup. Listing 4.2 on page 79 shows the
grammar example of the language extension for state machines.

The �rst line speci�es the grammar name and the inheritance of terminals like
'ID'. The second line tells Xtext to create a metamodel. The third line imports
gcore20. The �fth line contains the starting rule. The StateMachine rule encap-
sulates an MStateMachine of gcore within an AugmentedMStateMachine. The
AugmentedStateMachine rule adds the additional information to the Augmented-
MStateMachine. The grammar enables the language user exemplarily to con�gure
the implementation kind of the generated state machine (see section 2.4 on page
42).

Figure 4.7 shows the respective metamodel that will be generated from the
grammar by Xtext.

Figure 4.7: The respective metamodel of the state machine grammar from listing
4.2 on the following page.

The work�ow contains the grammar URI, the �le extension, the generator
and various project speci�c details. To generate working EMF resources, the
respective gcore resources have to be registered, like in snippet 4.1 from the
GenerateAddOn.mwe2 work�ow of the project.

r e g i s t e r G e nMo d e l F i l e =
" p l a t f o rm : / r e s o u r c e / org . g ene s e z . metamodel . c o r e /model / gco r e . genmode l "

r e g i s t e rG e n e r a t e dEPa c k a g e = " org . g ene s e z . metamodel . g co r e . GcorePackage "

Listing 4.1: The gcore import for the work�ow to generate the state machine
extension Plug-in.

To gain text based auto completion and syntax highlighting of the gcore

instance within the language extension editor, the org.genesez.gcore.resource
18Xtext projects consist usually of an additional sdk and test project. These are omitted for

the sake of brevity.
19Because of a �aw in Xtend2.3 the projects cannot contain the word extension and thus are

named addon instead.
20This is possible due to a Plug-in dependency to org.genesez.metamodel.core
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Plug-in21 needs to be deployed. It registers the XMI �le extension at Xtext, hence
Xtext is able to access and parse serialized gcore models.

1 grammar org . g ene s e z . g co r e . s t a t emach i n e . AddOn w i t h
org . e c l i p s e . x t e x t . common . Te rm i n a l s

2 g e n e r a t e addOn " h t t p : //www. gene s e z . o rg / gco r e / s t a t emach i n e /AddOn"
3 impo r t " h t t p : // gene s e z . o rg /metamodel / co r e " as gco r e
4

5 Root :
6 s t a t ema c h i n e s+=AugmentStateMachine * ;
7 StateMach ine r e t u r n s AugmentedMStateMachine :
8 s t a t emach i n e =[ gco r e : : MStateMachine | Qua l i f i e dName ] ;
9 Qua l i f i e dName :
10 ID ( " . " ID ) * ;
11 AugmentStateMachine r e t u r n s AugmentedMStateMachine :
12 StateMach ine ' imp l ement s ' imp l emen t a t i o nK i n d = Imp l emen t a t i o nK i nd ;
13 enum Imp l emen t a t i o nK i nd :
14 NESTEDSWITCH = ' n e s t e dSw i t c h ' |
15 STATEPATTERN = ' S t a t ePa t t e r n ' ;

Listing 4.2: The Xtext grammar �le of the org.genesez.gcore.-

statemachine.addon project

The org.genesez.gcore.statemachine.generator package contains an
AugmentedStateMachineGenerator and a StatePatternGenerator (see �gure
4.4 on page 75). Both implement the IStateMachineGenerator interface of the
org.genesez.platform.cpp2 project. The AugmentedStateMachineGenerator
is also an IGenerator and the entry point for the generation process of the lan-
guage extension. As outlined in section 4.2.3 on page 73, the doGenerate method
is misused to inject the extension model and the IFileSystemAccess which han-
dles the protected regions (see listing 4.3).

o v e r r i d e doGene ra te ( Resou rce i npu t , I F i l e S y s t emAc c e s s f s a ) {
s e tRe s ou r c e ( i n p u t )
t h i s . f s a = f s a

}

Listing 4.3: The doGenerate operation of the AugmentedStateMachineGener-

ator.

The moment the setStateMachine method is called, a ResourceSet of EMF
is queried to get the proper gcore and extension instances22 (see listing 4.4).

de f v o i d qu e r yRe s ou r c e s ( URI rootMode l , URI r e f e r e n c i n gMod e l )
{//a f r e s h l y i n s t a n t i a t e d Resou r ceSe t can a c c e s s r e g i s t e r e d r e s o u r c e s

v a r Resou r ceSe t r s = new Re sou r c eSe t Imp l ( )
gcoreMode l = r s . g e tRe sou r c e ( rootMode l , t r u e )
myModel = r s . g e tRe sou r c e ( r e f e r e n c i n gMod e l , t r u e )

}

Listing 4.4: The queryResources operation of the AugmentedStateMachine-

Generator.

21Together with its respective ui Plug-in.
22Despite the already injected extension model, EMF requires the reference of the model

instance, that is present in the ResourceSet, together with the gcore instance to resolve calls
to model elements.
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With the correct model instances, it is possible to query the extension model.
If it contains a reference to the injected MStateMachine, the respective data will
be evaluated. Currently, the xmiGuid of the MStateMachine is used to identify
the correct state machine (see listing 4.5).

Each time a state machine is set, the extension generator queries the exten-
sion model which is similar to an output-driven traversing approach (see the item
Translating on page 12). The implementation is ine�cient, but to phrase [92]:
"... performance is not a high priority because the code generator itself is not in
production. It is the generated code that must match the performance metrics of
the project. Memory space e�ciency is also of little concern because the generator
is run o�ine during development."

Depending on the queried information, the extension generator creates a spe-
ci�c generator, to delegate the code generation calls, and injects the
MStateMachine into this generator.

de f d i s p a t c h Imp l emen t a t i o nK i nd f i n d ( Root root , MStateMachine sm) {
f o r ( AugmentedMStateMachine asm : r o o t . s t a t ema c h i n e s ) {

i f ( asm . wraps ( sm) ) { r e t u r n asm . imp l emen t a t i o nK i n d }
}
r e t u r n Imp l emen t a t i o nK i nd : : NESTEDSWITCH

}
de f boo l e an wraps ( AugmentedMStateMachine asm , MStateMachine sm) {

i f ( asm . s t a t emach i n e . xmiGu id==sm . xmiGu id ) { r e t u r n t r u e }
e l s e { r e t u r n f a l s e }

}

Listing 4.5: The evaluation of a possible extension of an MStateMachine within
the AugmentedStateMachineGenerator.

E.g., The StatePatternGenerator contains templates to create a state ma-
chine based on the state pattern (see [12] and section 2.4 on page 42). Because
it implements the IStateMachineGenerator, each method call can be forwarded.
The default generator is the NestedSwitchGenerator. It will be the fallback gen-
erator if the state machine is not enriched by the language extension (see listing
4.5 and 4.6).

o v e r r i d e s e tS t a t eMach i n e ( MStateMachine s t a t emach i n e ) {
qu e r yRe s ou r c e s ( s t a t emach i n e . eResou r ce . URI , myModel . URI )
sm = s t a t emach i n e
imp l = qu e r y Imp l emen t a t i o n
sw i t c h ( imp l ) {

ca s e Imp l emen t a t i o nK i nd : : NESTEDSWITCH: smGen = new
Nes t edSw i t c hGene r a t o r

ca s e Imp l emen t a t i o nK i nd : : STATEPATTERN: smGen = new
S t a t ePa t t e r nGe n e r a t o r

d e f a u l t : smGen = new Nes t edSw i t c hGene r a t o r }
smGen . s e tS t a t eMach i n e ( sm) }

Listing 4.6: The choice of the template generator, respective to the augmentation
of the MStateMachine, within within the AugmentedStateMachineGenerator.

An alternative approach is realized with the org.genesez.platform.cpp.-

addon project that extends MOperation23 with C++ speci�c information. It is
23An MOperation is the gcore representation of a UML Operation
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similar to the org.genesez.gcore.statemachine.addon project. The di�erence
is the omission of the additional level of indirection for speci�c implementation
kinds. Because of the required information within an ExtendedMOperation, the
ExtendedOperationGenerator handles the generateOperation call directly. It
is illustrated in the class diagram 4.5 on page 76. An example of the grammar
and the respective metamodel can be found in the appendix (see listing A.5 and
�gure A.6).

The org.genesez.platform.cpp2 project represents the main generator for
C++. It consist of a work�ow, an extension and a generator package. The
work�ow package contains work�ow components, as well as the default Cpp-

GeneratorRuntimeModule and the CppGeneratorSetup to register a Runtime-

Module. The StandAloneSetupCollectorComponent collects each Standalone-
Setup of the language extension, to establish an EMF registration, necessary
for the project speci�c work�ow (see section 4.2.4 on page 76). The Cpp-

GeneratorComponent con�gures and invokes the generation process. It requires
a RuntimeModule to con�gure the generator bindings for Guice, and it needs at
least the core model (see listing 4.7).

The additional extension resources are optional and prototypically set by explicit
slots. Each generator is queried by the Guice injector. If the slots for the extension
resources are set, the extension resource, as well as the IFileSystemAccess, will
be injected by the doGenerate method into the speci�c generator (see listing 4.8
on the following page).

Finally, the doGenerate method of the CppGenerator is called to start the
generation process.

p u b l i c v o i d p r e I n v o k e ( ) {
s up e r . p r e I n v o k e ( ) ;
i f ( s l o tNames . i sEmpty ( ) ) { throw new I l l e g a l S t a t e E x c e p t i o n ( "no ' s l o t '

has been c o n f i g u r e d . " ) ; }
i f ( ( e x tOpS lo t == n u l l | | ( e x tOpS lo t . i sEmpty ( ) ) ) &&

( i n j e c t o r . g e t I n s t a n c e ( IOp e r a t i o nG e n e r a t o r . c l a s s ) i n s t a n c e o f
I G e n e r a t o r ) ) {

throw new I l l e g a l S t a t e E x c e p t i o n ( " E x t e n s i o n Gene r a t o r " +
i n j e c t o r . g e t I n s t a n c e ( IOp e r a t i o nG e n e r a t o r . c l a s s ) . t o S t r i n g ( )

+ " i n c o r r e c t l y c o n f i g u r e d w i t h empty r e s o u r c e " ) ; }
i f ( ( asmSlot == n u l l | | ( asmS lot . i sEmpty ( ) ) ) &&

( i n j e c t o r . g e t I n s t a n c e ( I S t a t eMach i n eGen e r a t o r . c l a s s ) i n s t a n c e o f
I G e n e r a t o r ) ) {

throw new I l l e g a l S t a t e E x c e p t i o n ( " E x t e n s i o n Gene r a t o r " +
i n j e c t o r . g e t I n s t a n c e ( I S t a t eMach i n eGen e r a t o r . c l a s s ) . t o S t r i n g ( )

+ " i n c o r r e c t l y c o n f i g u r e d w i t h empty r e s o u r c e " ) ; }
} ;

Listing 4.7: The preInvoke method of the CppGeneratorComponent to check
for an available Injector as well as an available coremodel slot.
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p u b l i c v o i d i n v o k e ( IWork f l owContex t c t x ) {
I G e n e r a t o r cppGene r a to r = i n j e c t o r . g e t I n s t a n c e ( I G e n e r a t o r . c l a s s ) ;
I F i l e S y s t emAc c e s s f s a = g e tCo n f i g u r e dF i l e S y s t emAc c e s s ( ) ;
IOp e r a t i o nG e n e r a t o r o p e r a t i o nG e n e r a t o r =

i n j e c t o r . g e t I n s t a n c e ( IOp e r a t i o nG e n e r a t o r . c l a s s ) ;
i f ( e x tOpS lo t != n u l l && ! ( ex tOpS lo t . i sEmpty ( ) ) ) {

Ob jec t cppEx t en s i onMode l = c t x . ge t ( e x tOpS lo t ) ;
( ( I G e n e r a t o r ) o p e r a t i o nG e n e r a t o r ) . doGene ra te ( ( ( EObject )

cppEx t en s i onMode l ) . eResou r ce ( ) , f s a ) ;
}
( ( CppGenerato r )

cppGene r a to r ) . s e t IO p e r a t i o nG e n e r a t o r ( o p e r a t i o nG e n e r a t o r ) ;
I S t a t eMach i n eGen e r a t o r smGenerator =

i n j e c t o r . g e t I n s t a n c e ( I S t a t eMach i n eGen e r a t o r . c l a s s ) ;
i f ( a smS lot != n u l l && ! ( asmSlot . i sEmpty ( ) ) ) {

Ob jec t smExtens ionMode l = c t x . ge t ( asmS lot ) ;
( ( I G e n e r a t o r ) smGenerato r ) . doGene ra te ( ( ( EObject )

smExtens ionMode l ) . eResou r ce ( ) , f s a ) ;
}
( ( CppGenerato r ) cppGene r a to r ) . s e t I S t a t eMa c h i n eG e n e r a t o r ( smGenerator ) ;

Listing 4.8: The con�guration of each generator within the invoke method of the
CppGeneratorComponent.

The CppGenerator is part of the generator package. It is yet another level of
indirection to con�gure and call the Class template class. As already discussed
in section 3.2 on page 49, the resulting source code is divided into the header
speci�c declaration part and the de�nition part. If the respective class contains
an ownedBehavior of type MStateMachine, the speci�c interface methods of the
IStateMachineGenerator will be called to weave in the state machine aspect
(see listing 4.9).

de f ha sS ta t eMach i ne ( MClass i t ) {
i f ( ownedBehav io r . s i z e ==1){

v a r b e h a v i o r = ownedBehav io r . ge t (0 )
sw i t c h ( b e h a v i o r ) {

MStateMachine : {
smGen . s e tS t a t eMach i n e ( b e h a v i o r )
r e t u r n t r u e }

}
}
r e t u r n f a l s e }

Listing 4.9: The hasStateMachine method of the Class template class to
evaluate if the respective MClass has a MStateMachine.

Each interface and default implementation of an extension generator is con-
tained in the extensions package. Because Xtend2.3 is not able to support in-
terfaces, the extension interfaces are plain Java interfaces. E.g., The IState-

MachineGenerator is a simple interface with one method to set an MState-

Machine, a declaration and a de�nition method, as well as a method for signals
and states returning a CharSequence.
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The TimeBomb example is con�gured with a state machine extension and an
operation extension (see listing 4.10 and listing 4.11).

org . g ene s e z . examp le . cpp . timebomb . timebomb . TimeBomb . TimeBomb imp l ement s
S t a t ePa t t e r n

Listing 4.10: The state machine extension �le to con�gure the TimeBomb example
with a StatePattern implementation.

org . g ene s e z . examp le . cpp . timebomb . timebomb . TimeBomb . getPower con s t throw ( )
o rg . g ene s e z . examp le . cpp . timebomb . timebomb . TimeBomb . i sArmed con s t

Listing 4.11: The operation extension �le of the TimeBomb example with C++
speci�c details.

The project speci�c RunTimeModule binds the speci�c generators (see listing
4.12). Because it derives from the CppGeneratorRuntimeModule, it also consists
of the adapted IFileSystemAccess to generate protected regions.

p u b l i c c l a s s TimeBombRuntimeModule e x t e n d s CppGeneratorRunt imeModu le {
p u b l i c TimeBombRuntimeModule ( ) {}

@Ove r r i d e
p u b l i c C l a s s <? e x t e n d s IOp e r a t i o nGen e r a t o r > b i n d IOp e r a t i o nG e n e r a t o r ( )
{

r e t u r n org . g ene s e z . p l a t f o rm . cpp . g e n e r a t o r
. E x t e nd edOpe r a t i o nGene r a t o r . c l a s s ;

}
@Ove r r i d e
p u b l i c C l a s s <? e x t e n d s I S t a t eMach i n eGene r a t o r >

b i n d I S t a t eMach i n eGe n e r a t o r ( )
{

r e t u r n org . g ene s e z . g co r e . s t a t emach i n e . g e n e r a t o r
. AugmentedStateMach ineGene ra to r . c l a s s ;

}
}

Listing 4.12: The RuntimeModule of the TimeBomb example to bind the correct
extension generators.

The Generate work�ow of the TimeBomb example con�gures and executes
the generation process (see listing A.6 in the appendix). The �rst component ex-
ecutes the UML2GeneSEZ transformation to instantiate a gcore compliant model
from the UML model. The second component collects, and executes, all nec-
essary StandaloneSetups of the language extensions to register the language
extensions at EMF. The GcoreSupport component makes gcore available for
Xtext, hence EMF is able to resolve referenced model elements. The Serializer
component creates a resource from the core model, created with the �rst compo-
nent. The following two Reader components map the extension �les to resources
for EMF. The last component is the CppGeneratorComponent to con�gure and
execute the model to text transformation. To create the correct injector for
the extension generators, the project speci�c RuntimeModule is injected into the
CppGeneratorSetup. Each extension resource, the core model and the output
path for the IFileSystemAccess are set.
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The generation will result in a header and source �le. Snippet 4.13 from the
header shows the enriched methods of the UML model, containing the keywords
const or throw respective to the information of the extension �le.

p u b l i c :
i n t getPower ( ) con s t throw ( ) ;
TimeBomb( i n t power , i n t de fu seCode ) ;
boo l i sArmed ( ) con s t ;

Listing 4.13: The method declaration of the TimeBomb example with the additional
extension information.

Because the extension �le for the state machine de�nes the StatePattern

implementation kind for the state machine of the TimeBomb, it is declared like in
snippet A.7. The virtual base class TimeBombState de�nes each available transi-
tion empty. Each state referring to a transition overwrites it. The state pointer
captures the state of the TimeBomb. Each event gets dispatched to the respective
event handler function. The dispatch method provides a standardized interface to
forward events to the state machine. The onArm event handler function of the
timing state, depicted in snippet 4.14, contains the respective guard and a state
change.24 If the guard evaluates to true, the state change will be executed. The
snippet 4.15 from the StatePatternGenerator evaluates the kind of transition
modeled by the developer, according to [29], and generates the respective lines of
code.

v o i d TimeBomb : : t im i n g S t a t e : : onArm(TimeBomb* c t x )
{

i f ( e v a lD i s a rm ( ) )
{

//PROTECTED REGION ID ( d isarm_arm_eva lDisarm ) ENABLED START
// add you r code i n between t h i s s e c t i o n
//PROTECTED REGION END

ctx�>s t a t e = &(ctx�>s e t t i n g ) ;
}

}
boo l TimeBomb : : t im i n g S t a t e : : e v a lD i s a rm ( )
{
//PROTECTED REGION ID (_wsg9EIswEeKkL_Cf_2btpg ) ENABLED START
// add you r code i n between t h i s s e c t i o n
//PROTECTED REGION END
}

Listing 4.14: The onArm event handler function of the timinig state.

de f CharSequence e v a lK i n d ( MTran s i t i o n i t ) {

i f ( ! t a r g e t . o u t go i n g . empty ) {
sw i t c h ( k i n d )
{

ca s e " e x t " : r e t u r n ' ' ' c tx�>s t a t e = &(ctx�>� t a r g e t . name� ) ; ' ' '
c a s e " i n t " : r e t u r n "// i n t e r n a l t r a n s i t i o n "
ca s e " l o c " : r e t u r n ""

}

}
r e t u r n "//no ou t go i n g t r a n s i t i o n on t a r g e t "
}

Listing 4.15: The evaluation of the kind of an MTransition.

24There seems to be a �aw in the protected regions suppport because sometimes the inden-
tations will not be generated as expected.
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4.4 Synopsis

The introduced solution provides a mapping from a UML model to the respective
C++ representation. Yet UML is an abstract modeling language, and C++ is a
multiparadigm programming language. Based on the requirements of the product,
one of many C++ implementations needs to be selected. The solution is based on
EMF to import UML models from projectional UML editors. Because the gcore

metamodel is an e�ective syntax for a language transformation, the imported
model will be transformed into a gcore model. This intermediate form is enriched
with information by so called language extensions.

Each language extension with its respective generators is designed to be or-
thogonal to each other, similar to policies or aspects. Thus, a language extension
de�nes one or more features and each project speci�c con�guration is an instance
of those features. The language user interacts with the speci�c features. The
language engineer de�nes the features and makes them available with its language
extension and generators. The language engineer of the main generator provides
the interfaces and hooks for the language extensions.

The language extensions are highly adaptable and can be specialized if required.
The specialization provides a customizable granularity. The more abstract an
extension is, the more reusable it is. The extensions complement the modeling
approach of UML. The generation process is con�gured by a con�guration DSL.
Thus, the transformation is adaptable. The extension �le and the semantics of
the language extensions can be interchanged at will. Thus, the solution approach
represents a simpli�ed version of generative programming.
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Chapter 5

Conclusions

Using state machines to represent the dynamic behavior of reactive systems is
the current method in various domains. Because of the expressive, yet simple,
syntax it is used by engineers and computer scientists to communicate. As de-
picted in the second chapter the concrete syntax of state machines has a deep
history that in�uenced the syntax of UML state machines. The syntax of UML
state machines is precisely de�ned, yet the OMG introduced semantic variation
points that have to be de�ned for the implementation of the system. The resulting
products have diverging requirements (e.g., embedded systems, software for visu-
alization, accounting systems, and so on). Those requirements are necessary to
choose the correct implementation for the variation points. C++ provides various
language features for the developer to implement a state machine. Not only the
regular implementations can vary, but several frameworks and libraries provide an
implementation for speci�c use cases.

This thesis introduces an approach to solve this mapping problem by product
line engineering and generative programming. The domain expert creates an UML
model that will be transformed into a corresponding gcore model to minimize
the accidental complexity. The gcore metamodel speci�es a sophisticated syntax
to simplify the following transformations for the language engineer. This model
acts as core model and will be referenced by additional languages. Each of these
languages add positive variability to the model and capture one or more technical
features. The language engineer does not only provide the syntax, but he is
also able to provide di�erent semantics for these domain speci�c languages for
the transformation process. If the language user requires additional features he
con�gures the generation process by adding additional models and registers the
respective generators at the work�ow.

The reference implementation is based on the Xtext framework, but it could
be exchanged or even combined by alternative EMF based frameworks to enrich
the transformation process. At the moment only two simple extension languages
are implemented to demonstrate the approach. Most of the features of C++,
depicted in the third chapter, are not yet implemented. Thus, future work will
be the implementation of more transformation rules as well as the examination of
combining transformations of di�erent frameworks.
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Appendix A

Appendix

A.1 UML diagrams

Figure A.1: The UML diagram of the Qt state machine as basis for listing 3.1

87



Figure A.2: The UML diagram of the Stop watch state machine as basis for listing
A.1

Figure A.3: The UML diagram of the CD player state machine as basis for the
listings A.2, A.3 and A.4
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TimeBomb

(-(power:(UnlimitedNatural([1]
(-(timeout:(UnlimitedNatural([1]
(-(armed:(Boolean([1]
(-(defuseCode:(UnlimitedNatural([1]
(-(code:(UnlimitedNatural([1]

(+(getPower():(UnlimitedNatural
(+(TimeBomb((+(in(power:(UnlimitedNatural,((+(in(defuseCode:(UnlimitedNatural)
(+(isArmed():(Boolean

Figure A.4: The adapted Timebomb class from [64]
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Figure A.5: The adapted Timebomb state machine from [64]

Figure A.6: The respective metamodel of the C++ grammar from listing A.5.
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A.2 Source code listings

namespace sc = boos t : : s t a t e c h a r t ;
namespace mpl = boos t : : mpl ;

// Event d e c l a r a t i o n and d e f i n i t i o n
s t r u c t EvS ta r tS top : s c : : event < EvSta r tS top > {} ;
s t r u c t EvReset : s c : : event < EvReset > {} ;
s t r u c t EvGetElapsedTime : sc : : event < EvGetE lapsedTime >{

p u b l i c :
EvGetE lapsedTime ( doub l e & t ime ) : time_ ( t ime ) {}
v o i d A s s i g n ( doub l e t ime ) con s t {time_ = t ime ; }

p r i v a t e :
doub l e & time_ ;

} ;

s t r u c t A c t i v e ;
//StopWatch s t a t emach i n e w i t h a c t i v e as i n i t i a l S t a t e
s t r u c t StopWatch : s c : : s tate_mach ine < StopWatch , A c t i v e > {} ;

s t r u c t Stopped ;
// compos i t a c t i v e s t a t e o f s topwatch w i t h Stopped i s i n i t i a l s t a t e
s t r u c t A c t i v e : s c : : s imp l e_s t a t e < Ac t i v e , StopWatch , Stopped >{

p u b l i c :
// r e s e t t r a n s i t i o n

t y p e d e f sc : : t r a n s i t i o n < EvReset , A c t i v e > r e a c t i o n s ;
A c t i v e ( ) : e lapsedTime_ ( 0 .0 ) {}
doub l e & ElapsedTime ( ) { r e t u r n e lapsedTime_ ;}
doub l e E lapsedTime ( ) con s t { r e t u r n e lapsedTime_ ;}

p r i v a t e :
doub l e e lapsedTime_ ;

} ;
// r u n n i n g s t a t e w i t h i n a c t i v e s t a t e
s t r u c t Runn ing : s c : : s imp l e_s ta t e < Running , A c t i v e >{

p u b l i c :
t y p e d e f mpl : : l i s t <

sc : : cus tom_react ion < EvGetElapsedTime >,
sc : : t r a n s i t i o n < EvSta r tStop , Stopped >

> r e a c t i o n s ;

Runn ing ( ) : s tartTime_ ( s t d : : t ime ( 0 ) ) {}

~Runn ing ( ) {
// a c c e s s the c o n t e x t v a r i a b l e o f the compound s t a t e

con tex t < Ac t i v e >() . E lapsedTime ( ) = ElapsedTime ( ) ;
}

// h a n d l i n g the S i g n a l E v e n t
sc : : r e s u l t r e a c t ( con s t EvGetE lapsedTime & ev t ) {

e v t . A s s i g n ( E lapsedTime ( ) ) ;
r e t u r n d i s c a r d_ev e n t ( ) ;

}
p r i v a t e :

doub l e E lapsedTime ( ) con s t {
r e t u r n con tex t < Ac t i v e >() . E lapsedTime ( ) +

s t d : : d i f f t i m e ( s t d : : t ime ( 0 ) , startTime_ ) ;
}
s t d : : t ime_t startTime_ ;

} ;

s t r u c t Stopped : s c : : s imp l e_s t a t e < Stopped , A c t i v e >{
t y p e d e f mpl : : l i s t <

sc : : cus tom_react ion < EvGetE lapsedTime >,
sc : : t r a n s i t i o n < EvSta r tStop , Runn ing >

> r e a c t i o n s ;

s c : : r e s u l t r e a c t ( con s t EvGetE lapsedTime & ev t ) {
e v t . A s s i g n ( con tex t < Ac t i v e >() . E lapsedTime ( ) ) ;
r e t u r n d i s c a r d_ev e n t ( ) ;

}
} ;

Listing A.1: The re�ned stop watch example of [88].

// Cop y r i g h t 2010 Ch r i s t o p h e Henry
// hen r y UNDERSCORE c h r i s t o p h e AT ho tma i l DOT com
// Th i s i s an ex t ended v e r s i o n o f the s t a t e mach ine a v a i l a b l e i n the boos t : : mpl l i b r a r y
// D i s t r i b u t e d unde r the same l i c e n s e as the o r i g i n a l .
// Cop y r i g h t f o r the o r i g i n a l v e r s i o n :
// Cop y r i g h t 2005 Dav id Abrahams and A l e k s e y Gur tovoy . D i s t r i b u t e d
// unde r the Boost So f twa r e L i c en s e , V e r s i o n 1 . 0 . ( See accompany ing
// f i l e LICENSE_1_0 . t x t o r copy at
// h t t p : //www. boos t . o rg /LICENSE_1_0 . t x t )

// s ee h t t p s : // g i t h u b . com/wuhao5/ boos t / b l o b /maste r / l i b s /msm/doc/
// HTML/ examp l e s / S im p l eT u t o r i a l . cpp f o r the f u l l examp le
// i n c l u d e s and u s i n g d i r e c t i v e s om i t t ed f o r b r e v i t y

namespace {
// e v e n t s
s t r u c t p l a y {} ;
s t r u c t end_pause {} ;
s t r u c t s t op {} ;
s t r u c t pause {} ;
s t r u c t open_c lose {} ;
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enum DiskTypeEnum{DISK_CD=0 ,DISK_DVD=1};
s t r u c t cd_detected {
cd_detected ( s t r i n g name , DiskTypeEnum d i s kType )
: name ( name ) , d i s c_type ( d i s kType ) {}

s t r i n g name ;
DiskTypeEnum d i s c_type ;

} ;
// f r o n t�end : d e f i n e the FSM s t r u c t u r e
s t r u c t p l a ye r_ : p u b l i c msm : : f r o n t : : s tate_mach ine_def <p laye r_ >{
s t r u c t Empty : p u b l i c msm : : f r o n t : : s t a t e <>{
t emp l a t e < c l a s s Event , c l a s s FSM> vo i d on_entry ( Event con s t &,FSM&){ cout << " e n t e r i n g : Empty" <<

e n d l ; }
t emp l a t e < c l a s s Event , c l a s s FSM> vo i d on_ex i t ( Event con s t &,FSM& ) { cout << " l e a v i n g : Empty" <<

e n d l ; }
} ;
s t r u c t Open : p u b l i c msm : : f r o n t : : s t a t e <>{
t emp l a t e < c l a s s Event , c l a s s FSM> vo i d on_entry ( Event con s t& ,FSM&) { cout << " e n t e r i n g : Open" <<

e n d l ; }
t emp l a t e < c l a s s Event , c l a s s FSM> vo i d on_ex i t ( Event con s t &,FSM& ) { cout << " l e a v i n g : Open" << e n d l ; }

} ;
s t r u c t Stopped : p u b l i c msm : : f r o n t : : s t a t e <>{
t emp l a t e < c l a s s Event , c l a s s FSM> vo i d on_entry ( Event con s t& ,FSM&) { cout << " e n t e r i n g : Stopped " <<

e n d l ; }
t emp l a t e < c l a s s Event , c l a s s FSM> vo i d on_ex i t ( Event con s t &,FSM& ) { cout << " l e a v i n g : Stopped " <<

e n d l ; }
} ;
s t r u c t P l a y i n g : p u b l i c msm : : f r o n t : : s t a t e <>{
t emp l a t e < c l a s s Event , c l a s s FSM> vo i d on_entry ( Event con s t &,FSM& ) { cout << " e n t e r i n g : P l a y i n g " <<

e n d l ; }
t emp l a t e < c l a s s Event , c l a s s FSM> vo i d on_ex i t ( Event con s t &,FSM& ) { cout << " l e a v i n g : P l a y i n g " <<

e n d l ; }
} ;
s t r u c t Paused : p u b l i c msm : : f r o n t : : s t a t e <>{};
// the i n i t i a l s t a t e o f the p l a y e r SM. Must be d e f i n e d
t y p e d e f Empty i n i t i a l _ s t a t e ;
// t r a n s i t i o n a c t i o n s
v o i d s t a r t_p l a y b a c k ( p l a y con s t&) { cout << " p l a y e r : : s t a r t_p l a y b a c k \n" ; }
v o i d open_drawer ( open_c lose con s t&) { cout << " p l a y e r : : open_drawer \n" ; }
v o i d c l o s e_drawe r ( open_c lose con s t&) { cout << " p l a y e r : : c l o s e_d rawe r \n" ; }
v o i d s to r e_cd_in fo ( cd_detected con s t&) { cout << " p l a y e r : : s to r e_cd_in fo \n" ; }
v o i d s top_p l ayback ( s top con s t&) { cout << " p l a y e r : : s t op_p l ayback \n" ; }
v o i d pause_p layback ( pause con s t&) { cout << " p l a y e r : : pause_p layback \n" ; }
v o i d resume_playback ( end_pause con s t&) { cout << " p l a y e r : : r e sume_playback \n" ; }
v o i d stop_and_open ( open_c lose con s t&) { cout << " p l a y e r : : stop_and_open\n" ; }
v o i d s topped_aga in ( s t op con s t&) { cout << " p l a y e r : : s topped_aga in \n" ; }
// guard c o n d i t i o n s
boo l good_disk_format ( cd_detected con s t& ev t ) {
i f ( e v t . d i s c_type != DISK_CD){ cout << "wrong d i s k " << en d l ; r e t u r n f a l s e ; }
r e t u r n t r u e ;

}
boo l a u to_s t a r t ( cd_detected con s t&){ r e t u r n f a l s e ; }
t y p e d e f p l a y e r_ p ;
// T r a n s i t i o n t a b l e f o r p l a y e r

s t r u c t t r a n s i t i o n_ t a b l e : mpl : : v e c t o r <
// S t a r t Event Next Ac t i on Guard
// +���������+�������������+���������+���������������������+����������������������+
a_row < Stopped , p l a y , P l a y i n g , &p : : s t a r t_p l a y b a c k > ,
a_row < Stopped , open_c lose , Open , &p : : open_drawer > ,
_row < Stopped , s t op , Stopped > ,

// +���������+�������������+���������+���������������������+����������������������+
a_row < Open , open_c lose , Empty , &p : : c l o s e_drawe r > ,

// +���������+�������������+���������+���������������������+����������������������+
a_row < Empty , open_c lose , Open , &p : : open_drawer > ,

row < Empty , cd_detected , Stopped , &p : : s to r e_cd_in fo ,&p : : good_disk_format > ,
row < Empty , cd_detected , P l a y i n g , &p : : s to r e_cd_in fo ,&p : : a u to_s t a r t > ,

// +���������+�������������+���������+���������������������+����������������������+
a_row < P l a y i n g , s t op , Stopped , &p : : s top_p layback > ,
a_row < P l a y i n g , pause , Paused , &p : : pause_p layback > ,
a_row < P l a y i n g , open_c lose , Open , &p : : stop_and_open > ,

// +���������+�������������+���������+���������������������+����������������������+
a_row < Paused , end_pause , P l a y i n g , &p : : re sume_playback > ,
a_row < Paused , s t op , Stopped , &p : : s top_p l ayback > ,
a_row < Paused , open_c lose , Open , &p : : stop_and_open >

// +���������+�������������+���������+���������������������+����������������������+
> {} ;

} ;
// P i ck a back�end
t y p e d e f msm : : back : : s tate_mach ine <p laye r_ > p l a y e r ;

s t a t i c cha r con s t * con s t state_names [ ] = { " Stopped " , "Open" , "Empty" , " P l a y i n g " , "Paused " } ;
v o i d p s t a t e ( p l a y e r con s t& p ) {

cout << " �> " << state_names [ p . c u r r e n t_ s t a t e ( ) [ 0 ] ] << e n d l ;
}
v o i d t e s t ( ) {

p l a y e r p ;
// needed to s t a r t the h i g h e s t� l e v e l SM. Th i s w i l l c a l l on_entry and mark the s t a r t o f the SM
p . s t a r t ( ) ;
// go to Open , c a l l on_ex i t on Empty , then a c t i o n , then on_entry on Open
p . p r oce s s_even t ( open_c lose ( ) ) ; p s t a t e ( p ) ;
p . p r o c e s s_even t ( open_c lose ( ) ) ; p s t a t e ( p ) ;
// w i l l be r e j e c t e d , wrong d i s k t ype
p . p r o ce s s_even t ( cd_detected ( " l o u i e , l o u i e " ,DISK_DVD) ) ; p s t a t e ( p ) ;
p . p r o c e s s_even t ( cd_detected ( " l o u i e , l o u i e " ,DISK_CD) ) ; p s t a t e ( p ) ;

p . p r o c e s s_even t ( p l a y ( ) ) ;
// at t h i s po i n t , P l a y i s a c t i v e
p . p r o c e s s_even t ( pause ( ) ) ; p s t a t e ( p ) ;
// go back to P l a y i n g
p . p r o ce s s_even t ( end_pause ( ) ) ; p s t a t e ( p ) ;
p . p r o c e s s_even t ( pause ( ) ) ; p s t a t e ( p ) ;

91



p . p r o ce s s_even t ( s t op ( ) ) ; p s t a t e ( p ) ;
// e v en t l e a d i n g to the same s t a t e
// no a c t i o n method c a l l e d as i t i s not p r e s e n t i n the t r a n s i t i o n t a b l e
p . p r o c e s s_even t ( s t op ( ) ) ; p s t a t e ( p ) ;
cout << " s top fsm" << en d l ;
p . s t op ( ) ;

}
}
i n t main ( ) { t e s t ( ) ; r e t u r n 0 ; }

Listing A.2: The state machine of an adapted player example of [85] from [89].
It is de�ned with the basic frontend of Meta State Machine.

// Cop y r i g h t 2010 Ch r i s t o p h e Henry
// hen r y UNDERSCORE c h r i s t o p h e AT ho tma i l DOT com
// Th i s i s an ex t ended v e r s i o n o f the s t a t e mach ine a v a i l a b l e i n the boos t : : mpl l i b r a r y
// D i s t r i b u t e d unde r the same l i c e n s e as the o r i g i n a l .
// Cop y r i g h t f o r the o r i g i n a l v e r s i o n :
// Cop y r i g h t 2005 Dav id Abrahams and A l e k s e y Gur tovoy . D i s t r i b u t e d
// unde r the Boost So f twa r e L i c en s e , V e r s i o n 1 . 0 . ( See accompany ing
// f i l e LICENSE_1_0 . t x t o r copy at
// h t t p : //www. boos t . o rg /LICENSE_1_0 . t x t )

// s ee h t t p s : // g i t h u b . com/wuhao5/ boos t / b l o b /maste r / l i b s /msm/doc/HTML/
// examp l e s / S imp l eW i thFunc to r s . cpp f o r the f u l l examp le
// i n c l u d e s and u s i n g d i r e c t i v e s om i t t ed f o r b r e v i t y

namespace {
// e v e n t s
s t r u c t p l a y {} ;
s t r u c t end_pause {} ;
s t r u c t s t op {} ;
s t r u c t pause {} ;
s t r u c t open_c lose {} ;
enum DiskTypeEnum{DISK_CD=0 ,DISK_DVD=1};
s t r u c t cd_detected {
cd_detected ( s t r i n g name , DiskTypeEnum d i s kType )
: name ( name ) , d i s c_type ( d i s kType ) {}

s t r i n g name ;
DiskTypeEnum d i s c_type ;

} ;
// f r o n t�end : d e f i n e the FSM s t r u c t u r e
s t r u c t p l a ye r_ : p u b l i c msm : : f r o n t : : s tate_mach ine_def <p laye r_ >{
s t r u c t Empty_Entry{ t emp l a t e < c l a s s Evt , c l a s s Fsm , c l a s s State > v o i d o p e r a t o r ( ) ( Evt con s t& ,Fsm&

, S ta t e& ) { cout << " e n t e r i n g : Empty" << e n d l ; } } ;
s t r u c t Empty_Exit { t emp l a t e < c l a s s Evt , c l a s s Fsm , c l a s s State > v o i d o p e r a t o r ( ) ( Evt con s t& ,Fsm&

, S ta t e& ) { cout << " l e a v i n g : Empty" << en d l ; } } ;
s t r u c t Empty : p u b l i c msm : : f r o n t : : euml : : f unc_sta te <Empty_Entry , Empty_Exit >{};
// s t r u c t Empty : p u b l i c msm : : f r o n t : : s t a t e <>{
// t emp l a t e < c l a s s Event , c l a s s FSM> vo i d on_entry ( Event con s t &,FSM& ) { cout << " e n t e r i n g : Empty" <<

e n d l ; }
// t emp l a t e < c l a s s Event , c l a s s FSM> vo i d on_ex i t ( Event con s t &,FSM& ) { cout << " l e a v i n g : Empty" <<

e n d l ; }
// } ;
s t r u c t Open : p u b l i c msm : : f r o n t : : s t a t e <>{
t emp l a t e < c l a s s Event , c l a s s FSM> vo i d on_entry ( Event con s t& ,FSM&) { cout << " e n t e r i n g : Open" <<

e n d l ; }
t emp l a t e < c l a s s Event , c l a s s FSM> vo i d on_ex i t ( Event con s t &,FSM& ) { cout << " l e a v i n g : Open" << e n d l ; }

} ;
s t r u c t Stopped : p u b l i c msm : : f r o n t : : s t a t e <>{
t emp l a t e < c l a s s Event , c l a s s FSM> vo i d on_entry ( Event con s t& ,FSM&) { cout << " e n t e r i n g : Stopped " <<

e n d l ; }
t emp l a t e < c l a s s Event , c l a s s FSM> vo i d on_ex i t ( Event con s t &,FSM& ) { cout << " l e a v i n g : Stopped " <<

e n d l ; }
} ;
s t r u c t P l a y i n g : p u b l i c msm : : f r o n t : : s t a t e <>{
t emp l a t e < c l a s s Event , c l a s s FSM> vo i d on_entry ( Event con s t &,FSM& ) { cout << " e n t e r i n g : P l a y i n g " <<

e n d l ; }
t emp l a t e < c l a s s Event , c l a s s FSM> vo i d on_ex i t ( Event con s t &,FSM& ) { cout << " l e a v i n g : P l a y i n g " <<

e n d l ; }
} ;
s t r u c t Paused : p u b l i c msm : : f r o n t : : s t a t e <>{};
// the i n i t i a l s t a t e o f the p l a y e r SM. Must be d e f i n e d
t y p e d e f Empty i n i t i a l _ s t a t e ;
// t r a n s i t i o n a c t i o n s
s t r u c t s t a r t_p l a y b a c k { t emp l a t e < c l a s s EVT, c l a s s FSM, c l a s s Sou rceSta te , c l a s s Targe tSta te > v o i d

o p e r a t o r ( ) (EVT con s t& ,FSM& , Sou r c eS t a t e& , Ta rge tS t a t e& ) { cout << " p l a y e r : : s t a r t_p l a y b a c k " <<
e n d l ; } } ;

s t r u c t open_drawer { t emp l a t e < c l a s s EVT, c l a s s FSM, c l a s s Sou rceSta te , c l a s s Targe tSta te > v o i d
o p e r a t o r ( ) (EVT con s t& ,FSM& , Sou r c eS t a t e& , Ta rge tS t a t e& ) { cout << " p l a y e r : : open_drawer " <<
e n d l ; } } ;

s t r u c t c l o s e_drawe r { t emp l a t e < c l a s s EVT, c l a s s FSM, c l a s s Sou rceSta te , c l a s s Targe tSta te > v o i d
o p e r a t o r ( ) (EVT con s t& ,FSM& , Sou r c eS t a t e& , Ta rge tS t a t e& ) { cout << " p l a y e r : : c l o s e_drawe r " <<
e n d l ; } } ;

s t r u c t s to r e_cd_in fo { t emp l a t e < c l a s s EVT, c l a s s FSM, c l a s s Sou rceSta te , c l a s s Targe tSta te > v o i d
o p e r a t o r ( ) (EVT con s t &,FSM& fsm , Sou r c eS t a t e& , Ta rge tS t a t e& ) { cout << " p l a y e r : : s to r e_cd_in fo " <<
e n d l ; } } ;

s t r u c t s top_p layback { t emp l a t e < c l a s s EVT, c l a s s FSM, c l a s s Sou rceSta te , c l a s s Targe tSta te > v o i d
o p e r a t o r ( ) (EVT con s t& ,FSM& , Sou r c eS t a t e& , Ta rge tS t a t e& ) { cout << " p l a y e r : : s t op_p l ayback " <<
e n d l ; } } ;

s t r u c t pause_p layback { t emp l a t e < c l a s s EVT, c l a s s FSM, c l a s s Sou rceSta te , c l a s s Targe tSta te > v o i d
o p e r a t o r ( ) (EVT con s t& ,FSM& , Sou r c eS t a t e& , Ta rge tS t a t e& ) { cout << " p l a y e r : : pause_p layback " <<
e n d l ; } } ;

s t r u c t resume_playback { t emp l a t e < c l a s s EVT, c l a s s FSM, c l a s s Sou rceSta te , c l a s s Targe tSta te > v o i d
o p e r a t o r ( ) (EVT con s t& ,FSM& , Sou r c eS t a t e& , Ta rge tS t a t e& ) { cout << " p l a y e r : : r e sume_playback " <<
e n d l ; } } ;
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s t r u c t stop_and_open{ t emp l a t e < c l a s s EVT, c l a s s FSM, c l a s s Sou rceSta te , c l a s s Targe tSta te > v o i d
o p e r a t o r ( ) (EVT con s t& ,FSM& , Sou r c eS t a t e& , Ta rge tS t a t e& ) { cout << " p l a y e r : : stop_and_open" <<
e n d l ; } } ;

s t r u c t s topped_aga in { t emp l a t e < c l a s s EVT, c l a s s FSM, c l a s s Sou rceSta te , c l a s s Targe tSta te > v o i d
o p e r a t o r ( ) (EVT con s t& ,FSM& , Sou r c eS t a t e& , Ta rge tS t a t e& ) { cout << " p l a y e r : : s topped_aga in " <<
e n d l ; } } ;

// guard c o n d i t i o n s
s t r u c t good_disk_format {
t emp l a t e < c l a s s EVT, c l a s s FSM, c l a s s Sou rceSta te , c l a s s Targe tSta te >
boo l o p e r a t o r ( ) (EVT con s t& ev t ,FSM&, Sou r c eS t a t e& , Ta rge tS t a t e& ) {
i f ( e v t . d i s c_type != DISK_CD){ cout << "wrong d i s k " << en d l ; r e t u r n f a l s e ; }
r e t u r n t r u e ;

}
} ;
s t r u c t au to_s t a r t {
t emp l a t e < c l a s s EVT, c l a s s FSM, c l a s s Sou rceSta te , c l a s s Targe tSta te >
boo l o p e r a t o r ( ) (EVT con s t& ev t ,FSM&, Sou r c eS t a t e& , Ta rge tS t a t e& ) { r e t u r n f a l s e ; }

} ;
// T r a n s i t i o n t a b l e f o r p l a y e r
s t r u c t t r a n s i t i o n_ t a b l e : mpl : : v e c t o r <
// S t a r t Event Next Ac t i on Guard
// +���������+�������������+���������+���������������������������+����������������������+
Row < Stopped , p l a y , P l a y i n g , s t a r t_p l a y ba c k , none > ,
Row < Stopped , open_c lose , Open , open_drawer , none > ,
Row < Stopped , s t op , Stopped , none , none > ,
// +���������+�������������+���������+���������������������������+����������������������+
Row < Open , open_c lose , Empty , c l o s e_drawe r , none > ,
// +���������+�������������+���������+���������������������������+����������������������+
Row < Empty , open_c lose , Open , open_drawer , none > ,
Row < Empty , cd_detected , Stopped , s to r e_cd_in fo , good_disk_format > ,
Row < Empty , cd_detected , P l a y i n g , s to r e_cd_in fo , au to_s t a r t > ,
// +���������+�������������+���������+���������������������������+����������������������+
Row < P l a y i n g , s t op , Stopped , s top_p l ayback , none > ,
Row < P l a y i n g , pause , Paused , pause_p layback , none > ,
Row < P l a y i n g , open_c lose , Open , stop_and_open , none > ,
// +���������+�������������+���������+���������������������������+����������������������+
Row < Paused , end_pause , P l a y i n g , resume_playback , none > ,
Row < Paused , s t op , Stopped , s top_p layback , none > ,
Row < Paused , open_c lose , Open , stop_and_open , none >
// +���������+�������������+���������+���������������������������+����������������������+

> {} ;
} ;

// P i ck a back�end
t y p e d e f msm : : back : : s tate_mach ine <p laye r_ > p l a y e r ;

s t a t i c cha r con s t * con s t state_names [ ] = { " Stopped " , "Open" , "Empty" , " P l a y i n g " , "Paused " } ;
v o i d p s t a t e ( p l a y e r con s t& p ) { cout << " �> " << state_names [ p . c u r r e n t_ s t a t e ( ) [ 0 ] ] << e n d l ; }

v o i d t e s t ( ) {
// see the t e s t f u n c t i o n o f the b a s i c f r o n t e n d

}
}

i n t main ( ) { t e s t ( ) ; r e t u r n 0 ; }

Listing A.3: The state machine of an adapted player example of [85] from [89].
It is de�ned with the functor frontend of Meta State Machine.

// Cop y r i g h t 2010 Ch r i s t o p h e Henry
// hen r y UNDERSCORE c h r i s t o p h e AT ho tma i l DOT com
// Th i s i s an ex t ended v e r s i o n o f the s t a t e mach ine a v a i l a b l e i n the boos t : : mpl l i b r a r y
// D i s t r i b u t e d unde r the same l i c e n s e as the o r i g i n a l .
// Cop y r i g h t f o r the o r i g i n a l v e r s i o n :
// Cop y r i g h t 2005 Dav id Abrahams and A l e k s e y Gur tovoy . D i s t r i b u t e d
// unde r the Boost So f twa r e L i c en s e , V e r s i o n 1 . 0 . ( See accompany ing
// f i l e LICENSE_1_0 . t x t o r copy at
// h t t p : //www. boos t . o rg /LICENSE_1_0 . t x t )

// s ee h t t p s : // g i t h u b . com/wuhao5/ boos t / b l o b /maste r / l i b s /msm/doc/HTML/
// examp l e s / S imp l eTu t o r i a l E um l 2 . cpp f o r the f u l l examp le
// i n c l u d e s and u s i n g d i r e c t i v e s om i t t ed f o r b r e v i t y

namespace
{

// e v e n t s
BOOST_MSM_EUML_EVENT( p l a y )
BOOST_MSM_EUML_EVENT( end_pause )
BOOST_MSM_EUML_EVENT( s top )
BOOST_MSM_EUML_EVENT( pause )
BOOST_MSM_EUML_EVENT( open_c lose )
enum DiskTypeEnum{DISK_CD=0 ,DISK_DVD=1};
BOOST_MSM_EUML_DECLARE_ATTRIBUTE( s t r i n g , cd_name )
BOOST_MSM_EUML_DECLARE_ATTRIBUTE(DiskTypeEnum , cd_type )
BOOST_MSM_EUML_ATTRIBUTES( ( a t t r i b u t e s_ << cd_name << cd_type ) , c d_de t e c t e d_a t t r i b u t e s )
BOOST_MSM_EUML_EVENT_WITH_ATTRIBUTES( cd_detected , c d_de t e c t e d_a t t r i b u t e s )
// f r o n t�end : d e f i n e the FSM s t r u c t u r e
BOOST_MSM_EUML_ACTION( Empty_Entry ) { t emp l a t e < c l a s s Evt , c l a s s Fsm , c l a s s State > v o i d o p e r a t o r ( ) ( Evt

con s t& ,Fsm& , S ta t e& ) { cout << " e n t e r i n g : Empty" << en d l ; } } ;
BOOST_MSM_EUML_ACTION( Empty_Exit ) { t emp l a t e < c l a s s Evt , c l a s s Fsm , c l a s s State > v o i d o p e r a t o r ( ) ( Evt

con s t& ,Fsm& , S ta t e& ) { cout << " l e a v i n g : Empty" << e n d l ; } } ;
BOOST_MSM_EUML_ACTION(Open_Entry ) { t emp l a t e < c l a s s Evt , c l a s s Fsm , c l a s s State > v o i d o p e r a t o r ( ) ( Evt

con s t& ,Fsm& , S ta t e& ) { cout << " e n t e r i n g : Open" << e n d l ; } } ;
BOOST_MSM_EUML_ACTION(Open_Exit ) { t emp l a t e < c l a s s Evt , c l a s s Fsm , c l a s s State > v o i d o p e r a t o r ( ) ( Evt

con s t& ,Fsm& , S ta t e& ) { cout << " l e a v i n g : Open" << e n d l ; } } ;
BOOST_MSM_EUML_ACTION( Stopped_Entry ) { t emp l a t e < c l a s s Evt , c l a s s Fsm , c l a s s State > v o i d o p e r a t o r ( ) ( Evt

con s t& ,Fsm& , S ta t e& ) { cout << " e n t e r i n g : Stopped " << en d l ; } } ;
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BOOST_MSM_EUML_ACTION( Stopped_Ex i t ) { t emp l a t e < c l a s s Evt , c l a s s Fsm , c l a s s State > v o i d o p e r a t o r ( ) ( Evt
con s t& ,Fsm& , S ta t e& ) { cout << " l e a v i n g : Stopped " << e n d l ; } } ;

BOOST_MSM_EUML_ACTION( P l a y i ng_Ent r y ) { t emp l a t e < c l a s s Evt , c l a s s Fsm , c l a s s State > v o i d o p e r a t o r ( ) ( Evt
con s t& ,Fsm& , S ta t e& ) { cout << " e n t e r i n g : P l a y i n g " << e n d l ; } } ;

BOOST_MSM_EUML_ACTION( P l a y i n g_Ex i t ) { t emp l a t e < c l a s s Evt , c l a s s Fsm , c l a s s State > v o i d o p e r a t o r ( ) ( Evt
con s t& ,Fsm& , S ta t e& ) { cout << " l e a v i n g : P l a y i n g " << en d l ; } } ;

