• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ
  • Dewey Decimal Classification
  • 5 Naturwissenschaften und Mathematik
  • 51 Mathematik

518 Numerische Analysis

Refine

Has Fulltext

  • no (1)

Year of publication

  • 2024 (1)

Document Type

  • Article (1)

Institute

  • Physikalische Technik, Informatik (1)

Language

  • German (1)

Author

  • Beisegel, Jesse (1)
  • Köhler, Ekkehard (1)
  • Ratajczak, Fabienne (1)
  • Scheffler, Robert (1)
  • Strehler, Martin (1)

Is part of the Bibliography

  • yes (1)

1 search hit

  • 1 to 1
  • 10
  • 20
  • 50
  • 100
Graph Search Trees and the Intermezzo Problem (2024)
Beisegel, Jesse ; Köhler, Ekkehard ; Ratajczak, Fabienne ; Scheffler, Robert ; Strehler, Martin
The last in-tree recognition problem asks whether a given spanning tree can be derived by connecting each vertex with its rightmost left neighbor of some search ordering. In this study, we demonstrate that the last-in-tree recognition problem for Generic Search is NP-complete. We utilize this finding to strengthen a complexity result from order theory. Given a partial order π and a set of triples, the NP-complete intermezzo problem asks for a linear extension of π where each first element of a triple is not between the other two. We show that this problem remains NP-complete even when the Hasse diagram of the partial order forms a tree of bounded height. In contrast, we give an XP-algorithm for the problem when parameterized by the width of the partial order. Furthermore, we show that - under the assumption of the Exponential Time Hypothesis - the running time of this algorithm is asymptotically optimal. LIPIcs, Vol. 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024), pages 22:1-22:18
  • 1 to 1

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks