613 Persönliche Gesundheit und Sicherheit
Refine
Document Type
- Article (5)
- Other (2)
- Part of a Book (1)
Institute
Is part of the Bibliography
- yes (8)
As part of the “Perspectives on labour research Lusatia” (PAL) project, five chairs at Zwickau University of Applied Sciences are working with industrial partners to develop low-threshold methods and tools for simplified screening of work characteristics. Traditionally, the assessment of work systems requires extensive specialist knowledge in the areas of occupational safety, ergonomics and operational design. Creating a hazard and stress register as a basis for work system design is therefore time-consuming and most of the times cost-intensive, which leads to a wait-and-see attitude, especially among small and medium-sized companies. However, innovations in the field of work analysis are now enabling the use and integration of smart, digital assistance systems, such as smartwatches or fitness trackers, combined with portable, intelligent environmental measurement technology. This combination allows an autonomous, in-house assessment of the stresses occurring without the need for external specialists and expensive equipment. The protection of personal rights is guaranteed by anonymized and pseudonymized data transmission. The departmental or process-specific evaluation of the collected data using machine learning creates an indicative stress assessment that enables work to be organized in line with all requirements. The resulting rough classification of key areas for action serves to define priorities for action and supports targeted decision-making processes for further measures, in which experts are involved on a selective basis. As a result, companies can carry out a focus-oriented and therefore economically sensible optimization of work design. Of particular importance, however, are the expected positive effects on employees, such as increasing motivation as well as higher job satisfaction.
The purpose of this study is to examine the relationship between contextual work-related factors in terms of job demands (workload-WL) and job resources (work flexibility-WF), work-life conflict (WLC) and the burnout dimension emotional exhaustion (EE) in a large population-based sample. Building on the job demands resources model (JDRM), we have developed the hypothesis that WL has an indirect effect on EE that is mediated by WLC. We conducted a secondary analysis using data from the Dresden Burnout Study (DBS, N = 4246, mean age (SD) = 42.7 years (10.5); 36.4% male). Results from structural equation modelling revealed that EE is positively associated with WL (β = 0.15, p = 0.001) and negatively associated with WF (β = -0.13, p = 0.001), also after accounting for potential confounding variables (demography, depressive symptoms, and lifetime diagnosis of burnout). Both effects are mediated by WLC (β = 0.18; p = 0.001 and β = 0.08; p = 0.001, respectively) highlighting the important role of WLC in employee health. In summary, WF may help to reduce burnout symptoms in employees, whereas WL may increase them. Study results suggest that both associations depend on WLC levels.
Emotionale Kompetenzen und psychische Gesundheit: Eine Querschnittstudie in Gesundheitsberufen
(2021)
Hintergrund
Im Jahr 2020 waren 5,7 Mio. Menschen in Gesundheits- und Pflegeberufen tätig. Der Kontakt mit anderen Menschen ist in diesen Berufen Teil des Arbeitsauftrags und der Mensch ist der Arbeitsgegenstand.
Ziel der Arbeit
Das Ziel der Arbeit ist die Untersuchung der Auswirkung von psychischer Belastung (Arbeitsintensität, Spielräume), emotionaler Erschöpfung und emotionalen Kompetenzen (Regulation) auf das psychische Wohlbefinden bei Beschäftigten in Gesundheitsberufen.
Material und Methoden
Die Erhebung der Querschnittstudie von 624 Beschäftigten aus der Altenpflege und dem Rettungsdienst (72,5 % weiblich) erfolgte im Rahmen zweier Projekte zur betrieblichen Gesundheitsförderung. Zum Einsatz kamen standardisierte validierte Verfahren, welche mittels Korrelationsanalysen sowie einer hierarchischen Regressionsanalyse zur Vorhersage des psychischen Wohlbefindens ausgewertet wurden.
Ergebnisse
Hohe Arbeitsintensität, hohe Spielräume, hohe emotionale Erschöpfung und eine hohe emotionale Kompetenz (Regulation) tragen zur Aufklärung des psychischen Wohlbefindens bei (R2 = 33 %).
Schlussfolgerung
Anhand der Ergebnisse wird deutlich, dass neben dem Erleben von Arbeit und Gesundheit auch emotionale Kompetenzen einen Einfluss auf die psychische Gesundheit bei Beschäftigten in Gesundheitsberufen haben. Damit leistet die Studie einen wichtigen Beitrag für die Entwicklung von Maßnahmen des betrieblichen Gesundheitsmanagements in diesen Berufsgruppen.