BOOST_MSM_EUML_STATE( ( ) , Paused )
BOOST_MSM_EUML_STATE( ( Empty_Entry , Empty_Exit ) , Empty )
BOOST_MSM_EUML_STATE( ( Open_Entry , Open_Exit ) ,Open )
BOOST_MSM_EUML_STATE( ( Stopped_Entry , Stopped_Ex i t ) , Stopped )
BOOST_MSM_EUML_STATE( ( P lay i ng_Ent ry , P l a y i n g_Ex i t ) , P l a y i n g )
// t r a n s i t i o n a c t i o n s
BOOST_MSM_EUML_ACTION( s t a r t_p l a y b a c k ) { t emp l a t e < c l a s s FSM, c l a s s EVT, c l a s s Sou rceSta te , c l a s s

Targe tSta te > v o i d o p e r a t o r ( ) (EVT con s t& ,FSM&, Sou r c eS t a t e& , Ta rge tS t a t e& ) { cout <<
" p l a y e r : : s t a r t_p l a y b a c k " << e n d l ; } } ;

BOOST_MSM_EUML_ACTION( open_drawer ) { t emp l a t e < c l a s s EVT, c l a s s FSM, c l a s s Sou rceSta te , c l a s s Targe tSta te >
v o i d o p e r a t o r ( ) (EVT con s t& ,FSM& , Sou r c eS t a t e& , Ta rg e tS t a t e& ) { cout << " p l a y e r : : open_drawer " <<
e n d l ; } } ;

BOOST_MSM_EUML_ACTION( c l o s e_d rawe r ) { t emp l a t e < c l a s s EVT, c l a s s FSM, c l a s s Sou rceSta te , c l a s s
Targe tSta te > v o i d o p e r a t o r ( ) (EVT con s t& ,FSM& , Sou r c eS t a t e& , Ta rge tS t a t e& ) { cout <<
" p l a y e r : : c l o s e_drawe r " << e n d l ; } } ;

BOOST_MSM_EUML_ACTION( s to r e_cd_in fo ) { t emp l a t e < c l a s s EVT, c l a s s FSM, c l a s s Sou rceSta te , c l a s s
Targe tSta te > v o i d o p e r a t o r ( ) (EVT con s t &,FSM& fsm , Sou r c eS t a t e& , Ta rg e tS t a t e& ) { cout <<
" p l a y e r : : s to r e_cd_in fo " << e n d l ; } } ;

BOOST_MSM_EUML_ACTION( s top_p l ayback ) { t emp l a t e < c l a s s EVT, c l a s s FSM, c l a s s Sou rceSta te , c l a s s
Targe tSta te > v o i d o p e r a t o r ( ) (EVT con s t& ,FSM& , Sou r c eS t a t e& , Ta rge tS t a t e& ) { cout <<
" p l a y e r : : s t op_p layback " << e n d l ; } } ;

BOOST_MSM_EUML_ACTION( pause_p layback ) { t emp l a t e < c l a s s EVT, c l a s s FSM, c l a s s Sou rceSta te , c l a s s
Targe tSta te > v o i d o p e r a t o r ( ) (EVT con s t& ,FSM& , Sou r c eS t a t e& , Ta rge tS t a t e& ) { cout <<
" p l a y e r : : pause_p layback " << e n d l ; } } ;

BOOST_MSM_EUML_ACTION( resume_playback ) { t emp l a t e < c l a s s EVT, c l a s s FSM, c l a s s Sou rceSta te , c l a s s
Targe tSta te > v o i d o p e r a t o r ( ) (EVT con s t& ,FSM& , Sou r c eS t a t e& , Ta rge tS t a t e& ) { cout <<
" p l a y e r : : r e sume_playback " << e n d l ; } } ;

BOOST_MSM_EUML_ACTION( stop_and_open ) { t emp l a t e < c l a s s EVT, c l a s s FSM, c l a s s Sou rceSta te , c l a s s
Targe tSta te > v o i d o p e r a t o r ( ) (EVT con s t& ,FSM& , Sou r c eS t a t e& , Ta rge tS t a t e& ) { cout <<
" p l a y e r : : stop_and_open" << e n d l ; } } ;

BOOST_MSM_EUML_ACTION( s topped_aga in ) { t emp l a t e < c l a s s EVT, c l a s s FSM, c l a s s Sou rceSta te , c l a s s
Targe tSta te > v o i d o p e r a t o r ( ) (EVT con s t& ,FSM& , Sou r c eS t a t e& , Ta rge tS t a t e& ) { cout <<
" p l a y e r : : s topped_aga in " << en d l ; } } ;

// guard c o n d i t i o n s
BOOST_MSM_EUML_ACTION( good_disk_format ) {
t emp l a t e < c l a s s FSM, c l a s s EVT, c l a s s Sou rceSta te , c l a s s Targe tSta te >
boo l o p e r a t o r ( ) (EVT con s t& evt ,FSM&, Sou r c eS t a t e& , Ta rge tS t a t e& ) { i f

( e v t . g e t_a t t r i b u t e ( cd_type ) !=DISK_CD){ cout << "wrong d i s k , s o r r y " << e n d l ; r e t u r n f a l s e ; }
r e t u r n t r u e ;

}
} ;
BOOST_MSM_EUML_ACTION( au to_s t a r t ) {
t emp l a t e < c l a s s EVT, c l a s s FSM, c l a s s Sou rceSta te , c l a s s Targe tSta te >
boo l o p e r a t o r ( ) (EVT con s t& ev t ,FSM&, Sou r c eS t a t e& , Ta rge tS t a t e& ) { r e t u r n f a l s e ; }

} ;
// T r a n s i t i o n t a b l e f o r p l a y e r
BOOST_MSM_EUML_TRANSITION_TABLE( (

Stopped + p l a y / s t a r t_p l a y b a c k == P l a y i n g ,
Stopped + open_c lose / open_drawer == Open ,
Stopped + s top == Stopped ,
// +������������������������������������������������������������������������������+
Open + open_c lose / c l o s e_drawe r == Empty ,
// +������������������������������������������������������������������������������+
Empty + open_c lose / open_drawer == Open ,
Empty + cd_detected [ good_disk_format ] / s to r e_cd_in fo == Stopped ,
Empty + cd_detected [ au to_s t a r t ] / s to r e_cd_in fo == P l a y i n g ,

// +������������������������������������������������������������������������������+
P l a y i n g + s top / s top_p layback == Stopped ,
P l a y i n g + pause / pause_p layback == Paused ,
P l a y i n g + open_c lose / stop_and_open == Open ,
// +������������������������������������������������������������������������������+
Paused + end_pause / resume_playback == P l a y i n g ,
Paused + s top / s top_p layback == Stopped ,
Paused + open_c lose / stop_and_open == Open
// +������������������������������������������������������������������������������+
) , t r a n s i t i o n_ t a b l e )

BOOST_MSM_EUML_DECLARE_STATE_MACHINE( ( t r a n s i t i o n_ t a b l e , //STT
i n i t_ << Empty , // I n i t S t a t e
no_act ion , // Ent r y
no_act ion , // E x i t
a t t r i b u t e s_ << no_att r i bu te s_ , // A t t r i b u t e s
con f i g u r e_ << no_conf igure_ , // c o n f i g u r a t i o n
Log_No_Trans it ion // n o_ t r a n s i t i o n h a n d l e r
) , p l a y e r_ ) // fsm name

// P i ck a back�end
t y p e d e f msm : : back : : s tate_mach ine <p laye r_ > p l a y e r ;

s t a t i c cha r con s t * con s t state_names [ ] = { " Stopped " , "Open" , "Empty" , " P l a y i n g " , "Paused " } ;
v o i d p s t a t e ( p l a y e r con s t& p ) { cout << " �> " << state_names [ p . c u r r e n t_ s t a t e ( ) [ 0 ] ] << e n d l ; }
v o i d t e s t ( ) {

// see the t e s t f u n c t i o n o f the b a s i c f r o n t e n d
}

}

i n t main ( ) { t e s t ( ) ; r e t u r n 0 ; }

Listing A.4: The state machine of an adapted player example of [85] from [89].
It is de�ned with the eUML frontend of Meta State Machine.
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1 grammar org . g ene s e z . p l a t f o rm . cpp . AddOn w i t h
org . e c l i p s e . x t e x t . common . Te rm i n a l s

2 g e n e r a t e addOn " h t t p : //www. gene s e z . o rg / p l a t f o rm /cpp/AddOn"
3 impo r t " h t t p : // gene s e z . o rg /metamodel / co r e " as gco r e
4

5 Root :
6 o p e r a t i o n s +=Ex t endOpe r a t i on * ;
7

8 Ope ra t i o n r e t u r n s ExtendedMOperat ion :
9 o p e r a t i o n =[ gco r e : : MOperat ion | Qua l i f i e dName ] ;
10 Qua l i f i e dName :
11 ID ( " . " ID ) * ;
12 Ex t endOpe ra t i on r e t u r n s ExtendedMOperat ion :
13 Ope ra t i on con s t ?= ' con s t ' ? nothrow?= ' throw ( ) ' ? ;

Listing A.5: The Xtext grammar �le of the org.genesez.gcore.cpp.addon

project

module o rg . g ene s e z . examp le . cpp . timebomb . s e r i a l i z e
impo r t o rg . e c l i p s e . emf .mwe . u t i l s .*

v a r mode lpath = "model /"
v a r model = "model . uml"
v a r c h e c k S c r i p t = " org : : g ene s e z : : a d a p t e r : : uml2 : : um l 2 c o n s t r a i n t s "
Workf low {

// i n s t a n t i a t e a co r e model
component = org . g ene s e z . a d ap t e r . uml2 . Uml2GeneSEZ {
model = "${mode lpath }${model }"
um lCheckSc r i p t = "${ c h e c k S c r i p t }"

}

//� e x e c u t e r e q u i r e d s e t u p s f o r add i ng the mode l s to EMF
component =

org . g ene s e z . p l a t f o rm . cpp2 . wo rk f l ow . S tandA loneSe tupCo l l e c to rComponen t
{

s e t up = org . g ene s e z . p l a t f o rm . cpp . AddOnStanda loneSetup {}
s e t up = org . g ene s e z . g co r e . s t a t emach i n e . AddOnStanda loneSetup {}

}

// r e q u i r e d f o r the g e n e r a t o r to n a v i g a t e w i t h i n the gco r e model
// r e g i s t e r s xmi f i l e s f o r Xtex t to p a r s e
component = org . g ene s e z . g co r e . r e s o u r c e . GcoreSuppor t {}

// c r e a t e s a r e s o u r c e f o r the co remode l
component = org . g ene s e z . p l a t f o rm . common . wo rk f l ow . S e r i a l i z e r {
f i l e = "model�exp /model . xmi "

}

// add a cppResou rce to EMF
component = org . e c l i p s e . emf .mwe . u t i l s . Reader {
u r i = "model / cpp . cppex t "
mode lS l o t =" cppResou rce "

}

// add a smResource to EMF
component = org . e c l i p s e . emf .mwe . u t i l s . Reader {
u r i = "model /sm . smext "
mode lS l o t =" smResource "

}

//maps the co remode l to a c o r e r e s o u r c e
// component = org . g ene s e z . p l a t f o rm . cpp2 . wo rk f l ow . ModelToResourceMapper

{}

//Workf low component to c o n f i g u r e the main g e n e r a t o r
component = org . g ene s e z . p l a t f o rm . cpp2 . wo rk f l ow . CppGeneratorComponent {

// r e g i s t e r main g e n e r a t o r s e t up to c r e a t e i n j e c t o r

95



r e g i s t e r = org . g ene s e z . p l a t f o rm . cpp2 . wo rk f l ow . CppGene ra to rSetup {
// p r o j e c t s p e c i f i c runt imeModu l e to r e g i s t e r a l t e r n a t i v e Gen e r a t o r s

and r e g i s t e r @ EMF
runt imeModu le =

org . g ene s e z . examp le . cpp . timebomb . g e n e r a t o r . TimeBombRuntimeModule
{}

}
// r e g i s t e r mode l s / r e s o u r c e s
ex tOpS lo t = ' cppResource '
asmS lot = ' smResource '
s l o t = ' coremode l '
o u t l e t = {
path = " . . / o rg . g ene s e z . examp le . cpp . timebomb/ s r c�gen"

}
}

}

Listing A.6: The Generate work�ow of the TimeBomb example.

c l a s s TimeBombState
{

p u b l i c :
v i r t u a l v o i d onArm(TimeBomb*) {}
v i r t u a l v o i d on_ANON_(TimeBomb*) {}
v i r t u a l v o i d onUp (TimeBomb*) {}
v i r t u a l v o i d onDown(TimeBomb*) {}
v i r t u a l v o i d onTick (TimeBomb*) {}
v i r t u a l v o i d onTimeout (TimeBomb*) {}

} ;
c l a s s s e t t i n g S t a t e : p u b l i c TimeBombState
{

p u b l i c :
v i r t u a l v o i d onArm(TimeBomb* c t x ) ;
v i r t u a l v o i d onUp (TimeBomb* c t x ) ;
v i r t u a l v o i d onDown(TimeBomb* c t x ) ;

} ;
c l a s s t im i n g S t a t e : p u b l i c TimeBombState
{

p u b l i c :
v i r t u a l v o i d onArm(TimeBomb* c t x ) ;
b oo l e v a lD i s a rm ( ) ;
v i r t u a l v o i d onUp (TimeBomb* c t x ) ;
v i r t u a l v o i d onDown(TimeBomb* c t x ) ;
v i r t u a l v o i d onTick (TimeBomb* c t x ) ;
v i r t u a l v o i d onTimeout (TimeBomb* c t x ) ;
b oo l e va lT imeou tEven t ( ) ;

} ;
c l a s s i n i t S t a t e : p u b l i c TimeBombState
{

p u b l i c :
v i r t u a l v o i d on_ANON_(TimeBomb* c t x ) ;

} ;
p r i v a t e :

TimeBombState* s t a t e ;
s e t t i n g S t a t e s e t t i n g ;
t im i n g S t a t e t im i n g ;
i n i t S t a t e i n i t ;
v o i d onArm ( ) { s t a t e �>onArm( t h i s ) ; }
v o i d on_ANON_() { s t a t e �>on_ANON_( t h i s ) ; }
v o i d onUp ( ) { s t a t e �>onUp ( t h i s ) ; }
v o i d onDown ( ) { s t a t e �>onDown( t h i s ) ; }
v o i d onTick ( ) { s t a t e �>onTick ( t h i s ) ; }
v o i d onTimeout ( ) { s t a t e �>onTimeout ( t h i s ) ; }

p u b l i c :
v o i d d i s p a t c h ( TimeBombSignal e v en t )
{

sw i t c h ( e v en t )
{

ca s e arm : onArm ( ) ; b r e ak ;
c a s e _ANON_ : on_ANON_() ; b r e ak ;
c a s e up : onUp ( ) ; b r e ak ;
c a s e down : onDown ( ) ; b r e ak ;
c a s e t i c k : onTick ( ) ; b r e ak ;
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ca s e t imeou t : onTimeout ( ) ; b r e ak ;
}

}
} ;

Listing A.7: The declaration of the state machine in the TimeBomb example.

A.3 Contents of the data storage device

The enclosed data storage device contains the practical part of the master thesis.
It is structured as follows:

eclipse The directory contains the Eclipse IDE with all necessary Plug-ins for the
workspace.

workspace The directory contains the created and referenced projects to either
instantiate a runtime Eclipse or generate the sca�olding of the example
project.

masterthesis.ebook.pdf The ebook version of this thesis.

masterthesis.print.pdf The print version of this thesis.

A.3.1 Eclipse projects

The Eclipse workspace contains the following projects:

org.eclipse.emf.ecore.adapter.uml Provides an UML to Ecore transformation to
create a gcore metamodel.

org.genesez.adapter.uml2 Provides the UML to gcore transformation to create
gcore complaint models from UML models.

org.genesez.example.cpp.timebomb The example project which contains the
generated C++ source code.

org.genesez.example.cpp.timebomb.generator The example project which con-
tains the models, the project speci�c RuntimeModule and the work�ow to
con�gure the generation process.

org.genesez.gcore.resource A Plug-in project to register the XMI �le extension
at Xtext. Deploying this Plug-in enables Xtext to parse a serialized gcore

model.

org.genesez.gcore.resource.ui The respective user interface project of the org.-
genesez.gcore.resource Xtext project.

org.genesez.gcore.statemachine.addon The Xtext project contains a language
extension for state machines.
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org.genesez.gcore.statemachine.addon.ui The respective user interface project
of the org.genesez.gcore.statemachine.addon Plug-in project.

org.genesez.metamodel.core Provides the gcore metamodel.

org.genesez.platform.common Provides common components and functions (e.g.,
the Serializer component to serialize a gcore compliant model).

org.genesez.platform.cpp.addon The Xtext project contains a language exten-
sion for C++ speci�cs.

org.genesez.platform.cpp.addon.ui The respective user interface project of the
org.genesez.platform.cpp.addon Xtext project.

org.genesez.platform.cpp2 The main generator project for C++.

A.3.2 Work�ows

GenerateAddon.mwe2 of the org.genesez.gcore.statemachine.addon The work-
�ow to generate the metamodel from the grammar �le and to create nec-
essary software artifacts for the deployable Plug-in project.

GenerateAddon.mwe2 of the org.genesez.platform.cpp.addon The work�ow to
generate the metamodel from the grammar �le and to create necessary soft-
ware artifacts for the deployable Plug-in project.

Generate.mwe2 of the org.genesez.example.cpp.timebomb.generator The project
speci�c work�ow to generate C++ from the speci�ed models with the re-
spective con�guration.

SerializeCoreModel.mwe2 of the org.genesez.example.cpp.timebomb.generator

performs a UML to gcore transformation on the respective model and seri-
alizes the gcore compliant model to the model-exp directory.
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